

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	25
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	36-UFQFN Exposed Pad
Supplier Device Package	36-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev256gm103-e-m5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "CPU" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for digital signal processing. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

3.1 Registers

The dsPIC33EVXXXGM00X/10X family devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can act as a Data, Address or Address Offset register. The sixteenth Working register (W15) operates as a Software Stack Pointer for interrupts and calls.

In addition, the dsPIC33EVXXXGM00X/10X devices include two alternate Working register sets, which consist of W0 through W14. The alternate registers can be made persistent to help reduce the saving and restoring of register content during Interrupt Service Routines (ISRs). The alternate Working registers can be assigned to a specific Interrupt Priority Level (IPL1 through IPL6) by configuring the CTXTx<2:0> bits in the FALTREG Configuration register.

The alternate Working registers can also be accessed manually by using the CTXTSWP instruction.

The CCTXI<2:0> and MCTXI<2:0> bits in the CTXTSTAT register can be used to identify the current, and most recent, manually selected Working register sets.

3.2 Instruction Set

The device instruction set has two classes of instructions: the MCU class of instructions and the DSP class of instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

3.3 Data Space Addressing

The Base Data Space can be addressed as 4K words or 8 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. On dsPIC33EV devices, certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Space boundary is device-specific.

The upper 32 Kbytes of the Data Space (DS) memory map can optionally be mapped into Program Space (PS) at any 16K program word boundary. The Program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were Data Space. Moreover, the Base Data Space address is used in conjunction with a Data Space Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address. The EDS can be addressed as 8M words or 16 Mbytes. For more information on EDS, PSV and table accesses, refer to "Data Memory" (DS70595) and "dsPIC33E/PIC24E Program Memory" (DS70000613) in the "dsPIC33/ PIC24 Family Reference Manual".

On dsPIC33EV devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU Circular Addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms. Figure 3-1 illustrates the block diagram of the dsPIC33EVXXXGM00X/10X family devices.

3.4 Addressing Modes

The CPU supports these addressing modes:

- Inherent (no operand)
- Relative
- Literal
- Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

R/W-0	U-0	R/W-0	R/W-0	EGISTER	R-0	R-0	R-0
VAR	0-0	US1	US0	EDT ⁽¹⁾	DL2	DL1	R-0 DL0
pit 15	_	031	030	EDI	DL2		bLU
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7	SAID	SAIDW	ACCOAL	IF LOV /	SFA	RIND	bit
Legend:		C = Clearable	- bit				
R = Readable	bit	W = Writable		U = Unimplem	onted hit rea	d as '0'	
-n = Value at F		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	
	-						
bit 15	1 = Variable e	exception proce	ocessing Later essing latency	is enabled			
L:4 4 4			sing latency is	enabled			
bit 14 bit 13-12	•	ted: Read as '	0 igned/Signed (Control hito			
	01 = DSP eng 00 = DSP eng	gine multiplies gine multiplies gine multiplies	are signed				
bit 11			ation Control bi e DO loop at th	e end of the cu	rrent loop iter	ation	
bit 10-8	111 = 7 DO lo	ops are active		ts			
bit 7		Saturation En					
		ator A saturatio ator A saturatio					
bit 6	1 = Accumula	Saturation En ator B saturatio ator B saturatio	n is enabled				
bit 5	1 = Data Space	ce write satura	from DSP Engi tion is enabled tion is disabled		Enable bit		
bit 4	-	cumulator Satu	ration Mode S				

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

4.3 Special Function Register Maps

TABLE 4-1: CPU CORE REGISTER MAP

IADLL 4	- • •			LOISIL														
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset s
W0	0000								W0 (W	REG)								0000
W1	0002								Ŵ									0000
W2	0004								W	2								0000
W3	0006								W	3								0000
W4	0008								W	4								0000
W5	000A								W	5								0000
W6	000C								We	6								0000
W7	000E								W	7								0000
W8	0010								W	8								0000
W9	0012								W	9								0000
W10	0014								W1	0								0000
W11	0016								W1	1								0000
W12	0018								W1	2								0000
W13	001A								W1	3								0000
W14	001C								W1	4								0000
W15	001E								W1	5								0800
SPLIM	0020								SPL	IM								xxxx
ACCAL	0022								ACC	AL								xxxx
ACCAH	0024								ACC	AH								xxxx
ACCAU	0026			Sig	n Extension	of ACCA<3	9>						ACC	CAU				xxxx
ACCBL	0028								ACC	BL								xxxx
ACCBH	002A								ACC	BH								xxxx
ACCBU	002C			Sig	n Extension	of ACCB<3	9>						ACC	CBU				xxxx
PCL	002E						Pro	ogram Cou	nter Low We	ord Register	r						_	0000
PCH	0030	_	_	_	_	_	_	_	_	_		F	Program Cou	inter High W	ord Registe	r		0000
DSRPAG	0032	_	_	_	_	_	_				Dat	a Space Re	ad Page Reg	gister				0001
DSWPAG	0034	—	_			_	_	_				Data Spa	ce Write Pag	e Register				0001
RCOUNT	0036							REPEAT LC	op Counter	Register							0	xxxx
DCOUNT	0038							DC	OUNT<15:1	>							0	xxxx
DOSTARTL	003A							DOS	TARTL<15	:1>							0	xxxx
DOSTARTH	003C	_	_		_			_	_	_	_			DOSTART	H<5:0>			00xx
DOENDL	003E							DO	ENDL<15:1	>							—	xxxx
Lanandi				- unimalar														

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: PMD REGISTER MAP FOR dsPIC33EVXXXGM00X/10X FAMILY DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	_	PWMMD	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD ⁽¹⁾	AD1MD	0000
PMD2	0762	_	—	—	—	IC4MD	IC3MD	IC2MD	IC1MD		—		_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	—	—	—	—	—	CMPMD	_	_		—		_	—	—	_	—	0000
PMD4	0766	—	—	—	—	—	—	_	_		—		_	REFOMD	CTMUMD	_	—	0000
PMD6	076A	—	—	—	—	—	PWM3MD	PWM2MD	PWM1MD		—		_	—	—	_	—	0000
PMD7	076C	_	—	—	—	-	—	—	_	-	—	-	DMA0MD	—	—		—	0000
													DMA1MD					
													DMA2MD					
													DMA3MD					
PMD8	076E	—	—	—	SENT2MD	SENT1MD	—	_	DMTMD		—		_	—	—	_	—	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This feature is available only on dsPIC33EVXXXGM10X devices.

TABLE 4-31: PORTA REGISTER MAP FOR dsPIC33EVXXXGMX06 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	—	—			TRISA<	12:7>			—	—	TRISA4	—	_	TRISA	<1:0>	1F93
PORTA	0E02	_	—	—			RA<12	2:7>				—	RA4	—	-	RA<	1:0>	0000
LATA	0E04	_	—	—			LATA<1	2:7>				—	LATA4	—	-	LATA	<1:0>	0000
ODCA	0E06	—	—	—			ODCA<	12:7>				_	ODCA4	—	-	ODCA	<1:0>	0000
CNENA	0E08	_	_	_			CNIEA<	12:7>			_	_	CNIEA4	_	_	CNIEA	<1:0>	0000
CNPUA	0E0A	—	—	—			CNPUA<	:12:7>				_	CNPUA4	—	-	CNPU	۹<1:0>	0000
CNPDA	0E0C	_	_	_			CNPDA<	:12:7>			_	_	CNPDA4	_	_	CNPD	A<1:0>	0000
ANSELA	0E0E	_	—	—		ANSA<12:9>				ANSA7		—	ANSA4	—	-	ANSA	<1:0>	1E93
SR1A	0E10	_	—	—		—	_	SR1A9				—	SR1A4	—	-			0000
SR0A	0E12	_	_	—		_	_	SR0A9				—	SR0A4	—	_		_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PORTA REGISTER MAP FOR dsPIC33EVXXXGMX04 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	_	_	_	_		TRISA	<10:7>		—	—		-	TRISA<4:0>	>		DF9F
PORTA	0E02	_	_	_	_	_		RA<1	0:7>		—	—			RA<4:0>			0000
LATA	0E04	—	_	_	_	_		LATA<	10:7>			—			LATA<4:0>			0000
ODCA	0E06	—	_	_	_	_		ODCA<	<10:7>			—		(ODCA<4:0>	>		0000
CNENA	0E08	—	—	_	_			CNIEA	<10:7>			—	CNIEA<4:0>				0000	
CNPUA	0E0A	—	—	_	_			CNPUA	<10:7>			—	CNPUA<4:0>					0000
CNPDA	0E0C	—	—	_	_			CNPDA	<10:7>			—		C	NPDA<4:0	>		0000
ANSELA	0E0E	—	—	_	_		ANSA<10:9> — ANSA7			—	ANSA4	—		ANSA<2:0>	•	1813		
SR1A	0E10	—	—	_	_			SR1A9	_	_		—	SR1A4	—	—			0000
SR0A	0E12	—	—	_	_			SR0A9	_	_		—	SR0A4	—	—			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

FIGURE 4-17: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

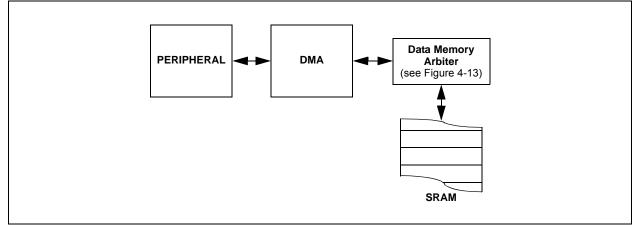
bit 3	SLEEP: Wake-up from Sleep Flag bit
	1 = Device has been in Sleep mode
	0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit
	1 = Device was in Idle mode
	0 = Device was not in Idle mode
bit 1	BOR: Brown-out Reset Flag bit
	1 = A Brown-out Reset has occurred
	0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit
	1 = A Power-on Reset has occurred
	0 = A Power-on Reset has not occurred

- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Direct Memory Access (DMA)" (DS70348) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The DMA Controller transfers data between Peripheral Data registers and Data Space SRAM. For the simplified DMA block diagram, refer to Figure 8-1.


In addition, DMA can access the entire data memory space. The data memory bus arbiter is utilized when either the CPU or DMA attempts to access SRAM, resulting in potential DMA or CPU stalls.

The DMA Controller supports 4 independent channels. Each channel can be configured for transfers to or from selected peripherals. The peripherals supported by the DMA Controller include:

- CAN
- Analog-to-Digital Converter (ADC)
- Serial Peripheral Interface (SPI)
- UART
- Input Capture
- Output Compare

Refer to Table 8-1 for a complete list of supported peripherals.

FIGURE 8-1: PERIPHERAL TO DMA CONTROLLER

REGISTER 8-7: DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAI)<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 PAD<15:0>: DMA Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-8: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			CNT<	13:8> (2)		
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNT<	7:0> (2)			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 CNT<13:0>: DMA Transfer Count Register bits⁽²⁾

- **Note 1:** If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.
 - **2:** The number of DMA transfers = CNT<13:0> + 1.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_	—	—	—	PWCOL3	PWCOL2	PWCOL1	PWCOL0
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-4	Unimplemen	ted: Read as '	0'				
bit 3		annel 3 Periph		Ilision Flag bit			
	$\perp = vvrite col$	ision is detecte	a				

REGISTER 8-11: DMAPWC: DMA PERIPHERAL WRITE COLLISION STATUS REGISTER

1 = Write collision is detected
0 = Write collision is not detected

0 = Write collision is not detected

1 = Write collision is detected0 = Write collision is not detected

PWCOL2: Channel 2 Peripheral Write Collision Flag bit

PWCOL1: Channel 1 Peripheral Write Collision Flag bit

bit 0 PWCOL0: Channel 0 Peripheral Write Collision Flag bit

- 1 = Write collision is detected
 - 0 = Write collision is not detected

bit 2

bit 1

REGISTER 17-7: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

bit 7-6	DTC<1:0>: Dead-Time Control bits 11 = Dead-Time Compensation mode 10 = Dead-time function is disabled 01 = Negative dead time is actively applied for Complementary Output mode 00 = Positive dead time is actively applied for all Output modes
bit 5	DTCP: Dead-Time Compensation Polarity bit ⁽³⁾ <u>When Set to '1':</u> If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened. If DTCMPx = 1, PWMxH is shortened and PWMxL is lengthened.
	<u>When Set to '0':</u> If DTCMPx = 0, PWMxH is shortened and PWMxL is lengthened. If DTCMPx = 1, PWMxL is shortened and PWMxH is lengthened.
bit 4-3	Unimplemented: Read as '0'
bit 2	CAM: Center-Aligned Mode Enable bit ^(2,4)
	1 = Center-Aligned mode is enabled 0 = Edge-Aligned mode is enabled
bit 1	XPRES: External PWMx Reset Control bit ⁽⁵⁾
	 1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base mode 0 = External pins do not affect PWMx time base
bit 0	IUE: Immediate Update Enable bit ⁽²⁾
	 1 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are immediate 0 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are synchronized to the PWMx period boundary
Note 1: 2:	Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller. These bits should not be changed after the PWMx is enabled (PTEN = 1).
3:	DTC<1:0> = 11 for DTCP to be effective; else, DTCP is ignored.

- 4: The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.
- **5:** To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

19.2 I²C Control Registers

REGISTER 19-1: I2CxCON1: I2Cx CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/S-1	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN		I2CSIDL	SCLREL ⁽¹⁾	STRICT	A10M	DISSLW	SMEN
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0, HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7	•		•		•		bit 0

Legend:	Legend:S = Settable bitHC = Hardware Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	k = Bit is unknown	

bit 15	I2CEN: I2Cx Enable bit (writable from SW only)
	 1 = Enables the I²C module and configures the SDAx and SCLx pins as serial port pins 0 = Disables the I²C module and all I²C pins are controlled by port functions
bit 14	Unimplemented: Read as '0'
bit 13	I2CSIDL: I2Cx Stop in Idle Mode bit
	 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	SCLREL: SCLx Release Control bit (I ² C Slave mode only) ⁽¹⁾
	Module resets and (I2CEN = 0) sets SCLREL = 1.
	$\frac{\text{If STREN = }0}{2}$
	1 = Releases clock
	0 = Forces clock low (clock stretch)
	If STREN = 1: 1 = Releases clock
	0 = Holds clock low (clock stretch); user may program this bit to '0', clock stretch at the next SCLx low
bit 11	STRICT: Strict I ² C Reserved Address Rule Enable bit
	1 = Strict reserved addressing is enforced
	In Slave mode, the device does not respond to reserved address space and addresses falling in that category are NACKed.
	0 = Reserved addressing would be Acknowledged
	In Slave mode, the device will respond to an address falling in the reserved address space. When there is a match with any of the reserved addresses, the device will generate an ACK.
bit 10	A10M: 10-Bit Slave Address Flag bit
	1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address
bit 9	DISSLW: Slew Rate Control Disable bit
	 1 = Slew rate control is disabled for Standard Speed mode (100 kHz, also disabled for 1 MHz mode) 0 = Slew rate control is enabled for High-Speed mode (400 kHz)
bit 8	SMEN: SMBus Input Levels Enable bit
	 1 = Enables the input logic so thresholds are compliant with the SMBus specification 0 = Disables the SMBus-specific inputs
Note 1:	Automatically cleared to '0' at the beginning of slave transmission; automatically cleared to '0' at the end of slave reception.

2: Automatically cleared to '0' at the beginning of slave transmission.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
F15BP3	F15BP2	F15BP1	F15BP0	F14BP3 F14BP2		F14BP1	F14BP0			
bit 15					•		bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
F13BP3	F13BP2	F13BP1	F13BP0	F12BP3	F12BP2	F12BP1	F12BP0			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable bit		U = Unimpler	mented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set	' = Bit is set		ared	x = Bit is unknown				
bit 15-12	F15BP<3:0>:	RX Buffer Ma	sk for Filter 15	5 bits						
	1111 = Filter	hits received in	n RX FIFO but	ffer						
	1110 = Filter	hits received in	n RX Buffer 14	ļ.						
	•									
	•									
	0001 = Filter	hits received ir	n RX Buffer 1							
	0000 = Filter hits received in RX Buffer 0									
bit 11-8	it 11-8 F14BP<3:0>: RX Buffer Mask for Filter 14 bits (same values as bits 15-12)									
bit 7-4	F13BP<3:0>: RX Buffer Mask for Filter 13 bits (same values as bits 15-12)									
bit 3-0	F12BP<3:0>: RX Buffer Mask for Filter 12 bits (same values as bits 15-12)									

REGISTER 22-15: CxBUFPNT4: CANx FILTERS 12-15 BUFFER POINTER REGISTER 4

REGISTER 22-16: CxRXFnSID: CANx ACCEPTANCE FILTER n STANDARD IDENTIFIER REGISTER (n = 0-15)

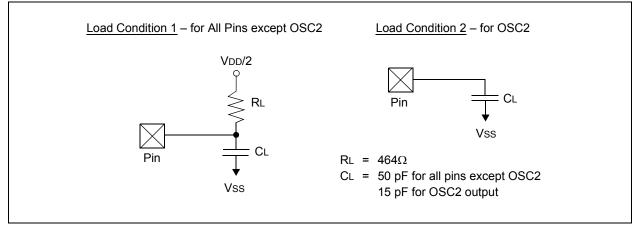
		-	•								
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3				
bit 15							bit 8				
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x				
SID2	SID1	SID0		EXIDE		EID17	EID16				
bit 7							bit C				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	Iown				
bit 15-5	SID<10:0>: S	Standard Identif	ier bits								
	0		•	1' to match filte							
	0	-		0' to match filte	er						
bit 4	Unimplemen	ted: Read as '	0'								
bit 3	EXIDE: Exter	nded Identifier I	Enable bit								
	If MIDE = 1:										
		, ,		ed Identifier add							
	0 = Matches	only messages	with Standar	d Identifier add	resses						
	Ignores EXID)E bit.									
bit 2	Unimplemented: Read as '0'										
bit 1-0	•	Extended Iden									
				1' to match filte	er						
	0	 1 = Message address bit, EIDx, must be '1' to match filter 0 = Message address bit, EIDx, must be '0' to match filter 									
	0										

REGISTER 22-17: CxRXFnEID: CANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			EID	<15:8>				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			EID)<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	it	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15-0	EID<15:0>:	Extended Identifie	er bits					

1 = Message address bit, EIDx, must be '1' to match filter

0 = Message address bit, EIDx, must be '0' to match filter


30.2 AC Characteristics and Timing Parameters

This section defines the dsPIC33EVXXXGM00X/10X family AC characteristics and timing parameters.

TABLE 30-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

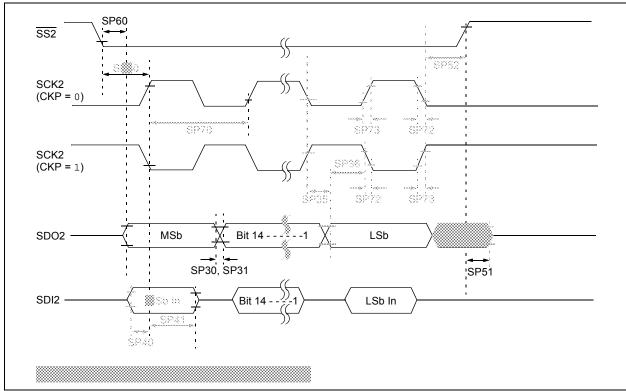

AC CHARACTERISTICS	Standard Operating Conditions: 4.5V to 5.5V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for ExtendedOperating voltage VDD range as described in Section 30.1 "DCCharacteristics".
--------------------	---

FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 30-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	—	15	pF	In XT and HS modes, when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_		400	pF	In I ² C mode

FIGURE 30-17: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-44:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK1 Input Frequency		_	25	MHz	See Note 3	
SP72	TscF	SCK1 Input Fall Time	—			ns	See Parameter DO32 and Note 4	
SP73	TscR	SCK1 Input Rise Time	_			ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDO1 Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDO1 Data Output Rise Time	—			ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20			ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	_	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SS1} \downarrow$ to SCK1 \uparrow or SCK1 \downarrow Input	120	—	_	ns		
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	_	50	ns	See Note 4	
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40		_	ns	See Note 4	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 40 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
CTMU Current Source							
CTMUI1	IOUT1	Base Range	_	550	_	nA	CTMUICON<9:8> = 01
CTMUI2	IOUT2	10x Range	—	5.5	_	μA	CTMUICON<9:8> = 10
CTMUI3	Ιουτ3	100x Range	—	55	_	μA	CTMUICON<9:8> = 11
CTMUI4	IOUT4	1000x Range	—	550	_	μA	CTMUICON<9:8> = 00
CTMUFV1	VF	Temperature Diode Forward Voltage ^(1,2)	—	0.525	_	V	TA = +25°C, CTMUICON<9:8> = 01
			_	0.585	_	V	TA = +25°C, CTMUICON<9:8> = 10
			—	0.645	_	V	TA = +25°C, CTMUICON<9:8> = 11
CTMUFV2	VFVR	Temperature Diode Rate of	—	-1.92	_	mV/°C	CTMUICON<9.8> = 01
		Change ^(1,2)	_	-1.74	_	mV/°C	CTMUICON<9:8> = 10
			—	-1.56	—	mV/°C	CTMUICON<9:8> = 11

TABLE 30-53: CTMU CURRENT SOURCE SPECIFICATIONS

Note 1: Nominal value at center point of current trim range (CTMUICON<15:10> = 000000).

2: Parameters are characterized but not tested in manufacturing. Measurements are taken with the following conditions:

- VREF = AVDD = 5.0V
- ADC configured for 10-bit mode
- · ADC configured for conversion speed of 500 ksps
- All PMDx bits are cleared (PMDx = 0)
- CPU executing while(1)
 - { NOP();
 - }
- · Device operating from the FRC with no PLL

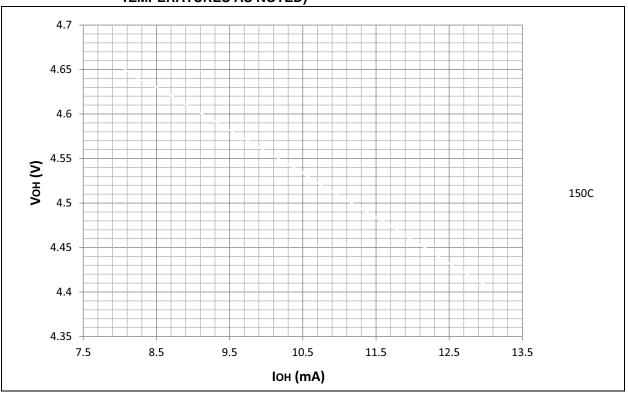
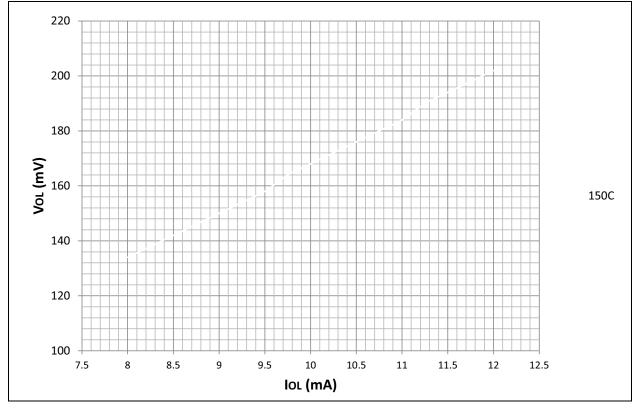



FIGURE 33-27: TYPICAL VOH 4x DRIVER PINS vs. IOH (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

FIGURE 33-28: TYPICAL Vol 8x DRIVER PINS vs. Iol (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

Е

Electrical Characteristics	
AC	351, 408
Equations	
BRG Formula	229
Device Operating Frequency	124
Fosc Calculation	
Frame Time Calculations	
FSCL Frequency	229
Fvco Calculation	
SYNCMIN and SYNCMAX Calculations	
Tick Period Calculation	239
Errata	11

F

Flash Program Memory	83
Control Registers	85
Error Correcting Code (ECC)	
Operations	
Resources	
RTSP Operation	84
Table Instructions	83
Flexible Configuration	
-	

G

Catting Started with 16 Dit DCCa	17
Getting Started with 16-Bit DSCs	
Connection Requirements	17
CPU Logic Filter Capacitor Connection (VCAP)	18
Decoupling Capacitors	17
External Oscillator Pins	19
ICSP Pins	19
Master Clear (MCLR) Pin	18
Oscillator Value Conditions on Device Start-up	19
Unused I/Os	19

Н

High Temperature	
Thermal Operating Conditions	404
High-Speed PWM	199
Control Registers	204
Faults	199
Resources	203
High-Temperature Electrical Characteristics	403
Absolute Maximum Ratings	403

I

I/O Ports	143
Configuring Analog/Digital Port Pins	144
Helpful Tips	151
High-Voltage Detect (HVD)	151
Open-Drain Configuration	144
Parallel I/O (PIO)	143
Peripheral Pin Select (PPS)	145
Slew Rate Selection	145
Write/Read Timing	144
In-Circuit Debugger	326
MPLAB ICD 3	339
PICkit 3 Programmer	339
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	. 317, 326
Input Capture	
Control Registers	190
Input Change Notification (ICN)	144

Instruction Addressing Modes	74
File Register Instructions	74
Fundamental Modes Supported	75
MAC Instructions	
MCU Instructions	74
Move and Accumulator Instructions	75
Other Instructions	75
Instruction Set	
Overview	330
Summary	327
Symbols Used in Opcode	
Interfacing Program and Data Memory Spaces	79
Inter-Integrated Circuit (I ² C)	
Baud Rate Generator	229
Control Registers	231
Inter-Integrated Circuit. See I ² C.	
Internal LPRC Oscillator	
Use with WDT	
Internet Address	493
Interrupt Controller	
Control and Status Registers	
IECx	
IFSx	
INTCON1	
INTCON2	
INTCON3	
INTCON4	
INTTREG	
IPCx	
Reset Sequence	
Interrupt Vector Table (IVT)	
Details	

Μ

Memory Maps	
EDS	72
Memory Organization	31
Microchip Internet Web Site	
Modulo Addressing	
Applicability	
Operation Example	76
Start and End Address	
W Address Register Selection	
MPLAB PM3 Device Programmer	339
MPLAB REAL ICE In-Circuit Emulator System	339
MPLAB X Integrated Development	
Environment Software	337
MPLINK Object Linker/MPLIB Object Librarian	338
0	
Op Amp/Comparator	301
Control Registers	303
Oscillator Configuration	400

e end en regietere ministration	
Oscillator Configuration	. 123
Bit Values for Clock Selection	. 125
CPU Clocking System	. 124
Output Compare	. 193
Control Registers	. 194
Р	

Packaging	
Details	
Marking	461, 462
Peripheral Module Disable (PMD)	135