

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFl

| Product Status             | Active                                                                            |
|----------------------------|-----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                             |
| Core Size                  | 16-Bit                                                                            |
| Speed                      | 70 MIPs                                                                           |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                           |
| Peripherals                | Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT                     |
| Number of I/O              | 35                                                                                |
| Program Memory Size        | 256КВ (85.5К х 24)                                                                |
| Program Memory Type        | FLASH                                                                             |
| EEPROM Size                | -                                                                                 |
| RAM Size                   | 16K x 8                                                                           |
| Voltage - Supply (Vcc/Vdd) | 4.5V ~ 5.5V                                                                       |
| Data Converters            | A/D 24x10/12b                                                                     |
| Oscillator Type            | Internal                                                                          |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                 |
| Mounting Type              | Surface Mount                                                                     |
| Package / Case             | 44-VQFN Exposed Pad                                                               |
| Supplier Device Package    | 44-QFN (8×8)                                                                      |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev256gm104t-i-ml |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## **Pin Diagrams (Continued)**



## 3.7 Arithmetic Logic Unit (ALU)

The dsPIC33EVXXXGM00X/10X family ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. The data for the ALU operation can come from the W register array or from the data memory, depending on the addressing mode of the instruction. Similarly, the output data from the ALU can be written to the W register array or a data memory location.

For information on the SR bits affected by each instruction, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157).

The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

## 3.7.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit signed x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

## 3.7.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes the single-cycle per bit of the divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

## 3.8 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumulatorto-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON) as follows:

- Fractional or Integer DSP Multiply (IF)
- Signed, Unsigned or Mixed-Sign DSP Multiply (US)
- Conventional or Convergent Rounding (RND)
- · Automatic Saturation On/Off for ACCA (SATA)
- Automatic Saturation On/Off for ACCB (SATB)
- Automatic Saturation On/Off for Writes to Data Memory (SATDW)
- Accumulator Saturation mode Selection (ACCSAT)

# TABLE 3-2:DSP INSTRUCTIONSSUMMARY

| Instruction | Algebraic<br>Operation  | ACC Write<br>Back |
|-------------|-------------------------|-------------------|
| CLR         | A = 0                   | Yes               |
| ED          | $A = (x - y)^2$         | No                |
| EDAC        | $A = A + (x - y)^2$     | No                |
| MAC         | $A = A + (x \bullet y)$ | Yes               |
| MAC         | $A = A + x^2$           | No                |
| MOVSAC      | No change in A          | Yes               |
| MPY         | $A = x \bullet y$       | No                |
| MPY         | $A = x^2$               | No                |
| MPY.N       | $A = -x \bullet y$      | No                |
| MSC         | $A = A - x \bullet y$   | Yes               |





**Note 1:** Memory areas are not shown to scale.

## 4.3 Special Function Register Maps

## TABLE 4-1: CPU CORE REGISTER MAP

| SFR<br>Name | Addr. | Bit 15 | Bit 14         | Bit 13 | Bit 12      | Bit 11     | Bit 10 | Bit 9            | Bit 8       | Bit 7        | Bit 6 | Bit 5       | Bit 4        | Bit 3        | Bit 2               | Bit 1 | Bit 0 | All<br>Reset<br>s |
|-------------|-------|--------|----------------|--------|-------------|------------|--------|------------------|-------------|--------------|-------|-------------|--------------|--------------|---------------------|-------|-------|-------------------|
| W0          | 0000  |        | W0 (WREG) 0000 |        |             |            |        |                  |             |              |       |             |              | 0000         |                     |       |       |                   |
| W1          | 0002  |        | W1 0000        |        |             |            |        |                  |             |              |       |             | 0000         |              |                     |       |       |                   |
| W2          | 0004  |        |                |        |             |            |        |                  | W2          | 2            |       |             |              |              |                     |       |       | 0000              |
| W3          | 0006  |        |                |        |             |            |        |                  | W           | 3            |       |             |              |              |                     |       |       | 0000              |
| W4          | 0008  |        |                |        |             |            |        |                  | W4          | ŀ            |       |             |              |              |                     |       |       | 0000              |
| W5          | 000A  |        |                |        |             |            |        |                  | W           | 5            |       |             |              |              |                     |       |       | 0000              |
| W6          | 000C  |        |                |        |             |            |        |                  | We          | 5            |       |             |              |              |                     |       |       | 0000              |
| W7          | 000E  |        |                |        |             |            |        |                  | W           | ,            |       |             |              |              |                     |       |       | 0000              |
| W8          | 0010  |        |                |        |             |            |        |                  | W           | 3            |       |             |              |              |                     |       |       | 0000              |
| W9          | 0012  |        |                |        |             |            |        |                  | WS          | )            |       |             |              |              |                     |       |       | 0000              |
| W10         | 0014  |        |                |        |             |            |        |                  | W1          | 0            |       |             |              |              |                     |       |       | 0000              |
| W11         | 0016  |        |                |        |             |            |        |                  | W1          | 1            |       |             |              |              |                     |       |       | 0000              |
| W12         | 0018  |        |                |        |             |            |        |                  | W1          | 2            |       |             |              |              |                     |       |       | 0000              |
| W13         | 001A  |        |                |        |             |            |        |                  | W1          | 3            |       |             |              |              |                     |       |       | 0000              |
| W14         | 001C  |        |                |        |             |            |        |                  | W1          | 4            |       |             |              |              |                     |       |       | 0000              |
| W15         | 001E  |        |                |        |             |            |        |                  | W1          | 5            |       |             |              |              |                     |       |       | 0800              |
| SPLIM       | 0020  |        |                |        |             |            |        |                  | SPL         | М            |       |             |              |              |                     |       |       | xxxx              |
| ACCAL       | 0022  |        |                |        |             |            |        |                  | ACC         | AL           |       |             |              |              |                     |       |       | xxxx              |
| ACCAH       | 0024  |        |                |        |             |            |        |                  | ACC         | ٩H           |       |             |              |              |                     |       |       | xxxx              |
| ACCAU       | 0026  |        |                | Sig    | n Extension | of ACCA<39 | 9>     |                  |             |              |       |             | ACO          | CAU          |                     |       |       | xxxx              |
| ACCBL       | 0028  |        |                |        |             |            |        |                  | ACC         | BL           |       |             |              |              |                     |       |       | xxxx              |
| ACCBH       | 002A  |        |                |        |             |            |        |                  | ACC         | ЗH           |       |             |              |              |                     |       |       | xxxx              |
| ACCBU       | 002C  |        |                | Sig    | n Extension | of ACCB<39 | 9>     |                  |             |              |       |             | ACO          | CBU          |                     |       |       | xxxx              |
| PCL         | 002E  |        |                |        |             |            | Pro    | ogram Cour       | nter Low Wo | ord Register | -     |             |              |              |                     |       | —     | 0000              |
| PCH         | 0030  | —      | —              | —      | —           | —          | —      | —                | —           | —            |       | F           | Program Cou  | inter High W | ord Register        |       |       | 0000              |
| DSRPAG      | 0032  | —      | —              | —      | —           | —          | —      |                  |             |              | Dat   | a Space Rea | ad Page Re   | gister       |                     |       |       | 0001              |
| DSWPAG      | 0034  | —      | —              | —      | —           | —          | —      | —                |             |              |       | Data Space  | ce Write Pag | e Register   |                     |       |       | 0001              |
| RCOUNT      | 0036  |        |                |        |             |            |        | repeat <b>Lo</b> | op Counter  | Register     |       |             |              |              |                     |       | 0     | xxxx              |
| DCOUNT      | 0038  |        |                |        |             |            |        | DC               | OUNT<15:1   | >            |       |             |              |              |                     |       | 0     | xxxx              |
| DOSTARTL    | 003A  |        |                |        |             |            |        | DOS              | TARTL<15:   | 1>           |       |             |              |              |                     |       | 0     | xxxx              |
| DOSTARTH    | 003C  | —      | —              | —      | —           | —          | —      | —                | —           | —            | —     |             |              | DOSTART      | <sup>-</sup> H<5:0> |       |       | 00xx              |
| DOENDL      | 003E  |        |                |        |             |            |        | DO               | ENDL<15:1   | >            |       |             |              |              |                     |       | _     | xxxx              |

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

## FIGURE 4-11: PAGED DATA MEMORY SPACE



DS70005144E-page 70

## REGISTER 5-2: NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER

| U-0            | U-0   | U-0              | U-0    | U-0             | U-0             | U-0    | U-0   |
|----------------|-------|------------------|--------|-----------------|-----------------|--------|-------|
| —              | _     | —                | _      | —               | —               | —      | —     |
| bit 15         |       | · · · ·          |        |                 |                 |        | bit 8 |
|                |       |                  |        |                 |                 |        |       |
| R/W-x          | R/W-x | R/W-x            | R/W-x  | R/W-x           | R/W-x           | R/W-x  | R/W-x |
|                |       |                  | NVMADF | RU<23:16>       |                 |        |       |
| bit 7          |       |                  |        |                 |                 |        | bit 0 |
|                |       |                  |        |                 |                 |        |       |
| Legend:        |       |                  |        |                 |                 |        |       |
| R = Readable h | hit   | M = Mritable bit |        | II = I Inimplem | nented hit read | as 'O' |       |

| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |
|-------------------|------------------|----------------------|--------------------|
|                   |                  |                      | 40 0               |

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADRU<23:16>:** NVM Memory Upper Write Address bits Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

## REGISTER 5-3: NVMADR: NONVOLATILE MEMORY LOWER ADDRESS REGISTER

| R/W-x  | R/W-x | R/W-x | R/W-x | R/W-x   | R/W-x | R/W-x | R/W-x |
|--------|-------|-------|-------|---------|-------|-------|-------|
|        |       |       | NVMAD | R<15:8> |       |       |       |
| bit 15 |       |       |       |         |       |       | bit 8 |
|        |       |       |       |         |       |       |       |
| R/W-x  | R/W-x | R/W-x | R/W-x | R/W-x   | R/W-x | R/W-x | R/W-x |
|        |       |       | NVMAE | )R<7:0> |       |       |       |
| bit 7  |       |       |       |         |       |       | bit 0 |
|        |       |       |       |         |       |       |       |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-0 NVMADR<15:0>: NVM Memory Lower Write Address bits

Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

## **REGISTER 6-1: RCON: RESET CONTROL REGISTER<sup>(1)</sup> (CONTINUED)**

| bit 3 | SLEEP: Wake-up from Sleep Flag bit     |
|-------|----------------------------------------|
|       | 1 = Device has been in Sleep mode      |
|       | 0 = Device has not been in Sleep mode  |
| bit 2 | IDLE: Wake-up from Idle Flag bit       |
|       | 1 = Device was in Idle mode            |
|       | 0 = Device was not in Idle mode        |
| bit 1 | BOR: Brown-out Reset Flag bit          |
|       | 1 = A Brown-out Reset has occurred     |
|       | 0 = A Brown-out Reset has not occurred |
| bit 0 | POR: Power-on Reset Flag bit           |
|       | 1 = A Power-on Reset has occurred      |
|       | 0 = A Power-on Reset has not occurred  |

- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
  - 2: If the FWDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

Figure 8-2 illustrates the DMA Controller block diagram.





## 8.1 DMAC Controller Registers

Each DMAC Channel x (where x = 0 to 3) contains the following registers:

- 16-Bit DMA Channel x Control Register (DMAxCON)
- 16-Bit DMA Channel x IRQ Select Register (DMAxREQ)
- 32-Bit DMA Channel x Start Address Register A High/Low (DMAxSTAH/L)
- 32-Bit DMA Channel x Start Address Register B High/Low (DMAxSTBH/L)
- 16-Bit DMA Channel x Peripheral Address Register (DMAxPAD)
- 14-Bit DMA Channel x Transfer Count Register (DMAxCNT)

Additional status registers (DMAPWC, DMARQC, DMAPPS, DMALCA and DSADRH/L) are common to all DMAC channels. These status registers provide information on write and request collisions, as well as on last address and channel access information.

The DMA Interrupt Flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding DMA Interrupt Enable bits (DMAxIE) are located in an IECx register in the interrupt controller and the corresponding DMA Interrupt Priority bits (DMAxIP) are located in an IPCx register in the interrupt controller.

#### REGISTER 11-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|--------|-----|-----|-----|-----|-----|-----|-------|
| —      | —   | —   | —   | —   | —   | —   | —     |
| bit 15 |     |     |     |     |     |     | bit 8 |
|        |     |     |     |     |     |     |       |

| R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0  | R/W-0 | R/W-0 | R/W-0 |
|-------|-------|-------|-------|--------|-------|-------|-------|
|       |       |       | OCFA  | R<7:0> |       |       |       |
| bit 7 |       |       |       |        |       |       | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | <b>as</b> '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-8 Unimplemented: Read as '0'

bit 7-0 OCFAR<7:0>: Assign Output Compare Fault A (OCFA) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 •

> 00000001 = Input tied to CMP1 00000000 = Input tied to Vss

## 17.2 **PWM Resources**

Many useful resources are provided on the main product page on the Microchip web site (www.microchip.com) for the devices listed in this data sheet. This product page contains the latest updates and additional information.

Note: In case the above link is not accessible, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

#### 17.2.1 KEY RESOURCES

- "High-Speed PWM" (DS70645) in the "dsPIC33/ PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

## REGISTER 17-13: IOCONx: PWMx I/O CONTROL REGISTER<sup>(2)</sup> (CONTINUED)

- bit 1
   SWAP: SWAP PWMxH and PWMxL Pins bit

   1 = PWMxH output signal is connected to the PWMxL pin; PWMxL output signal is connected to the PWMxH pin

   0 = PWMxH and PWMxL pins are mapped to their respective pins

   bit 0
   OSYNC: Output Override Synchronization bit

   1 = Output overrides through the OVRDAT<1:0> bits are synchronized to the PWMx time base

   0 = Output overrides through the OVRDAT<1:0> bits occur on the next CPU clock boundary
- Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1).
  - 2: If the PWMLOCK Configuration bit (FDEVOPT<0>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

#### REGISTER 17-14: TRIGx: PWMx PRIMARY TRIGGER COMPARE VALUE REGISTER

| R/W-0        | R/W-0 | R/W-0           | R/W-0 | R/W-0        | R/W-0            | R/W-0           | R/W-0 |
|--------------|-------|-----------------|-------|--------------|------------------|-----------------|-------|
|              |       |                 | TRGC  | ИР<15:8>     |                  |                 |       |
| bit 15       |       |                 |       |              |                  |                 | bit 8 |
|              |       |                 |       |              |                  |                 |       |
| R/W-0        | R/W-0 | R/W-0           | R/W-0 | R/W-0        | R/W-0            | R/W-0           | R/W-0 |
|              |       |                 | TRGC  | MP<7:0>      |                  |                 |       |
| bit 7        |       |                 |       |              |                  |                 | bit 0 |
|              |       |                 |       |              |                  |                 |       |
| Legend:      |       |                 |       |              |                  |                 |       |
| R = Readable | bit   | W = Writable bi | t     | U = Unimplei | mented bit, read | <b>i as</b> '0' |       |

bit 15-0 **TRGCMP<15:0>:** Trigger Control Value bits

'1' = Bit is set

When the primary PWMx functions in the local time base, this register contains the compare values that can trigger the ADC module.

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

| R/W-0            | U-0                                                                                                                                 | R/W-0                                | U-0                                | R/W-0                                                                       | R/W-0                                | R/W-0                 | R/W-0   |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------|-----------------------------------------------------------------------------|--------------------------------------|-----------------------|---------|--|
| SNTEN            | —                                                                                                                                   | SNTSIDL                              | —                                  | RCVEN                                                                       | TXM <sup>(1)</sup>                   | TXPOL <sup>(1)</sup>  | CRCEN   |  |
| bit 15           |                                                                                                                                     |                                      |                                    |                                                                             |                                      |                       | bit 8   |  |
|                  |                                                                                                                                     |                                      |                                    |                                                                             |                                      |                       |         |  |
| R/W-0            | R/W-0                                                                                                                               | U-0                                  | R/W-0                              | U-0                                                                         | R/W-0                                | R/W-0                 | R/W-0   |  |
| PPP              | SPCEN <sup>(2)</sup>                                                                                                                | —                                    | PS                                 | —                                                                           | NIBCNT2                              | NIBCNT1               | NIBCNT0 |  |
| bit 7            |                                                                                                                                     |                                      |                                    |                                                                             |                                      |                       | bit 0   |  |
| 1                |                                                                                                                                     |                                      |                                    |                                                                             |                                      |                       |         |  |
| Legena:          | hit                                                                                                                                 |                                      | h:t                                | II – Unimplo                                                                | monted bit read                      |                       |         |  |
| R = Readable bit |                                                                                                                                     | '1' = Bit is set                     | DIL                                | U = Unimplemented Dit, read as 10°(0° = Pit is cloared $x = Pit is upknown$ |                                      |                       |         |  |
|                  | FOR                                                                                                                                 | I - DILIS SEL                        |                                    |                                                                             | ealeu                                |                       | IOWII   |  |
| bit 15           | SNTEN: SEN                                                                                                                          | ITx Enable bit                       |                                    |                                                                             |                                      |                       |         |  |
| bit io           | 1 = SENTx is                                                                                                                        | enabled                              |                                    |                                                                             |                                      |                       |         |  |
|                  | 0 = SENTx is                                                                                                                        | disabled                             |                                    |                                                                             |                                      |                       |         |  |
| bit 14           | Unimplemen                                                                                                                          | Unimplemented: Read as '0'           |                                    |                                                                             |                                      |                       |         |  |
| bit 13           | SNTSIDL: SE                                                                                                                         | ENTx Stop in Ic                      | lle Mode bit                       |                                                                             |                                      |                       |         |  |
|                  | 1 = Discontinues module operation when the device enters Idle mode                                                                  |                                      |                                    |                                                                             |                                      |                       |         |  |
| hit 10           |                                                                                                                                     | s module opera                       |                                    | ode                                                                         |                                      |                       |         |  |
| DIL 12<br>bit 11 |                                                                                                                                     | Unimplemented: Read as '0'           |                                    |                                                                             |                                      |                       |         |  |
| DICTI            |                                                                                                                                     | nerates as a re                      | iable bil<br>ceiver                |                                                                             |                                      |                       |         |  |
|                  | 0 = SENTx option                                                                                                                    | perates as a tra                     | ansmitter (ser                     | nsor)                                                                       |                                      |                       |         |  |
| bit 10           | TXM: SENTx                                                                                                                          | Transmit Mod                         | e bit <sup>(1)</sup>               |                                                                             |                                      |                       |         |  |
|                  | 1 = SENTx tr<br>0 = SENTx tr                                                                                                        | ansmits data fr<br>ansmits data fr   | ame only whe<br>ames continu       | en triggered us<br>ously while SN                                           | ing the SYNCTX                       | EN status bit         |         |  |
| bit 9            | TXPOL: SENTx Transmit Polarity bit <sup>(1)</sup>                                                                                   |                                      |                                    |                                                                             |                                      |                       |         |  |
|                  | 1 = SENTx da<br>0 = SENTx da                                                                                                        | ata output pin i<br>ata output pin i | s low in the ld<br>s high in the l | lle state<br>dle state                                                      |                                      |                       |         |  |
| bit 8            | CRCEN: CRO                                                                                                                          | C Enable bit                         | -                                  |                                                                             |                                      |                       |         |  |
|                  | <u>Module in Receive Mode (RCVEN = 1):</u><br>1 = SENTx performs CRC verification on received data using the preferred J2716 method |                                      |                                    |                                                                             |                                      |                       |         |  |
|                  | 0 = SENTx de                                                                                                                        | oes not perform                      | n CRC verifica                     | ation on receiv                                                             | ed data                              |                       |         |  |
|                  | $\frac{\text{Module in Ira}}{1 = \text{SENTx a}}$                                                                                   | ansmit Mode (F                       | <u>RCVEN = 1):</u><br>Iculates CRC | using the pref                                                              | erred .12716 met                     | hod                   |         |  |
|                  | 0 = SENTx determined                                                                                                                | oes not calcula                      | te CRC                             | doing the prof                                                              |                                      | liou                  |         |  |
| bit 7            | PPP: Pause I                                                                                                                        | Pulse Present                        | bit                                |                                                                             |                                      |                       |         |  |
|                  | 1 = SENTx is<br>0 = SENTx is                                                                                                        | configured to configured to          | transmit/recei<br>transmit/recei   | ve SENT mess<br>ve SENT mess                                                | sages with pause<br>sages without pa | e pulse<br>iuse pulse |         |  |
| bit 6            | SPCEN: Sho                                                                                                                          | rt PWM Code I                        | Enable bit <sup>(2)</sup>          |                                                                             |                                      |                       |         |  |
|                  | 1 = SPC cont<br>0 = SPC cont                                                                                                        | trol from extern<br>trol from extern | al source is e<br>al source is d   | nabled<br>isabled                                                           |                                      |                       |         |  |
| bit 5            | Unimplemen                                                                                                                          | Unimplemented: Read as '0'           |                                    |                                                                             |                                      |                       |         |  |
| bit 4            | PS: SENTX N                                                                                                                         | /lodule Clock P                      | rescaler (divid                    | der) bits                                                                   |                                      |                       |         |  |
|                  | 1 = Divide-by<br>0 = Divide-by                                                                                                      | ∕-4<br>∕-1                           |                                    |                                                                             |                                      |                       |         |  |
| Note 1: Thi      | is bit has no fun                                                                                                                   | ction in Receiv                      | e mode (RCV                        | /EN = 1).                                                                   |                                      |                       |         |  |

## REGISTER 20-1: SENTxCON1: SENTx CONTROL REGISTER 1

2: This bit has no function in Transmit mode (RCVEN = 0).

## **REGISTER 24-7:** ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH<sup>(2)</sup> (CONTINUED)

- bit 1 CSS17: ADCx Input Scan Selection bit 1 = Selects ANx for input scan
  - 0 = Skips ANx for input scan
- bit 0 CSS16: ADCx Input Scan Selection bit
  - 1 = Selects ANx for input scan
    - 0 = Skips ANx for input scan
- **Note 1:** If the op amp is selected (OPAEN bit (CMxCON<10>) = 1), the OAx input is used; otherwise, the ANx input is used.
  - 2: All bits in this register can be selected by the user application. However, inputs selected for scan without a corresponding input on the device convert VREFL.

Figure 25-2, shows the user-programmable blanking function block diagram.

## FIGURE 25-2: USER-PROGRAMMABLE BLANKING FUNCTION BLOCK DIAGRAM



Figure 25-3, shows the digital filter interconnect block diagram.

#### FIGURE 25-3: DIGITAL FILTER INTERCONNECT BLOCK DIAGRAM



## 27.5 Watchdog Timer (WDT)

For dsPIC33EVXXXGM00X/10X family devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

#### 27.5.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a WDT Time-out Period (TWDT), as shown in Parameter SY12 in Table 30-22.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

#### FIGURE 27-2: WDT BLOCK DIAGRAM

## 27.5.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bit (RCON<3:2>) needs to be cleared in software after the device wakes up.

### 27.5.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN<1:0> Configuration bits in the FWDT Configuration register. When the FWDTEN<1:0> Configuration bits are set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTENx Configuration bits have been programmed to '00'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

## 27.5.4 WDT WINDOW

The Watchdog Timer has an optional Windowed mode enabled by programming the WINDIS bit in the WDT Configuration register (FWDT<7>). In the Windowed mode (WINDIS = 0), the WDT should be cleared based on the settings in the programmable Watchdog Timer Window (WDTWIN<1:0>) select bits.





| AC CHARACTERISTICS |           |                                                                                                   | $\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |                                        |      |               |       |                                                                                |
|--------------------|-----------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|---------------|-------|--------------------------------------------------------------------------------|
| Param<br>No.       | Symbol    | Characteristic <sup>(2)</sup>                                                                     |                                                                                                                                                                                                                                                                                       | Min.                                   | Тур. | Max.          | Units | Conditions                                                                     |
| TA10               | ТтхН      | T1CK High<br>Time                                                                                 | Synchronous<br>mode                                                                                                                                                                                                                                                                   | Greater of:<br>20 or<br>(Tcy + 20)/N   | _    | _             | ns    | Must also meet<br>Parameter TA15,<br>N = Prescaler<br>Value (1, 8, 64,<br>256) |
|                    |           |                                                                                                   | Asynchronous mode                                                                                                                                                                                                                                                                     | 35                                     | _    | —             | ns    |                                                                                |
| TA11               | ΤτxL      | T1CK Low<br>Time                                                                                  | Synchronous<br>mode                                                                                                                                                                                                                                                                   | Greater of:<br>20 or<br>(Tcy + 20)/N   | _    | _             | ns    | Must also meet<br>Parameter TA15,<br>N = Prescaler<br>Value (1, 8, 64,<br>256) |
|                    |           |                                                                                                   | Asynchronous mode                                                                                                                                                                                                                                                                     | 10                                     | —    | —             | ns    |                                                                                |
| TA15               | ΤτχΡ      | T1CK Input<br>Period                                                                              | Synchronous<br>mode                                                                                                                                                                                                                                                                   | Greater of:<br>40 or<br>(2 Tcy + 40)/N | —    | _             | ns    | N = Prescaler<br>Value<br>(1, 8, 64, 256)                                      |
| OS60               | Ft1       | T1CK Oscillator Input<br>Frequency Range (oscillator<br>enabled by setting TCS<br>(T1CON<1>) bit) |                                                                                                                                                                                                                                                                                       | DC                                     | _    | 50            | kHz   |                                                                                |
| TA20               | TCKEXTMRL | Delay from External T1CK<br>Clock Edge to Timer<br>Increment                                      |                                                                                                                                                                                                                                                                                       | 0.75 TCY + 40                          | _    | 1.75 Tcy + 40 | ns    |                                                                                |

## TABLE 30-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS<sup>(1)</sup>

**Note 1:** Timer1 is a Type A.

2: These parameters are characterized but not tested in manufacturing.

# 32.0 CHARACTERISTICS FOR INDUSTRIAL/EXTENDED TEMPERATURE DEVICES (-40°C TO +125°C)









FIGURE 32-31: TYPICAL VOH 4x DRIVER PINS vs. IOH (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

FIGURE 32-32: TYPICAL Vol 8x DRIVER PINS vs. Iol (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)



## dsPIC33EVXXXGM00X/10X FAMILY





FIGURE 33-10: TYPICAL/MAXIMUM IDOZE vs. TEMPERATURE (DOZE 1:2, 70 MIPS)



© 2013-2016 Microchip Technology Inc.

## **PRODUCT IDENTIFICATION SYSTEM**

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

| Microchip Tradem<br>Architecture —<br>Core Family —<br>Program Memory<br>Product Group<br>Pin Count —<br>Tape and Reel Fla<br>Package —<br>Pattern — | dsPIC 33 EV XXX GM0 0X T PT - XXX<br>hark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Example:<br>dsPIC33EV256GM006-I/PT:<br>dsPIC33, Enhanced Voltage,<br>256-Kbyte Program Memory, 64-Pin,<br>Industrial Temperature, TQFP Package. |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Architecture:                                                                                                                                        | 33 = 16-Bit Digital Signal Controller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                 |
| Family:                                                                                                                                              | EV = Enhanced Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                 |
| Product Group:                                                                                                                                       | GM = General Purpose plus Motor Control Family                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                 |
| Pin Count:                                                                                                                                           | 02 = 28-Pin<br>04 = 44-Pin<br>06 = 64-Pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                 |
| Temperature Range                                                                                                                                    | $ \begin{array}{rcl} & = & -40^{\circ} \text{C to } +85^{\circ} \text{C (Industrial)} \\ \text{E} & = & -40^{\circ} \text{C to } +125^{\circ} \text{C (Extended)} \\ \text{H} & = & -40^{\circ} \text{C to } +150^{\circ} \text{C (High)} \end{array} $                                                                                                                                                                                                                                                                                   |                                                                                                                                                 |
| Package:                                                                                                                                             | MM =Plastic Quad Flat, No Lead Package – (28-pin) 6x6x0.9 mm body (QFN-S)SO =Plastic Small Outline – (28-pin) 7.50 mm body (SOIC)SS =Plastic Shrink Small Outline – (28-pin) 5.30 mm body (SSOP)SP =Skinny Plastic Dual In-Line – (28-pin) 300 mil body (SPDIP)ML =Plastic Quad Flat, No Lead Package – (44-pin) 8x8 mm body (QFN)MR =Plastic Quad Flat, No Lead Package – (64-pin) 9x9x0.9 mm body (QFN)PT =Plastic Thin Quad Flatpack – (44-pin) 10x10x1 mm body (TQFP)PT =Plastic Thin Quad Flatpack – (64-pin) 10x10x1 mm body (TQFP) |                                                                                                                                                 |