

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev256gm104-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EVXXXGM00X/10X FAMILY

Pin Diagrams (Continued)

4.3.4 SOFTWARE STACK

The W15 register serves as a dedicated Software Stack Pointer (SSP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating the SSP (for example, creating stack frames).

Note:	To protect against misaligned	stack
	accesses, W15<0> is fixed to '0' b	y the
	hardware.	

W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33EVXXXGM00X/10X family devices and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within the Data Space.

The SSP always points to the first available free word and fills the software stack, working from lower toward higher addresses. Figure 4-14 illustrates how it predecrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-14. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register (SR). This allows the contents of SRL to be preserved automatically during interrupt processing.

- Note 1: To maintain system SSP (W15) coherency, W15 is never subject to (EDS) paging, and is therefore, restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a 'C' development environment.

FIGURE 4-14:

CALL STACK FRAME

4.4 Instruction Addressing Modes

The addressing modes shown in Table 4-45 form the basis of the addressing modes optimized to support the specific features of the individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.4.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a Working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.4.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where, Operand 1 is always a Working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal
- Note: Not all instructions support all of the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15					•		bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_	—	—	_	PWCOL3	PWCOL2	PWCOL1	PWCOL0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-4	Unimplemen	ted: Read as ')'				
bit 3	PWCOL3: Ch	annel 3 Periph	eral Write Co	llision Flag bit			
	1 = Write coll	ision is detecte	d				

REGISTER 8-11: DMAPWC: DMA PERIPHERAL WRITE COLLISION STATUS REGISTER

1 =	Write collision is detected
0 =	Write collision is not detected

0 = Write collision is not detected

1 = Write collision is detected0 = Write collision is not detected

PWCOL2: Channel 2 Peripheral Write Collision Flag bit

PWCOL1: Channel 1 Peripheral Write Collision Flag bit

bit 0 PWCOL0: Channel 0 Peripheral Write Collision Flag bit

- 1 = Write collision is detected
 - 0 = Write collision is not detected

bit 2

bit 1

NOTES:

REGISTER 11-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			T2CK	R<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **T2CKR<7:0>:** Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 •

• 00000001 = Input tied to CMP1 00000000 = Input tied to Vss

REGISTER 17-8: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	x<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	pit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown	

bit 15-0 PDCx<15:0>: PWMx Generator Duty Cycle Value bits

REGISTER 17-9: PHASEx: PWMx PRIMARY PHASE-SHIFT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 PHASEx<15:0>: PWMx Phase-Shift Value or Independent Time Base Period for the PWM Generator bits

Note 1: If ITB (PWMCONx<9>) = 0, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output modes (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs.

 If ITB (PWMCONx<9>) = 1, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output modes (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Independent Time Base period value for PWMxH and PWMxL.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽²) СКР	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	IOWN
			- 1				
DIT 15-13	Unimplemen	ted: Read as					
DIT 12	DISSCK: DIS	able SCKX Pin	DIT (SPI Maste	tions as I/O)		
	0 = Internal S	PI clock is usa	bled, pin func	10115 85 1/0			
bit 11	DISSDO: Dis	able SDOx Pin	bit				
	1 = SDOx pin	is not used by	the module; p	oin functions a	s I/O		
	0 = SDOx pin	is controlled b	y the module				
bit 10	MODE16: Wo	ord/Byte Comm	unication Sele	ect bit			
	1 = Communi	ication is word-	wide (16 bits)				
hit 0		ata Input Sam	vide (o bits)				
DIL 9	Master mode	ata input Sainp	ne Fridse bil				
	1 = Input data	<u>.</u> a is sampled at	the end of dat	ta output time			
	0 = Input data	a is sampled at	the middle of	data output tin	ne		
	Slave mode:			n Clava mada			
hit Q		dao Soloct bit	3PIX IS USED I 1)	n Slave mode.			
DILO	1 = Serial out	nut data chanc	, les on transitio	on from active	clock state to Id	le clock state (r	efer to hit 6)
	0 = Serial out	put data chang	es on transitio	on from Idle clo	ock state to activ	/e clock state (r	efer to bit 6)
bit 7	SSEN: Slave	Select Enable	bit (Slave mod	de) ⁽²⁾			
	$1 = \overline{SSx}$ pin is	s used for Slave	e mode				
	0 = SSx pin is	s not used by th	ne module; pin	is controlled I	by port function		
bit 6	CKP: Clock F	Polarity Select b	pit				
	1 = Idle state	for clock is a h	igh level; active w level: active	e state is a lov	N level h level		
bit 5	MSTEN: Mas	ter Mode Enab	le bit	o clato lo a mg			
	1 = Master m	ode					
	0 = Slave mo	de					
Note 1:	The CKE bit is not	used in Frame	d SPI modes	Program this	bit to '0' for Fran	ned SPI modes	3
	(FRMEN = 1).			ogiani uno			-
2:	This bit must be cl	eared when FF	RMEN = 1.				
0-	Do not oot both and	incom (on of a			a af 1.1		

REGISTER 18-2: SPIxCON1: SPIx CONTROL REGISTER 1

3: Do not set both primary and secondary prescalers to the value of 1:1.

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 20-1: SENTX MODULE BLOCK DIAGRAM

FIGURE 20-2: SENTX PROTOCOL DATA FRAMES

Sync Period	Status	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	CRC	Pause (optional)	
56	12-27	12-27	12-27	12-27	12-27	12-27	12-27	12-27	12-768	ľ

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
DMABS2	DMABS1	DMABS0	_	—	_	—	—
bit 15					•		bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	FSA5	FSA4	FSA3	FSA2	FSA1	FSA0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13 bit 12-6 bit 5-0	DMABS<2:0: 111 = Reserv 110 = 32 buff 101 = 24 buff 100 = 16 buff 011 = 12 buff 010 = 8 buffe 001 = 6 buffe 000 = 4 buffe Unimplemen FSA<5:0>: FI 11111 = Rec 11110 = Rec	>: DMA Buffer S red fers in RAM fers in RAM fers in RAM fers in RAM rs in RAM rs in RAM rs in RAM ted: Read as '0 IFO Area Starts eive Buffer RB3 eive Buffer RB3 eive Buffer RB3 RX Buffer TRB1 RX Buffer TRB1	Size bits ,' with Buffer b 31 30	its			

REGISTER 22-4: CxFCTRL: CANx FIFO CONTROL REGISTER

REGISTER 22-11: CxFEN1: CANx ACCEPTANCE FILTER ENABLE REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			FLTE	N<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			FLTE	N<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit	t	W = Writable bit	:	U = Unimplei	mented bit, read	i as '0'	

'0' = Bit is cleared

bit 15-0

-n = Value at POR

FLTEN<15:0>: Enable Filter n to Accept Messages bits

'1' = Bit is set

1 = Enables Filter n

0 = Disables Filter n

REGISTER 22-12: CxBUFPNT1: CANx FILTERS 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3BP3	F3BP2	F3BP1	F3BP0	F2BP3	F2BP2	F2BP1	F2BP0
bit 15						•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F1BP3	F1BP2	F1BP1	F1BP0	F0BP3	F0BP2	F0BP1	F0BP0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimple	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set	'0' = Bit is		eared	x = Bit is unknown	
bit 15-12	F3BP<3:0>:	RX Buffer Mas	k for Filter 3 b	oits			
	1111 = Filter	hits received in	n RX FIFO bu	iffer			
	1110 = Filter	hits received in	n RX Buffer 1	4			
	•						
	•						
	0001 = Filter	hits received in	n RX Buffer 1				
	0000 = Filter	hits received in	n RX Buffer 0				
bit 11-8	F2BP<3:0>:	RX Buffer Mas	k for Filter 2 b	oits (same value	es as bits 15-12	2)	
bit 7-4	F1BP<3:0>:	RX Buffer Mas	k for Filter 1 b	oits (same value	es as bits 15-12	2)	
bit 3-0	F0BP<3:0>:	RX Buffer Mas	k for Filter 0 b	oits (same value	es as bits 15-12	2)	

x = Bit is unknown

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
—	—	—	—	—	—	—	ADDMAEN		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
—	—	—	—	—	DMABL2	DMABL1	DMABL0		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable b	bit	U = Unimple	mented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown			
bit 15-9	Unimplemen	ted: Read as '0)'						
bit 8	ADDMAEN: A	ADCx DMA Ena	able bit						
	1 = Conversio	on results are st	ored in the AD	DC1BUF0 regis	ster for transfer	to RAM using	DMA		
	0 = Conversio	n results are sto	red in the ADC	1BUF0 throug	h ADC1BUFF re	gisters; DMA v	vill not be used		
bit 7-3	Unimplemen	ted: Read as '0)'						
bit 2-0	DMABL<2:0>	Selects Numb	per of DMA Bu	Iffer Locations	per Analog Inpu	ut bits			
	111 = Allocat	es 128 words o	f buffer to eac	h analog input					
	110 = Allocates 64 words of buffer to each analog input								
	101 = Allocat	es 32 words of	buffer to each	analog input					
	100 = Allocat	es 16 words of	buffer to each	analog input					
		es & words of b	uffer to each a	analog input					
	010 = Allocates 4 words of buffer to each analog input								

REGISTER 24-4: ADxCON4: ADCx CONTROL REGISTER 4

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

REGISTER 25-3: CM4CON: COMPARATOR 4 CONTROL REGISTER (CONTINUED)

bit 7-6	EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits ⁽²⁾
	 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output.
	01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): High-to-low transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): Low-to-high transition of the comparator output.
	00 = Trigger/event/interrupt generation is disabled
bit 5	Unimplemented: Read as '0'
bit 4	CREF: Comparator 4 Reference Select bit (VIN+ input) ⁽¹⁾
	 1 = VIN+ input connects to the internal CVREFIN voltage 0 = VIN+ input connects to the C4IN1+ pin
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CCH<1:0>: Comparator 4 Channel Select bits ⁽¹⁾
	 11 = VIN- input of comparator connects to the C4IN4- pin 10 = VIN- input of comparator connects to the C4IN3- pin 01 = VIN- input of comparator connects to the C4IN2- pin 00 = VIN- input of comparator connects to the C4IN1- pin
Note 1:	Inputs that are selected and not available will be tied to Vss. See the " Pin Diagrams " section for available inputs for each package.

2: After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the comparator Event bit, CEVT (CMxCON<9>), and the Comparator Combined Interrupt Flag, CMPIF (IFS1<2>), must be cleared before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

29.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

29.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

TABLE 30-30: SPI2 MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP		
15 MHz	Table 30-31		_	0,1	0,1	0,1		
9 MHz	_	Table 30-32	—	1	0,1	1		
9 MHz		Table 30-33	_	0	0,1	1		
15 MHz	_	—	Table 30-34	1	0	0		
11 MHz	—	—	Table 30-35	1	1	0		
15 MHz	_	_	Table 30-36	0	1	0		
11 MHz	—	_	Table 30-37	0	0	0		

FIGURE 30-12: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

TABLE 30-38: SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP		
25 MHz	Table 30-39	—	—	0,1	0,1	0,1		
25 MHz	_	Table 30-40	—	1	0,1	1		
25 MHz		Table 30-41	_	0	0,1	1		
25 MHz		—	Table 30-42	1	0	0		
25 MHz		—	Table 30-43	1	1	0		
25 MHz	_	_	Table 30-44	0	1	0		
25 MHz		_	Table 30-45	0	0	0		

FIGURE 30-20: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. Typ. Max.			Units	Conditions	
		ADC A	Accuracy	(10-Bit	Mode)			
AD20b	Nr	Resolution	1() data bi	ts	bits		
AD21b	INL	Integral Nonlinearity	-1.5		+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V	
AD22b	DNL	Differential Nonlinearity	≥ 1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V	
AD23b	Gerr	Gain Error	1	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V	
AD24b	EOFF	Offset Error	1	2	4	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V	
AD25b	—	Monotonicity ⁽²⁾	—				Guaranteed	
		Dynamic I	Performa	nce (10-	Bit Mod	e)		
AD30b	THD	Total Harmonic Distortion	_	_	-64	dB		
AD31b	SINAD	Signal to Noise and Distortion	57	58.5		dB		
AD32b	SFDR	Spurious Free Dynamic Range	72			dB		
AD33b	FNYQ	Input Signal Bandwidth	—	—	550	kHz		
AD34b	ENOB	Effective Number of Bits	9.16	9.4		bits		

TABLE 30-56: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

2: The conversion result never decreases with an increase in the input voltage.

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min. ⁽¹⁾	Min. ⁽¹⁾ Typ. Max. Units			Conditions	
HDO16	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾	_	_	0.4	V	IOL = 8.8 mA, VDD = 5.0V	
HDO10	Vol	Output Low Voltage 8x Sink Driver Pins ⁽³⁾	_		0.4	V	Io∟ = 10.8 mA, VDD = 5.0V	
HDO26	Vон	Output High Voltage 4x Sink Driver Pins ⁽²⁾	Vdd - 0.6		_	V	Іон = -8.3 mA, Vdd = 5.0V	
HDO20	Vон	Output High Voltage 8x Sink Driver Pins	Vdd - 0.6	_	_	V	Іон = -12.3 mA, Vdd = 5.0V	

TABLE 31-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized but not tested.

2: Includes all I/O pins that are not 8x sink driver pins (see below).

3: Includes the pins, such as RA3, RA4 and RB<15:10> for 28-pin devices, RA3, RA4, RA9 and RB<15:10> for 44-pin devices, and RA4, RA7, RA9, RB<15:10> and RC15 for 64-pin devices.

TABLE 31-10: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			Standar Operatir	d Opera ng tempe	t ing Con erature	ditions: 4 -40°C ≤	4.5V to 5.5V (unless otherwise stated) TA \leq +150°C for High Temperature
Param No.	Symbol	Characteristic	Min. ⁽¹⁾	n. ⁽¹⁾ Typ. Max. Units Conditions			
HBO10	VBOR	BOR Event on VDD Transition High-to-Low	4.15	4.285	4.4	V	VDD (see Note 2, Note 3 and Note 4)

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

- **2:** The VBOR specification is relative to the VDD.
- **3:** The device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, op amp/comparator and comparator voltage reference will have degraded performance. Device functionality is tested but is not characterized.
- 4: The start-up VDD must rise above 4.6V.

TABLE 31-11: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHARACTERISTICS			Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. Max. Units			Conditions		
		Program Flash Memory						
HD130	Eр	Cell Endurance	10,000	—	_	E/W	-40°C to +150°C ⁽²⁾	
HD134	Tretd	Characteristic Retention	20	—	—	Year	1000 E/W cycles or less and no other specifications are violated	

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is allowed up to +150°C.

TABLE 31-16: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$								
Param No. Symbol Characteristic ⁽¹⁾			Min.	Тур.	Max.	Units	Conditions				
CTMU Current Source											
HCTMUI1	IOUT1	Base Range	—	550	_	nA	CTMUICON<9.8> = 01				
HCTMUI2	IOUT2	10x Range	—	5.5	_	μΑ	CTMUICON<9.8> = 10				
HCTMUI3	IOUT3	100x Range	—	55		μA	CTMUICON<9.8> = 11				
HCTMUI0	IOUT4	1000x Range	—	550	_	μA	CTMUICON<9.8> = 00				
HCTMUFV1	VF	Temperature Diode Forward Voltage ⁽²⁾	—	0.525	_	V	TA = +25°C, CTMUICON<9.8> = 01				
			—	0.585		V	TA = +25°C, CTMUICON<9.8> = 10				
			—	0.645	_	V	TA = +25°C, CTMUICON<9.8> = 11				

Note 1: Normal value at center point of current trim range (CTMUICON<15:10> = 000000).

2: Parameters are characterized but not tested in manufacturing. Measurements are taken with the following conditions:

- VREF = AVDD = 5.0V
- ADC module configured for 10-bit mode
- ADC module configured for conversion speed of 500 ksps
- All PMDx bits are cleared (PMDx = 0)
- CPU executing
 while(1)
 {
 NOP();
 - }
- · Device operating from the FRC with no PLL

33.17 ADC DNL

33.18 ADC INL

FIGURE 33-38: TYPICAL INL (VDD = 5.5V, +150°C)