

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev256gm104-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.7 Arithmetic Logic Unit (ALU)

The dsPIC33EVXXXGM00X/10X family ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. The data for the ALU operation can come from the W register array or from the data memory, depending on the addressing mode of the instruction. Similarly, the output data from the ALU can be written to the W register array or a data memory location.

For information on the SR bits affected by each instruction, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157).

The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.7.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit signed x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.7.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes the single-cycle per bit of the divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.8 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumulatorto-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON) as follows:

- Fractional or Integer DSP Multiply (IF)
- Signed, Unsigned or Mixed-Sign DSP Multiply (US)
- Conventional or Convergent Rounding (RND)
- · Automatic Saturation On/Off for ACCA (SATA)
- Automatic Saturation On/Off for ACCB (SATB)
- Automatic Saturation On/Off for Writes to Data Memory (SATDW)
- Accumulator Saturation mode Selection (ACCSAT)

TABLE 3-2:DSP INSTRUCTIONSSUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	$A = x \bullet y$	No
MPY	$A = x^2$	No
MPY.N	$A = -x \bullet y$	No
MSC	$A = A - x \bullet y$	Yes

TABLE 4-5: UART1 AND UART2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN		USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	—		—		—	_	_				UART1	Transmit Re	egister				xxxx
U1RXREG	0226	_	_	_	_	_	_	_				UART1	Receive Re	egister				0000
U1BRG	0228						ι	JART1 Ba	ud Rate G	Senerator Pres	scaler Registe	r						0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	_	_				UART2	Transmit Re	egister				xxxx
U2RXREG	0236	_	_	_	_	_	_	_				UART2	Receive Re	egister				0000
U2BRG	0238						L	JART2 Ba	ud Rate G	Senerator Pres	scaler Registe	r						0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-6: SPI1 AND SPI2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN		SPISIDL	_		SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI1CON1	0242		—	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	—	—	—	—	—	—	—	—			—	FRMDLY	SPIBEN	0000
SPI1BUF	0248							SPI1 Tra	ansmit and F	Receive But	fer Registe	r						0000
SPI2STAT	0260	SPIEN	—	SPISIDL	—		SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI2CON1	0262		—	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	_	FRMDLY	SPIBEN	0000
SPI2BUF	0268							SPI2 Tra	ansmit and F	Receive But	fer Registe	r						0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

NOTES:

19.0 INTER-INTEGRATED CIRCUIT (I²C)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated Circuit™ (I²CTM)" (DS70000195) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EVXXXGM00X/10X family of devices contains one Inter-Integrated Circuit (I²C) module, I2C1.

The l^2C module provides complete hardware support for both Slave and Multi-Master modes of the l^2C serial communication standard, with a 16-bit interface.

The I²C module has the following 2-pin interface:

- The SCLx pin is clock.
- The SDAx pin is data.

The I²C module offers the following key features:

- I²C Interface Supporting Both Master and Slave modes of Operation
- I²C Slave mode Supports 7 and 10-Bit Addressing
- I²C Master mode Supports 7 and 10-Bit Addressing
- I²C Port allows Bidirectional Transfers between Master and Slaves
- Serial Clock Synchronization for I²C Port can be used as a Handshake Mechanism to Suspend and Resume Serial Transfer (SCLREL control)
- I²C Supports Multi-Master Operation, Detects Bus Collision and Arbitrates Accordingly
- · Support for Address Bit Masking up to Lower 7 Bits
- I²C Slave Enhancements:
 - SDAx hold time selection of SMBus (300 ns or 150 ns)
 - Start/Stop bit interrupt enables

Figure 19-1 shows a block diagram of the I²C module.

19.1 I²C Baud Rate Generator

The Baud Rate Generator (BRG) used for I²C mode operation is used to set the SCL clock frequency for 100 kHz, 400 kHz and 1 MHz. The BRG reload value is contained in the I2CxBRG register. The BRG will automatically begin counting on a write to the I2CxTRN register.

Equation 19-1 and Equation 19-2 provide the BRG reload formula and FSCL frequency, respectively.

EQUATION 19-1: BRG FORMULA

$$I2CxBRG = \left(\left(\frac{1}{FSCL} - Delay \right) \times \frac{FCY}{2} \right) - 2$$

Where:

Delay varies from 110 ns to 130 ns.

EQUATION 19-2: FSCL FREQUENCY

FSCL = FCY/((I2CxBRG + 2) * 2)

dsPIC33EVXXXGM00X/10X FAMILY

REGISTER 19-1: I2CxCON1: I2Cx CONTROL REGISTER 1 (CONTINUED)

bit 7	GCEN: General Call Enable bit (I ² C Slave mode only)
	 1 = Enables interrupt when a general call address is received in I2CxRSR; module is enabled for reception 0 = General call address is disabled.
bit 6	STREN: SCLx Clock Stretch Enable bit
	In I ² C Slave mode only, used in conjunction with the SCLREL bit. 1 = Enables clock stretching 0 = Disables clock stretching
bit 5	ACKDT: Acknowledge Data bit
	In I ² C Master mode, during Master Receive mode. The value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive. In I ² C Slave mode when AHEN = 1 or DHEN = 1. The value that the slave will transmit when it initiates an Acknowledge sequence at the end of an address or data reception. 1 = NACK is sent 0 = ACK is sent
bit 4	ACKEN: Acknowledge Sequence Enable bit
	In I ² C Master mode only; applicable during Master Receive mode. 1 = Initiates Acknowledge sequence on SDAx and SCLx pins, and transmits ACKDT data bit 0 = Acknowledge sequence is Idle
bit 3	RCEN: Receive Enable bit (I ² C Master mode only)
	1 = Enables Receive mode for I^2C , automatically cleared by hardware at the end of 8-bit receive data byte 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (I ² C Master mode only)
	 1 = Initiates Stop condition on SDAx and SCLx pins 0 = Stop condition is Idle
bit 1	RSEN: Restart Condition Enable bit (I ² C Master mode only)
	 1 = Initiates Restart condition on SDAx and SCLx pins 0 = Restart condition is Idle
bit 0	SEN: Start Condition Enable bit (I ² C Master mode only)
	 1 = Initiates Start condition on SDAx and SCLx pins 0 = Start condition is Idle
Note 1:	Automatically cleared to '0' at the beginning of slave transmission; automatically cleared to '0' at the end of slave reception.

2: Automatically cleared to '0' at the beginning of slave transmission.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		_	—		—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
bit 7							bit 0
							
Legend:							
R = Readab	ole bit	W = Writable	oit	U = Unimplem	nented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-7	Unimplemen	ted: Read as ')' . =	2001			
bit 6	PCIE: Stop C	ondition Interru	pt Enable bit (I	I ² C Slave mode	e only).		
	1 = Enables II0 = Stop dete	ction interrupts	are disabled	condition			
bit 5	SCIE: Start C	ondition Interru	pt Enable bit (I ² C Slave mode	e onlv)		
	1 = Enables i	nterrupt on dete	ection of Start	or Restart cond	itions		
	0 = Start dete	ction interrupts	are disabled				
bit 4	BOEN: Buffer	r Overwrite Ena	ble bit (I ² C Sla	ave mode only)			
	1 = The I2Cx	RCV register b	it is updated a	and an ACK is g	generated for a	received addr	ess/data byte,
	ignoring i 0 = The I2Cx	the state of the RCV register b	I2COV bit only it is only updat	ed when I2CO	= 0 V is clear		
bit 3	SDAHT: SDA	x Hold Time Se	election bit				
	1 = Minimum	of 300 ns hold	time on SDAx	after the falling	edge of SCLx		
	0 = Minimum	of 100 ns hold	time on SDAx	after the falling	edge of SCLx		
bit 2	SBCDE: Slav	e Mode Bus Co	ollision Detect	Enable bit (I ² C	Slave mode or	ıly)	
	If, on the risir	ig edge of SCL	x, SDAx is sa	mpled low whe	n the module is	s outputting a l	high state, the
	BCL bit is set	and the bus go	Des Idle. I his I	Detection mode	e is only valid d	uring data and	ACK transmit
	1 = Slave bus	collision interr	upts are enable	ed			
	0 = Slave bus	collision interr	upts are disabl	ed			
bit 1	AHEN: Addre	ess Hold Enable	e bit (I ² C Slave	mode only)			
	1 = Following	the 8 th falling	edge of SCL	x for a matchin	ng received ad	dress byte; th	e SCLREL bit
	0 = Address	holding is disab	e cleared and t bled	ne SCLX WIII De	e neia iow		
bit 0	DHEN: Data I	Hold Enable bit	(I ² C Slave mo	de only)			
5	1 = Following	the 8 th falling e	edge of SCLx f	or a received da	ata byte; slave l	hardware clear	s the SCLREL
	bit (I2Cx	CON1<12>) and	d the SCLx is I	neld low			
	0 = Data holo	ding is disabled					

REGISTER 19-2: I2CxCON2: I2Cx CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—	—	—	—	—
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R/C-0	R-0	R/W-0, HC
PAUSE	NIB2	NIB1	NIB0	CRCERR	FRMERR	RXIDLE	SYNCTXEN ⁽¹⁾
bit 7							bit 0
Legend:		C = Clearable	bit	HC = Hardwa	are Clearable b	oit	
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	Iown
bit 15-8	Unimplemen	ted: Read as '	0'				
bit 7	PAUSE: Paus	se Period Statu	is bit				
	1 = The modu	ule is transmitti	ng/receiving a	pause period			
	0 = The modu	ule is not transr	mitting/receivir	ng a pause per	riod		
bit 6-4	NIB<2:0>: Ni	bble Status bit					
	Module in Tra	nsmit Mode (R	<u> CVEN = 0):</u>				
	111 = Module	e is transmitting	a CRC nibble	9			
	101 = Module	e is transmitting	Data Nibble	5			
	100 = Module	e is transmitting	Data Nibble	4			
	011 = Module	e is transmitting	g Data Nibble 3	3			
	010 = Module	e is transmitting	g Data Nibble 2	2			
	001 = Module	e is transmitting	j Dala Nibble	I le or nause ne	eriod or is not t	ransmitting	
	Module in Re	ceive Mode (R	CVEN = 1)			ransmitting	
	111 = Module	e is receiving a	CRC nibble of	r was receiving	g this nibble wh	nen an error oc	curred
	110 = Module	e is receiving D	ata Nibble 6 o	r was receivin	g this nibble wl	nen an error oo	curred
	101 = Module	e is receiving D	ata Nibble 5 o	r was receivin	g this nibble wi	nen an error oc	curred
	100 = Module	e is receiving D	ata Nibble 4 0 ata Nibble 3 o	r was receiving	g this nibble wi	nen an error oc	curred
	010 = Module	e is receiving D	ata Nibble 2 o	r was receiving	g this nibble wi	hen an error og	curred
	001 = Module	e is receiving D	ata Nibble 1 o	r was receivin	g this nibble wi	nen an error oo	curred
	000 = Module	e is receiving a	status nibble	or waiting for S	Sync		
bit 3	CRCERR: CF	RC Status bit (F	Receive mode	only)			
	1 = A CRC er	ror occurred fo	r the 1-6 data	nibbles in SEN	NTxDATH/L		
	0 = A CRC er	ror has not occ	curred				
bit 2	FRMERR: Fra	aming Error Sta	atus bit (Recei	ve mode only))		
	\perp = A data nit	ble was receiv	ed with less th	han 12 tick per	loas or greater	than 27 tick pe	eriods
bit 1		Ty Possiver L	dla Statua hit (Docoivo modo			
	1 - The SEN	n i X rtetteliveli I(Tv data bus ba	ne Status Dil (s boon Idio /bi	neceive mode		X<15.05 or are	ator
	1 = The SEN 0 = The SEN	Tx data bus ha	not Idle	ign) ior a pello		~~10.0~ 01 gre	alei
							

REGISTER 20-2: SENTxSTAT: SENTx STATUS REGISTER

Note 1: In Receive mode (RCVEN = 1), the SYNCTXEN bit is read-only.

[]-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
_	_	_	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0
bit 15			l	1	I	1	bit 8
·							
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0
bit 7							bit 0
Logond							
R = Readable	hit	W = Writable	hit	II = I Inimpler	mented bit read	as '0'	
-n = Value at F	POR	'1' = Bit is set	bit	'0' = Bit is cle	ared	x = Bit is unkno	wn
	•••						
bit 15-13	Unimplemen	ted: Read as '	כ'				
bit 12-8	FILHIT<4:0>:	Filter Hit Num	ber bits				
	10000-11111	L = Reserved					
	01111 = Filte	r 15					
	•						
		r 1					
	00001 = Filte 00000 = Filte	r O					
bit 7	Unimplemen	ted: Read as '	כ'				
bit 6-0	ICODE<6:0>:	Interrupt Flag	Code bits				
	1000101-111	11111 = Reser	ved				
	1000100 = F	IFO almost full	Interrupt winterrupt				
	1000010 = W	/ake-up interru	pt				
	1000001 = E	rror interrupt					
	1000000 = N	o interrupt					
	•						
	•	1111 - Docor	wed				
	0001111 = R	B15 buffer inte	veu rrupt				
	•						
	•						
	0001001 = R	B9 buffer interi	upt				
	0001000 = R	B8 buffer interi	rupt				
	0000111 = 1 0000110 = T	RB6 buffer inte	rrupt				
	0000101 = T	RB5 buffer inte	rrupt				
	0000100 = T	RB4 buffer inte	rrupt				
	0000011 = T 0000010 = T	RB2 buffer inte	rrupt				
	0000001 = T	RB1 buffer inte	rrupt				
	0000000 = T	RB0 Buffer inte	errupt				

REGISTER 22-3: CxVEC: CANx INTERRUPT CODE REGISTER

REGISTER 22-16: CxRXFnSID: CANx ACCEPTANCE FILTER n STANDARD IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15					•		bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	_	EXIDE	_	EID17	EID16
bit 7				-			bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	i as '0'	
-n = Value at P	POR	ared	x = Bit is unkr	nown			
bit 15-5	SID<10:0>: S	tandard Identif	ier bits				
	1 = Message	address bit, SI	Dx, must be '	1' to match filte	er		
	0 = Message	address bit, SI	Dx, must be '	0' to match filte	er		
bit 4	Unimplemen	ted: Read as '	0'				
bit 3	EXIDE: Exten	nded Identifier I	Enable bit				
	If MIDE = 1:						
	1 = Matches of	only messages	with Extende	ed Identifier add	dresses		
		only messages	with Standar	d Identifier add	resses		
	$\frac{\text{If MIDE} = 0}{\text{Ignores EXID}}$	E bit					
hit 2		tod: Pood as '	o'				
bit 1 0		Leu. Reau as	U tifiar bita				
				1 ¹ to motob filts			
	$\perp = \text{Message}$ 0 = Message	address bit, El	Dx, must be '	1 to match filte	5r 51		
	e meesage	2.2.3.000 Mit, El					

REGISTER 22-17: CxRXFnEID: CANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EIC)<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-0	EID<15:0>:	Extended Identif	ier bits				

1 = Message address bit, EIDx, must be '1' to match filter

0 = Message address bit, EIDx, must be '0' to match filter

BUFFER 22-7: CANx MESSAGE BUFFER WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	7<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	6<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable b	it	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-8 Byte 7<15:8>: CANx Message Byte 7 bits

bit 7-0 Byte 6<7:0>: CANx Message Byte 6 bits

BUFFER 22-8: CANx MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—			FILHIT<4:0>(1))	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15 10	Unimploment	ted. Dood oo '	<u>.</u> ,				

bit 15-13 **Unimplemented:** Read as '0'

bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits⁽¹⁾

Encodes number of filter that resulted in writing this buffer.

bit 7-0 Unimplemented: Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

		DAAL O	DAMA	DAA/ O		DAALO	DAALO	
R/W-0	R/W-0	K/W-0	K/W-0	K/W-0	K/W-U	K/W-U	K/W-U	
CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25(")	CSS24 ⁽¹⁾	
bit 15							bit 8	
				D 444 A	D 444 0	5444.0		
0-0	0-0	0-0	0-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	—	—	CSS19	CSS18	CSS17	CSS16	
bit 7							bit 0	
Legend:			•••					
R = Reada	ible bit		DIT	U = Unimplemented bit, read as '0'				
-n = Value	at POR	1' = Bit is set		0' = Bit is cle	eared	x = Bit is unkr	nown	
bit 15		v Innut Scan Se	election bit					
bit 15	1 = Selects A	Nx for input sc	an					
	0 = Skips AN	x for input scan	AT 1					
bit 14	CSS30: ADC	x Input Scan Se	election bit					
	1 = Selects A	Nx for input sca	an					
	0 = Skips AN	x for input scan						
bit 13	CSS29: ADC:	x Input Scan Se	election bits					
	1 = Selects A	Nx for input sca	an					
	0 = Skips AN	x for input scan						
bit 12	CSS28: ADC	x Input Scan Se	election bit					
	1 = Selects A 0 = Skips AN	Nx for input sca x for input scan	an					
bit 11	CSS27: ADC	x Input Scan Se	election bit					
	1 = Selects A	Nx for input sca	an					
	0 = Skips AN	x for input scan	(4)					
bit 10	CSS26: ADC>	x Input Scan Se	election bit ⁽¹⁾					
	1 = Selects O 0 = Skips OA	A3/AN6 for inp 3/AN6 for input	ut scan scan					
bit 9	CSS25: ADC	x Input Scan Se	election bit ⁽¹⁾					
	1 = Selects O 0 = Skips OA	A2/AN0 for inp 2/AN0 for input	ut scan scan					
bit 8	CSS24: ADC:	x Input Scan Se	election bit ⁽¹⁾					
	1 = Selects O	A1/AN3 for inp	ut scan					
	0 = Skips OA	1/AN3 for input	scan					
bit 7-4	Unimplemen	ted: Read as ')'					
bit 3	CSS19: ADC	x Input Scan Se	election bit					
	1 = Selects Al 0 = Skips AN	Nx for input sca x for input scan	an					
bit 2	CSS18: ADC	x Input Scan Se	election bit					
	1 = Selects A	Nx for input sca	an					
	0 = Skips AN	x for input scan						
Note 1:	If the op amp is sel input is used.	lected (OPAEN	bit (CMxCON	<10>) = 1), the	e OAx input is ι	used; otherwise	e, the ANx	

REGISTER 24-7: ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH⁽²⁾

2: All bits in this register can be selected by the user application. However, inputs selected for scan without a corresponding input on the device convert VREFL.

29.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

29.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

DC CHARACT	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Parameter No.	Тур. ⁽²⁾	Max.	Units	Units Conditions					
Idle Current (II	dle) ⁽¹⁾								
DC40d	1.25	2	mA	-40°C					
DC40a	1.25	2	mA	+25°C	5.0)/				
DC40b	1.5	2.6	mA	+85°C	5.00	10 Mil 3			
DC40c	1.5	2.6	mA	+125°C					
DC42d	2.3	3	mA	-40°C		20 MIPS			
DC42a	2.3	3	mA	+25°C	5.0\/				
DC42b	2.6	3.45	mA	+85°C	5.00				
DC42c	2.6	3.85	mA	+125°C					
DC44d	6.9	8	mA	-40°C					
DC44a	6.9	8	mA	+25°C	5.0V	70 MIPS			
DC44b	7.25	8.6	mA	+85°C					

TABLE 30-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Base Idle current (IIDLE) is measured as follows:

• CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to standby while the device is in Idle mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- 2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

TABLE 30-35:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Min. Typ. ⁽²⁾		Units	Conditions
SP70	FscP	Maximum SCK2 Input Frequency		_	11	MHz	See Note 3
SP72	TscF	SCK2 Input Fall Time	—	—		ns	See Parameter DO32 and Note 4
SP73	TscR	SCK2 Input Rise Time				ns	See Parameter DO31 and Note 4
SP30	TdoF	SDO2 Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDO2 Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	_		ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	-	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS2}$ ↓ to SCK2 ↑ or SCK2 ↓ Input	120		—	ns	
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10		50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 Tcy + 40	—	_	ns	See Note 4
SP60	TssL2doV	SDO2 Data Output Valid after SS2 Edge	—	—	50	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 91 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

31.1 High-Temperature DC Characteristics

TABLE 31-1: OPERATING MIPS vs. VOLTAGE

Charactoristic	VDD Range	Temperature Range	Max MIPS		
Characteristic	(in Volts)	(in °C)	dsPIC33EVXXXGM00X/10X Family		
HDC5	4.5V to 5.5V ^(1,2)	-40°C to +150°C	40		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules, such as the ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Device functionality is tested but is not characterized. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

2: When BOR is enabled, the device will work from 4.7V to 5.5V.

TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
High-Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+155	°C
Operating Ambient Temperature Range	TA	-40	—	+150	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	-40 — +150 PINT + PI/O			W
Maximum Allowed Power Dissipation	PDMAX	(ΓJ — TA)/θJ	A	W

TABLE 31-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$				
Param No.	Symbol	Characteristic	Min.	n. Typ. ⁽¹⁾ Max. Units			Conditions
Operati	ng Voltag	9					
HDC10	Vdd	Supply Voltage ⁽³⁾	VBOR		5.5	V	
HDC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	—	—	V	
HDC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	_	—	Vss	V	
HDC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	1.0	_		V/ms	0V-5.0V in 5 ms
HDC18	VCORE	VDD Core Internal Regulator Voltage	1.62	1.8	1.98	V	Voltage is dependent on load, temperature and VDD

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

2: This is the limit to which VDD may be lowered without losing RAM data.

3: VDD voltage must remain at Vss for a minimum of 200 μ s to ensure POR.

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 33-4: TYPICAL IDD vs. VDD (EC MODE, 40 MIPS)

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 33-12: TYPICAL/MAXIMUM IDOZE vs. TEMPERATURE (DOZE 1:128, 70 MIPS)

FIGURE 33-11: TYPICAL IDOZE vs. VDD (DOZE 1:128, 70 MIPS)

33.8 Pull-up/Pull-Down Current

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X28)	X1			0.30
Contact Pad Length (X28)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2085B Sheet 1 of 1