

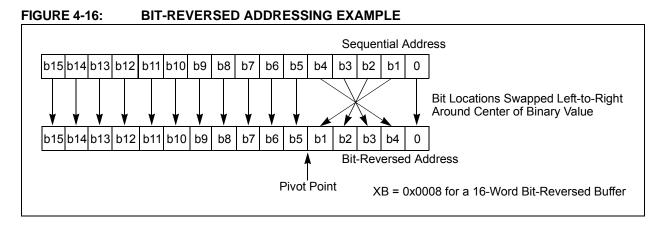
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


·XFI

Betans	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	25
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-UFQFN Exposed Pad
Supplier Device Package	36-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev256gm103t-i-m5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EVXXXGM00X/10X FAMILY

TABLE 4-46: BIT-REVERSED ADDRESSING SEQUENCE (16-ENTRY)

		Norma	al Addres	SS			Bit-Rev	ersed Ac	Idress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Direct Memory Access (DMA)" (DS70348) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The DMA Controller transfers data between Peripheral Data registers and Data Space SRAM. For the simplified DMA block diagram, refer to Figure 8-1.

In addition, DMA can access the entire data memory space. The data memory bus arbiter is utilized when either the CPU or DMA attempts to access SRAM, resulting in potential DMA or CPU stalls.

The DMA Controller supports 4 independent channels. Each channel can be configured for transfers to or from selected peripherals. The peripherals supported by the DMA Controller include:

- CAN
- Analog-to-Digital Converter (ADC)
- Serial Peripheral Interface (SPI)
- UART
- Input Capture
- Output Compare

Refer to Table 8-1 for a complete list of supported peripherals.

FIGURE 8-1: PERIPHERAL TO DMA CONTROLLER

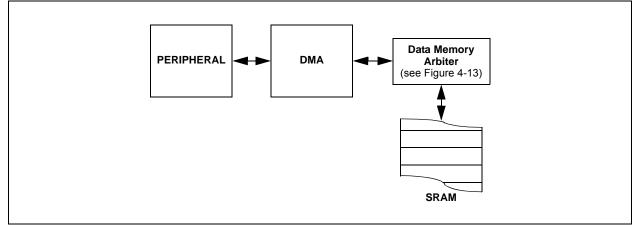
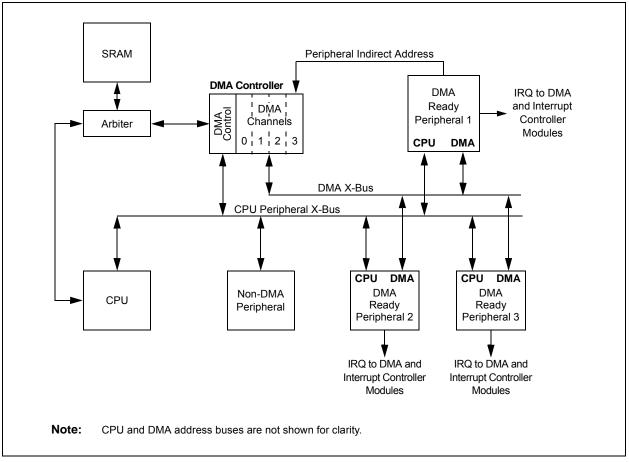



Figure 8-2 illustrates the DMA Controller block diagram.

8.1 DMAC Controller Registers

Each DMAC Channel x (where x = 0 to 3) contains the following registers:

- 16-Bit DMA Channel x Control Register (DMAxCON)
- 16-Bit DMA Channel x IRQ Select Register (DMAxREQ)
- 32-Bit DMA Channel x Start Address Register A High/Low (DMAxSTAH/L)
- 32-Bit DMA Channel x Start Address Register B High/Low (DMAxSTBH/L)
- 16-Bit DMA Channel x Peripheral Address Register (DMAxPAD)
- 14-Bit DMA Channel x Transfer Count Register (DMAxCNT)

Additional status registers (DMAPWC, DMARQC, DMAPPS, DMALCA and DSADRH/L) are common to all DMAC channels. These status registers provide information on write and request collisions, as well as on last address and channel access information.

The DMA Interrupt Flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding DMA Interrupt Enable bits (DMAxIE) are located in an IECx register in the interrupt controller and the corresponding DMA Interrupt Priority bits (DMAxIP) are located in an IPCx register in the interrupt controller.

NOTES:

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this may not be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation. For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps, based on this device operating speed. If the device is placed in Doze mode, with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled, using the appropriate PMDx control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have any effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMDx register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMDx register by default.

Note: If a PMDx bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMDx bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
Legend:							
bit 7		<u>.</u>	•			•	bit (
—	—	—	—	_	—	—	—
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
bit 15						•	bit
—	—	—	—	—	PWM3MD	PWM2MD	PWM1MD
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0

bit 15-11 **Unimplemented:** Read as '0'

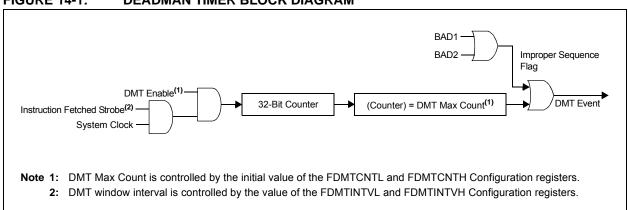
bit 10-8 **PWM3MD: PWM1MD:** PWMx (x = 1-3) Module Disable bit

1 = PWMx module is disabled

0 = PWMx module is enabled

bit 7-0 Unimplemented: Read as '0'

14.0 DEADMAN TIMER (DMT)


- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Deadman Timer (DMT)" (DS70005155) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The primary function of the Deadman Timer (DMT) is to reset the processor in the event of a software malfunction. The DMT, which works on the system clock, is a free-running instruction fetch timer, which is clocked whenever an instruction fetch occurs, until a count match occurs. Instructions are not fetched when the processor is in Sleep mode.

DMT can be enabled in the Configuration fuse or by software in the DMTCON register by setting the ON bit. The DMT consists of a 32-bit counter with a time-out count match value, as specified by the two 16-bit Configuration Fuse registers: FDMTCNTL and FDMTCNTH.

A DMT is typically used in mission-critical, and safetycritical applications, where any single failure of the software functionality and sequencing must be detected.

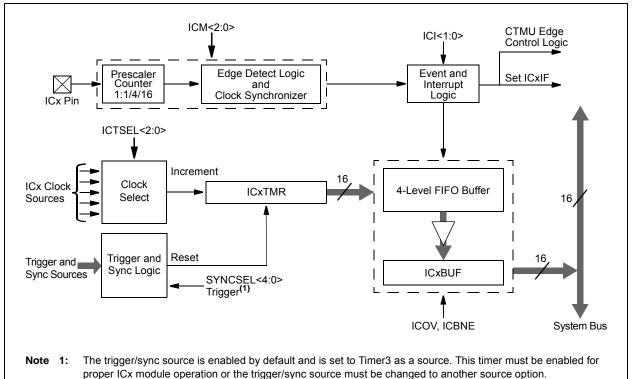
Figure 14-1 shows a block diagram of the Deadman Timer module.

FIGURE 14-1: DEADMAN TIMER BLOCK DIAGRAM

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	_	—	—	—		—			
bit 15							bit 8			
R-0, HC	R-0, HC	R-0, HC	U-0	U-0	U-0	U-0	R-0			
BAD1	BAD2	DMTEVENT		—	_		WINOPN			
bit 7							bit 0			
Legend:		HC = Hardwar	e Clearable bit							
R = Readable	e bit	W = Writable b	it	U = Unimple	mented bit, re	ad as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown			
bit 15-8	Unimplemer	nted: Read as '0	3							
bit 7	BAD1: Dead	man Timer Bad	STEP1<7:0> V	alue Detect bit						
		STEP1<7:0> va STEP1<7:0> va								
bit 6	BAD2: Dead	man Timer Bad	STEP2<7:0> V	alue Detect bit						
		STEP2<7:0> va STEP2<7:0> va								
bit 5	DMTEVENT:	Deadman Time	r Event bit							
	 1 = Deadman Timer event was detected (counter expired, or bad STEP1<7:0> or STEP2<7:0> value was entered prior to counter increment) 									
bit 4-1		0 = Deadman Timer event was not detected								
bit 0	-	Unimplemented: Read as '0' WINORN: Deadman Timer Clear Window bit								
Sit 0	1 = Deadmar	WINOPN: Deadman Timer Clear Window bit 1 = Deadman Timer clear window is open								
	0 = Deadman Timer clear window is not open									

REGISTER 14-4: DMTSTAT: DEADMAN TIMER STATUS REGISTER

15.0 INPUT CAPTURE


- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Input Capture" (DS70000352) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33EVXXXGM00X/10X family devices support 4 input capture channels.

Key features of the input capture module include:

- Hardware-Configurable for 32-Bit Operation in All Modes by Cascading Two Adjacent modules
- Synchronous and Trigger Modes of Output Compare Operation, with up to 31 User-Selectable Trigger/Sync Sources Available
- A 4-Level FIFO Buffer for Capturing and Holding Timer Values for Several Events
- Configurable Interrupt Generation
- Up to Six Clock Sources Available for Each Module, Driving a Separate Internal 16-Bit Counter

Figure 15-1 shows a block diagram of the Input capture module.

FIGURE 15-1: INPUT CAPTURE x MODULE BLOCK DIAGRAM

dsPIC33EVXXXGM00X/10X FAMILY

REGISTER 17-18: AUXCONx: PWMx AUXILIARY CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—		—	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN
bit 7							bit 0

Legend:									
R = Readab	ole bit	W = Writable bit	U = Unimplemented bit,	read as '0'					
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
bit 15-12	Unimple	mented: Read as '0'							
bit 11-8	BLANKS	SEL<3:0>: PWMx State Bla	nk Source Select bits						
	the BCH 1001 = F • • 0100 = F	and BCL bits in the LEBCO Reserved	Nx register).	ult input signals (if enabled through					
	0001 = F	PWM2H is selected as the s PWM1H is selected as the s No state blanking							
bit 7-6	Unimple	mented: Read as '0'							
bit 5-2	CHOPSEL<3:0>: PWMx Chop Clock Source Select bits								
	The sele 1001 = F •		lisable (Chop) the selected PW	/Mx outputs.					
	0010 = F 0001 = F	PWM3H is selected as the c PWM2H is selected as the c PWM1H is selected as the c	hop clock source						
bit 1	1 = PWN	EN: PWMxH Output Choppi IxH chopping function is en IxH chopping function is dis	abled						
bit 0	L = PWN	EN: PWMxL Output Choppin IxL chopping function is ena IxL chopping function is disa	ng Enable bit abled						

18.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on $\frac{1}{SSx}$.

Note: This insures that the first frame transmission after initialization is not shifted or corrupted.

- 2. In Non-Framed 3-Wire mode (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = <u>0</u>, always place a pull-down resistor on SSx.
- **Note:** This will insure that during power-up and initialization, the master/slave will not lose sync due to an errant SCKx transition that would cause the slave to accumulate data shift errors, for both transmit and receive, appearing as corrupted data.

- 3. FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame Sync pulse is active on the SSx pin, which indicates the start of a data frame.
- Note: Not all third-party devices support Frame mode timing. For more information, refer to the SPI specifications in Section 30.0 "Electrical Characteristics".
- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPI data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.

To avoid invalid slave read data to the master, the user's master software must ensure enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF Transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPIx Shift register and is empty once the data transmission begins.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15			Diocon	DICCDO	MODEIO	Olin	bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽²⁾	CKP	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾
bit 7				1			bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
			_ 1				
bit 15-13	-	ted: Read as '					
bit 12		PI clock is disa	-	er modes only)			
		PI clock is disa PI clock is ena		ao 1/U			
bit 11		able SDOx Pin					
	1 = SDOx pin	is not used by	the module; p	oin functions as	; I/O		
		is controlled b					
bit 10	MODE16: Wo	ord/Byte Comm	unication Sele	ect bit			
		cation is word-	, ,				
		cation is byte-	. ,				
bit 9		ata Input Samp	ole Phase bit				
	Master mode:	: a is sampled at	the end of da	ta output time			
				data output time	ie		
	Slave mode:	-		n Slave mode.			
bit 8	CKE: Clock E	dge Select bit	1)				
					clock state to Id		
bit 7	SSEN: Slave	Select Enable	bit (Slave mo	de) ⁽²⁾			
		s used for Slav					
	0 = SSx pin is	s not used by the	ne module; pir	n is controlled b	y port function		
bit 6		olarity Select I					
				ve state is a low e state is a high			
bit 5	MSTEN: Mas	ter Mode Enab	le bit				
	1 = Master m 0 = Slave mo						
	he CKE bit is not FRMEN = 1).	used in Frame	d SPI modes.	Program this b	oit to '0' for Frai	med SPI modes	S
-	his bit must be cl	eared when FF	RMEN = 1.				
	o not set both pri			ers to the value	e of 1:1.		

REGISTER 18-2: SPIxCON1: SPIx CONTROL REGISTER 1

3: Do not set both primary and secondary prescalers to the value of 1:1.

REGISTER 24-1: ADxCON1: ADCx CONTROL REGISTER 1 (CONTINUED)

bit 7-5	SSRC<2:0>: Sample Clock Source Select bits
	If SSRCG = 1:
	111 = Reserved 110 = Reserved
	10 = Reserved
	100 = Reserved
	011 = Reserved
	010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion
	001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion
	000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion
	If SSRCG = 0:
	111 = Internal counter ends sampling and starts conversion (auto-convert)
	110 = CTMU ends sampling and starts conversion
	101 = Reserved
	100 = Timer5 compare ends sampling and starts conversion
	011 = PWM primary Special Event Trigger ends sampling and starts conversion
	010 = Timer3 compare ends sampling and starts conversion 001 = Active transition on the INT0 pin ends sampling and starts conversion
	000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)
L:1	
bit 4	SSRCG: Sample Trigger Source Group bit
	See SSRC<2:0> for details.
bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)
	In 12-Bit Mode (AD12B = 1), SIMSAM is Unimplemented and is Read as '0':
	1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x) or samples CH0 and CH1
	simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence
hit 0	
bit 2	ASAM: ADCx Sample Auto-Start bit
	1 = Sampling begins immediately after last conversion; SAMP bit is auto-set
	0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADCx Sample Enable bit
	1 = ADCx Sample-and-Hold amplifiers are sampling
	0 = ADCx Sample-and-Hold amplifiers are holding
	If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC<2:0> = 000, software can write '0' to end sampling and start conversion. If SSRC<2:0> \neq 000,
	automatically cleared by hardware to end sampling and start conversion. If $33RC<2.07 \neq 000$,
bit 0	DONE: ADCx Conversion Status bit ⁽¹⁾
bit 0	1 = ADCx conversion cycle is completed.
	0 = ADCx conversion has not started or is in progress
	Automatically set by hardware when conversion is complete. Software can write '0' to clear DONE bit
	status (software not allowed to write '1'). Clearing this bit does NOT affect any operation in progress.
	Automatically cleared by hardware at the start of a new conversion.

Note 1: Do not clear the DONE bit in software if auto-sample is enabled (ASAM = 1).

26.0 COMPARATOR VOLTAGE REFERENCE

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Op Amp/Comparator" (DS70000357) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

26.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRxCON registers (Register 26-1 and Register 26-2). The comparator voltage reference provides a range of output voltages with 128 distinct levels. The comparator reference supply voltage can come from either VDD and Vss, or the external CVREF+ and AVss pins. The voltage source is selected by the CVRSS bit (CVRxCON<11>). The settling time of the comparator voltage reference must be considered when changing the CVREF output.

TABLE 30-18: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No. Symbol Characteristic			Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8		8.0	MHz	ECPLL, XTPLL modes	
OS51	Fsys	On-Chip VCO System Frequency	120	—	340	MHz		
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	ms		
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%		

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Time Base or Communication Clock}}}$$

For example, if FOSC = 120 MHz and the SPI bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 30-19: INTERNAL FRC ACCURACY

AC CHA	RACTERISTICS		r d Opera ng tempe	rature -	$40^{\circ}C \le T$	4.5V to 5.5V (unless o $A \le +85^{\circ}C$ for Industrial $A \le +125^{\circ}C$ for Extende	,	
Param No. Characteristic		Min.	Тур.	Max.	Units	Condi	tions	
Internal	FRC Accuracy @ FRC Fre	equency	= 7.37 M	Hz ⁽¹⁾				
F20a	FRC	-1	0.5	+1	%	$-40^{\circ}C \le TA \le +85^{\circ}C \qquad VDD = 4.5-5.5V$		
F20b	FRC	-2	1	+2	%	$-40^{\circ}C \leq TA \leq +125^{\circ}C VDD = 4.5-5.5V$		

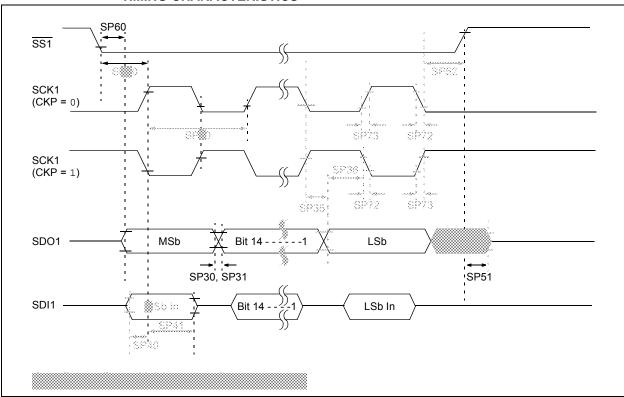
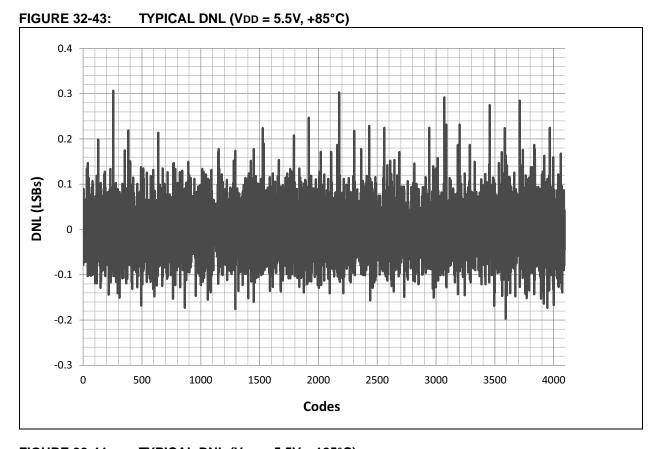
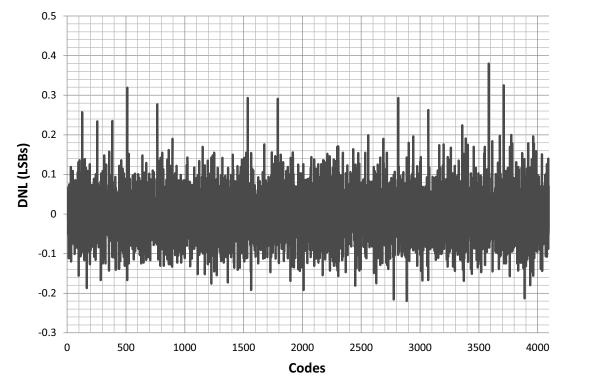

Note 1: Frequency calibrated at +25°C and 5.0V. TUN<5:0> bits can be used to compensate for temperature drift.

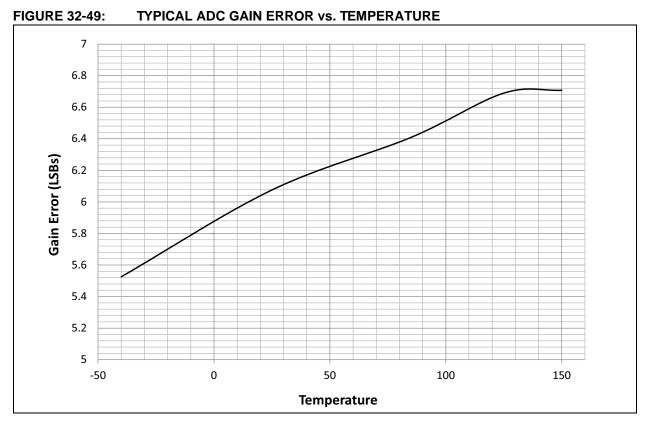
TABLE 30-20: INTERNAL LPRC ACCURACY

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditions			
LPRC @ 32.768 kHz ⁽¹⁾									
F21a	LPRC	-15	5	+15	%	$-40^{\circ}C \leq TA \leq +85^{\circ}C$	VDD = 4.5-5.5V		
F21b	LPRC	-30	10	+30	%	$-40^\circ C \le T_A \le +125^\circ C$	VDD = 4.5-5.5V		

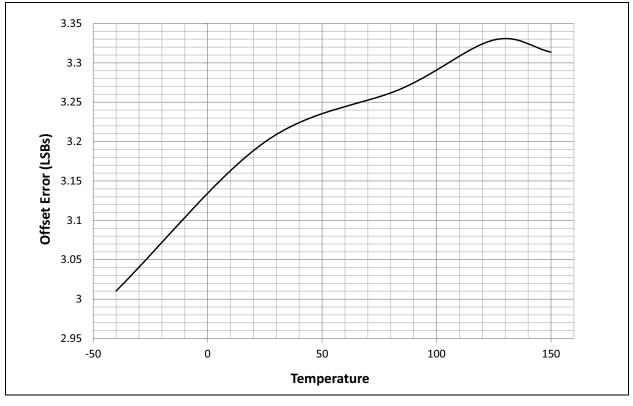

Note 1: Change of LPRC frequency as VDD changes.

^{© 2013-2016} Microchip Technology Inc.

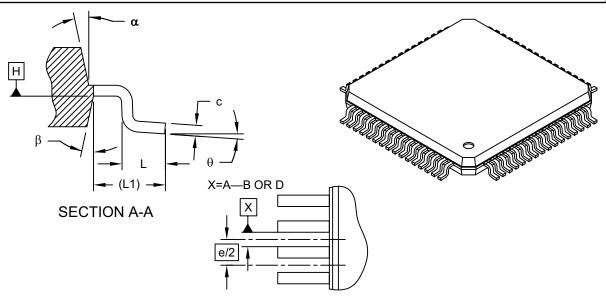



FIGURE 30-24: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

dsPIC33EVXXXGM00X/10X FAMILY



32.19 ADC Gain Offset Error



© 2013-2016 Microchip Technology Inc.

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL 1

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Number of Leads	Ν	64			
Lead Pitch	е	0.50 BSC			
Overall Height	A	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	¢	0°	3.5°	7°	
Overall Width	Е	12.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

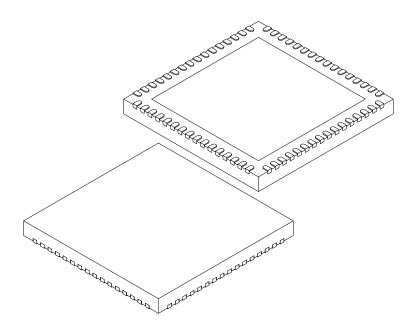
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

64-Lead Very Thin Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [VQFN] With 7.15 x 7.15 Exposed Pad [Also called QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimension Limits		MIN	NOM	MAX			
Number of Pins	N	64					
Pitch	е		0.50 BSC				
Overall Height	Α	0.80	0.90	1.00			
Standoff	A1	0.00	0.02	0.05			
Contact Thickness	A3	0.20 REF					
Overall Width	E	9.00 BSC					
Exposed Pad Width	E2	7.05	7.15	7.25			
Overall Length	D	9.00 BSC					
Exposed Pad Length	D2	7.05	7.15	7.25			
Contact Width	b	0.18	0.25	0.30			
Contact Length	L	0.30	0.40	0.50			
Contact-to-Exposed Pad	K	0.20	-	-			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149D [MR] Sheet 2 of 2