

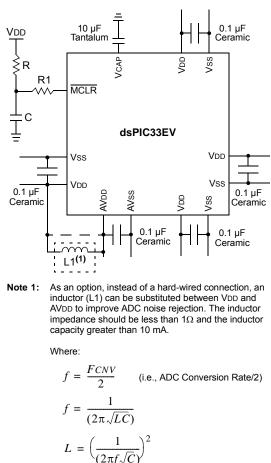
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev256gm104t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TANK CAPACITORS 2.2.1

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 µF to 47 µF.

2.3 **CPU Logic Filter Capacitor** Connection (VCAP)

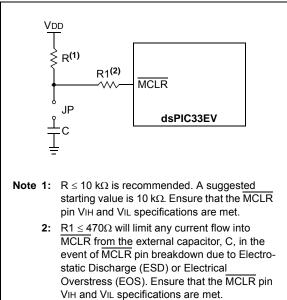
A low-ESR (<1 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the internal voltage regulator output. The VCAP pin must not be connected to VDD, and must have a capacitor greater than 4.7 µF (10 µF is recommended), with at least a 16V rating connected to the ground. The type can be ceramic or tantalum. See Section 30.0 "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP pin. It is recommended that the trace length should not exceed one-quarter inch (6 mm).

2.4 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions:

- · Device Reset
- Device Programming and Debugging


During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-1, it is recommended that the capacitor, C, be isolated from the MCLR pin during programming and debugging operations.

Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

EXAMPLE OF MCLR PIN CONNECTIONS

dsPIC33EVXXXGM00X/10X FAMILY

▲	Reserved	BSLIM<12:0>(1) + 0x000000	
	Reserved	BSLIM<12:0> ⁽¹⁾ + 0x000002	
	Oscillator Fail Trap Vector	BSLIM<12:0>(1) + 0x000004	
	Address Error Trap Vector	BSLIM<12:0> ⁽¹⁾ + 0x000006	
	Generic Hard Trap Vector	BSLIM<12:0> ⁽¹⁾ + 0x000008	
	Stack Error Trap Vector	BSLIM<12:0>(1) + 0x00000A	
	Math Error Trap Vector	BSLIM<12:0> ⁽¹⁾ + 0x00000C	
	DMAC Error Trap Vector	BSLIM<12:0> ⁽¹⁾ + 0x00000E	
	Generic Soft Trap Vector	BSLIM<12:0>(1) + 0x000010	
	Reserved	BSLIM<12:0> ⁽¹⁾ + 0x000012	
	Interrupt Vector 0	BSLIM<12:0> ⁽¹⁾ + 0x000014	
	Interrupt Vector 1	BSLIM<12:0> ⁽¹⁾ + 0x000016	
	:	:	
	:	:	
	:	:	
Σ	Interrupt Vector 52	BSLIM<12:0> ⁽¹⁾ + 0x00007C	
	Interrupt Vector 53	BSLIM<12:0> ⁽¹⁾ + 0x00007E	
	Interrupt Vector 54	BSLIM<12:0> ⁽¹⁾ + 0x000080	See Table 7-1 for
	:	:	Interrupt Vector Details
	:	:	/
	:	:	
	Interrupt Vector 116	BSLIM<12:0> ⁽¹⁾ + 0x0000FC	
	Interrupt Vector 117	BSLIM<12:0> ⁽¹⁾ + 0x00007E	
	Interrupt Vector 118	BSLIM<12:0>(1) + 0x000100	
	Interrupt Vector 119	BSLIM<12:0> ⁽¹⁾ + 0x000102	
	Interrupt Vector 120	BSLIM<12:0> ⁽¹⁾ + 0x000104	
	:	:	
	:	:	
	:	:	
	Interrupt Vector 244	BSLIM<12:0> ⁽¹⁾ + 0x0001FC	
V	Interrupt Vector 245	BSLIM<12:0> ⁽¹⁾ + 0x0001FE	
Note	1: The address depends on the si [(BSLIM<12:0> – 1) x 0x400] +	ze of the Boot Segment defined by Offset.	y BSLIM<12:0>:

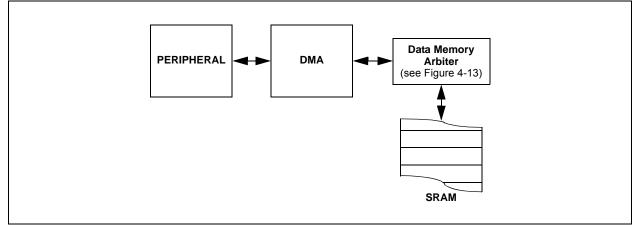
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
DMT	—	—	—	—	—	—	—			
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
—	—	DAE	DOOVR			—	_			
bit 7							bit 0			
Legend:										
R = Readable bit W = Writabl		W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15		an Timer (Soft		pit						
		1 = Deadman Timer trap has occurred								
		Timer trap ha		1						
bit 14-6	Unimplemen	ted: Read as '	0'							
bit 5	DAE: DMA Address Error Soft Trap Status bit									
	1 = DMA address error soft trap has occurred									
	0 = DMA add	ress error soft	trap has not o	ccurred						
bit 4	DOOVR: DO	Stack Overflow	Soft Trap Sta	tus bit						
		overflow soft tr	•							
		overflow soft tr	-	curred						
bit 3-0	Unimplemented: Read as '0'									

REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Direct Memory Access (DMA)" (DS70348) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The DMA Controller transfers data between Peripheral Data registers and Data Space SRAM. For the simplified DMA block diagram, refer to Figure 8-1.


In addition, DMA can access the entire data memory space. The data memory bus arbiter is utilized when either the CPU or DMA attempts to access SRAM, resulting in potential DMA or CPU stalls.

The DMA Controller supports 4 independent channels. Each channel can be configured for transfers to or from selected peripherals. The peripherals supported by the DMA Controller include:

- CAN
- Analog-to-Digital Converter (ADC)
- Serial Peripheral Interface (SPI)
- UART
- Input Capture
- Output Compare

Refer to Table 8-1 for a complete list of supported peripherals.

FIGURE 8-1: PERIPHERAL TO DMA CONTROLLER

Periphera Select II Register	nput	Input/ Output	Pin Assignment
00	000	I	Vss
00	001	I	CMP1 ⁽¹⁾
0 0	010	Ι	CMP2 ⁽¹⁾
000 00	011	Ι	CMP3 ⁽¹⁾
000 01	100	Ι	CMP4 ⁽¹⁾
000 01	101	—	—
000 11	100	Ι	CMP5 ⁽¹⁾
000 11	101	_	_
000 11	110	_	
000 11	111	_	_
001 00	000	Ι	RPI16
001 00	001	I	RPI17
001 00	010	I	RPI18
001 00	011	Ι	RPI19
001 01	100	I/O	RP20
001 01	101	_	
001 01	110	_	_
001 01	111	_	_
001 10	000	I	RPI24
001 10	001	I	RPI25
001 10	010	_	—
001 10	011	I	RPI27
001 11	100	Ι	RPI28
001 11	101		_
001 11	110		_
001 11	111		_
010 00		Ι	RPI32
010 00		I	RPI33
010 00		I	RPI34
010 00		I/O	RP35
010 01		I/O	RP36
010 01		I/O	RP37
010 01		I/O	RP38
010 01		1/O	RP39
010 10		I/O	
010 10		1/U	RPI44
010 11		-	RPI45
010 11			RPI46
010 11		1	RPI47
		I/O	
011 00		-	RP48 the PPS Input register

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES

Legend: Shaded rows indicate the PPS Input register values that are unimplemented.

Note 1: These are virtual pins. See Section 11.5.4.1 "Virtual Connections" for more information on selecting this pin assignment.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0

REGISTER 11-18: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP35R<5:0>: Peripheral Output Function is Assigned to RP35 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP20R<5:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-19: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 7

bit 13-8 **RP37R<5:0>:** Peripheral Output Function is Assigned to RP37 Output Pin bits (see Table 11-3 for peripheral function numbers)

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP36R<5:0>:** Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 0

REGISTER 17-7: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

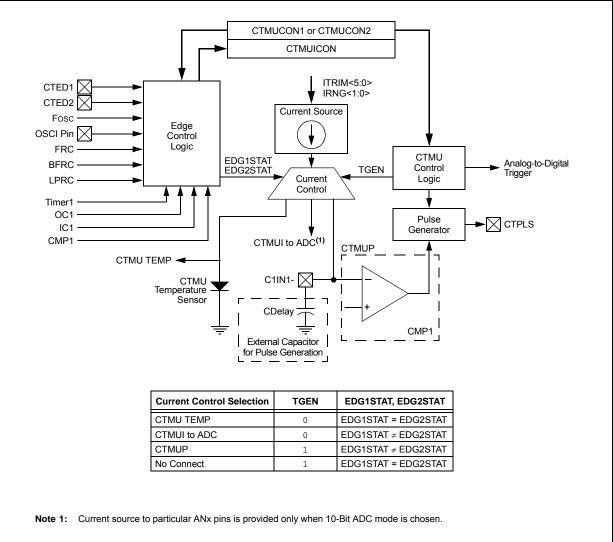
bit 7-6	DTC<1:0>: Dead-Time Control bits 11 = Dead-Time Compensation mode 10 = Dead-time function is disabled 01 = Negative dead time is actively applied for Complementary Output mode 00 = Positive dead time is actively applied for all Output modes
bit 5	DTCP: Dead-Time Compensation Polarity bit ⁽³⁾ <u>When Set to '1':</u> If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened. If DTCMPx = 1, PWMxH is shortened and PWMxL is lengthened.
	<u>When Set to '0':</u> If DTCMPx = 0, PWMxH is shortened and PWMxL is lengthened. If DTCMPx = 1, PWMxL is shortened and PWMxH is lengthened.
bit 4-3	Unimplemented: Read as '0'
bit 2	CAM: Center-Aligned Mode Enable bit ^(2,4)
	1 = Center-Aligned mode is enabled 0 = Edge-Aligned mode is enabled
bit 1	XPRES: External PWMx Reset Control bit ⁽⁵⁾
	 1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base mode 0 = External pins do not affect PWMx time base
bit 0	IUE: Immediate Update Enable bit ⁽²⁾
	 1 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are immediate 0 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are synchronized to the PWMx period boundary
Note 1: 2:	Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller. These bits should not be changed after the PWMx is enabled (PTEN = 1).
3:	DTC<1:0> = 11 for DTCP to be effective; else, DTCP is ignored.

- 4: The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.
- **5:** To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0
		0 0	1.11				
Legend:	L.:4	C = Clearable			are Clearable bit		
R = Readable		W = Writable	DIT	•	mented bit, read		
-n = Value at F	YOR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN
bit 15,13	 11 = Reserve 10 = Interrupt the trans 01 = Interrupt operatio 00 = Interrupt 	ed; do not use t when a chara smit buffer beco t when the las ons are complet	cter is transf omes empty it character ed cter is transf	is shifted out Ferred to the Tra	election bits ansmit Shift Reg of the Transmit ansmit Shift Reg	t Shift Registe	r; all transmit
bit 14	$\frac{\text{If IREN = 0:}}{1 = \text{UxTX Idle}}$ $0 = \text{UxTX Idle}$ $\frac{\text{If IREN = 1:}}{1 = \text{IrDA}^{\textcircled{\mathbb{R}}} \text{ end}}$ $0 = \text{IrDA ended}$	e state is '1' coded UxTX Id oded UxTX Idle	le state is '1' e state is '0'				
bit 12	Unimplemen	ted: Read as ')'				
bit 11	1 = Sends Sy bit; cleare 0 = Sync Bre	ed by hardware ak transmission	ext transmis upon compl n is disabled		followed by twe	elve '0' bits, foll	lowed by Stop
bit 10		Tx Transmit Er					
	0 = Transmit			ntrolled by UAR ansmission is	Tx aborted and the	e buffer is rese	t; UxTX pin is
bit 9	UTXBF: UAR	Tx Transmit Bu	Iffer Full Stat	us bit (read-onl	y)		
	1 = Transmit 0 = Transmit		ll, at least on	e more charact	er can be writte	n	
bit 8	1 = Transmit	Shift Register is	s empty and t		s empty (the last		as completed)
bit 7-6	 0 = Transmit Shift Register is not empty, a transmission is in progress or queued URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits 11 = Interrupt is set on UxRSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on UxRSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer; receive buffer has one or more characters 						

REGISTER 21-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Note 1: Refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/ PIC24 Family Reference Manual" for information on enabling the UART module for transmit operation.


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F15MSK1	F15MSK0	F14MSK1	F14MSK0	F13MSK'	F13MSK0	F12MSK1	F12MSK0		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F11MSK1	F11MSK0	F10MSK1	F10MSK0	F9MSK1	F9MSK0	F8MSK1	F8MSK0		
bit 7						1	bit (
Legend:									
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as		as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-14	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta	nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg	gisters contain gisters contain gisters contain	the mask the mask the mask					
bit 13-12				,	es as bits 15-14	,			
bit 11-10				-	es as bits 15-14				
bit 9-8					es as bits 15-14				
bit 7-6				-	es as bits 15-14	-			
bit 5-4	F10MSK<1:0>: Mask Source for Filter 10 bit (same values as bits 15-14)								
bit 3-2	F9MSK<1:0>: Mask Source for Filter 9 bit (same values as bits 15-14)								

REGISTER 22-19: CxFMSKSEL2: CANx FILTERS 15-8 MASK SELECTION REGISTER 2

bit 1-0 **F8MSK<1:0>:** Mask Source for Filter 8 bit (same values as bits 15-14)

dsPIC33EVXXXGM00X/10X FAMILY

dsPIC33EVXXXGM00X/10X FAMILY

R/W-	0 U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CHON	IB —	CH0SB5 ^(1,3)	CH0SB4 ^(1,3)	CH0SB3 ^(1,3)	CH0SB2 ^(1,3)	CH0SB1 ^(1,3)	CH0SB0 ^(1,3)	
bit 15							bit 8	
R/W-		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CHON	IA —	CH0SA5 ^(1,3)	CH0SA4 ^(1,3)	CH0SA3 ^(1,3)	CH0SA2 ^(1,3)	CH0SA1 ^(1,3)	CH0SA0 ^(1,3)	
bit 7							bit 0	
Logondi								
Legend: R = Read	table bit	W = Writable b	nit		ented bit, read	ae '0'		
	e at POR	(1) = Bit is set	JIL	'0' = Bit is clea	-	x = Bit is unkr	NWD	
					licu			
bit 15		nannel 0 Negativ		for Sample MU	IX B bit			
	1 = Channe	el 0 negative inp	ut is AN1 ⁽¹⁾					
		el 0 negative inp						
bit 14	-	ented: Read as				2)		
bit 13-8		0>: Channel 0 P			e MUX B bits ^{(1,}	3)		
		Channel 0 positiv Channel 0 positiv						
		Channel 0 positiv			d aap voltage)			
	•			(III IIII	5 - F			
	•							
	• 011111 = (Channel 0 positiv	ve input is AN3	1				
		Channel 0 positiv						
	•							
	•							
	• 000001 = 0	Channel 0 positiv	ve input is AN1					
		Channel 0 positiv						
bit 7	CHONA: Ch	nannel 0 Negativ	e Input Select	for Sample MU	IX A bit			
1 = Channel 0 negative input is AN1 ⁽¹⁾								
	0 = Channe	el 0 negative inp	ut is VREFL					
bit 6	Unimpleme	ented: Read as	'0'					
Note 1:	AN0 to AN7 are r		•	• •	•	•		
	determine how er	• •	· ·	-				
2:	If the op amp is a input is used.	selected (OPAE	N bit (CMxCON	N<10>) = 1), the	e OAx input is u	ised; otherwise	, the ANx	

REGISTER 24-6: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER

3: See the "Pin Diagrams" section for the available analog channels for each device.

REGISTER 24-7: ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH⁽²⁾ (CONTINUED)

- bit 1 CSS17: ADCx Input Scan Selection bit 1 = Selects ANx for input scan
 - 0 = Skips ANx for input scan
- bit 0 CSS16: ADCx Input Scan Selection bit
 - 1 = Selects ANx for input scan
 - 0 = Skips ANx for input scan
- **Note 1:** If the op amp is selected (OPAEN bit (CMxCON<10>) = 1), the OAx input is used; otherwise, the ANx input is used.
 - 2: All bits in this register can be selected by the user application. However, inputs selected for scan without a corresponding input on the device convert VREFL.

25.1 Op Amp/Comparator Control Registers

REGISTER 25-1: CMSTAT: OP AMP/COMPARATOR STATUS REGISTER

R/W-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	
PSIDL	—	_	C5EVT ⁽¹⁾	C4EVT ⁽¹⁾	C3EVT ⁽¹⁾	C2EVT ⁽¹⁾	C1EVT ⁽¹⁾	
bit 15 bit 8								

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
—	—	—	C5OUT ⁽²⁾	C4OUT ⁽²⁾	C3OUT ⁽²⁾	C2OUT ⁽²⁾	C1OUT ⁽²⁾
bit 7 bit 0							

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	PSIDL: Op Amp/Comparator Stop in Idle Mode bit 1 = Discontinues operation of all op amps/comparators when device enters Idle mode 0 = Continues operation of all op amps/comparators in Idle mode
bit 14-13	Unimplemented: Read as '0'
bit 12-8	C5EVT:C1EVT: Op Amp/Comparator 1-5 Event Status bits ⁽¹⁾
	1 = Op amp/comparator event occurred0 = Op amp/comparator event did not occur
bit 7-5	Unimplemented: Read as '0'
bit 4-0	C5OUT:C1OUT: Op Amp/Comparator 1-5 Output Status bits ⁽²⁾
	When $CPOL = 0$:
	1 = VIN + > VIN-
	$0 = VIN + \langle VIN - VIN $
	When CPOL = 1:
	$1 = VIN + \langle VIN - VIN $
	0 = VIN + > VIN -

- **Note 1:** Reflects the value of the of the CEVT bit in the respective Op Amp/Comparator Control register, CMxCON<9>.
 - 2: Reflects the value of the COUT bit in the respective Op Amp/Comparator Control register, CMxCON<8>.

REGISTER 25-3: CM4CON: COMPARATOR 4 CONTROL REGISTER (CONTINUED)

bit 7-6	EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits ⁽²⁾
	 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output.
	01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): High-to-low transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): Low-to-high transition of the comparator output.
	00 = Trigger/event/interrupt generation is disabled
bit 5	Unimplemented: Read as '0'
bit 4	CREF: Comparator 4 Reference Select bit (VIN+ input) ⁽¹⁾
	 1 = VIN+ input connects to the internal CVREFIN voltage 0 = VIN+ input connects to the C4IN1+ pin
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CCH<1:0>: Comparator 4 Channel Select bits ⁽¹⁾
	 11 = VIN- input of comparator connects to the C4IN4- pin 10 = VIN- input of comparator connects to the C4IN3- pin 01 = VIN- input of comparator connects to the C4IN2- pin 00 = VIN- input of comparator connects to the C4IN1- pin
Note 1:	Inputs that are selected and not available will be tied to Vss. See the " Pin Diagrams " section for available inputs for each package.

2: After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the comparator Event bit, CEVT (CMxCON<9>), and the Comparator Combined Interrupt Flag, CMPIF (IFS1<2>), must be cleared before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

REGISTER 25-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT **CONTROL REGISTER**

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	RW-0	
—	—	_	—	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	
bit 15 bit 8								

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	
bit 7 bit 0								

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

s '0'
;

bit 15-12	Unimplemented: Read as '0'
bit 11-8	SELSRCC<3:0>: Mask C Input Select bits
	1111 = FLT4
	1110 = FLT2
	1101 = Reserved
	1100 = Reserved
	1011 = Reserved
	1010 = Reserved
	1001 = Reserved
	1000 = Reserved 0111 = Reserved
	0111 = Reserved
	0110 = Reserved 0101 = PWM3H
	0100 = PWM3L
	0011 = PWM2H
	0010 = PWM2L
	0001 = PWM1H
	0000 = PWM1L
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits
	1111 = FLT4
	1110 = FLT2
	1101 = Reserved
	1100 = Reserved
	1011 = Reserved
	1010 = Reserved
	1001 = Reserved
	1000 = Reserved 0111 = Reserved
	0111 = Reserved
	0101 = PWM3H
	0100 = PWM3L
	0011 = PWM2H
	0010 = PWM2L
	0001 = PWM1H
	0000 = PWM1L

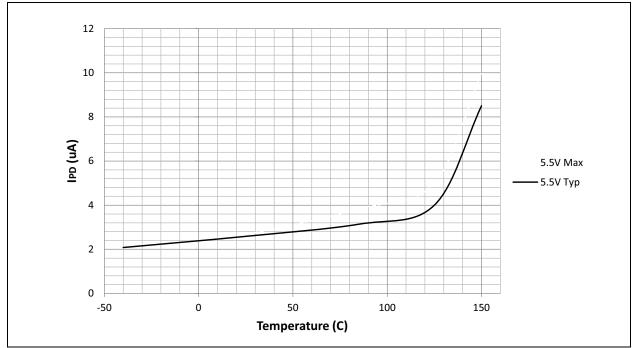
Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

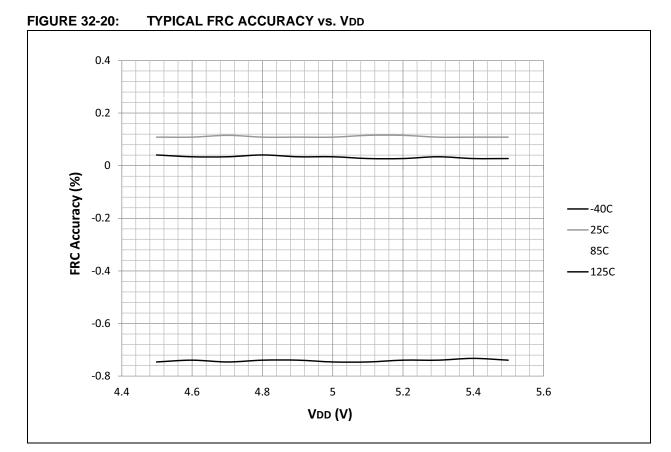
Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed. In these cases, the execution takes multiple instruction cycles with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157).

Field	Description	
#text	Means literal defined by "text"	
(text)	Means "content of text"	
[text]	Means "the location addressed by text"	
{}	Optional field or operation	
$a\in\{b,c,d\}$	a is selected from the set of values b, c, d	
<n:m></n:m>	Register bit field	
.b	Byte mode selection	
.d	Double-Word mode selection	
.S	Shadow register select	
.W	Word mode selection (default)	
Acc	One of two accumulators {A, B}	
AWB	Accumulator Write-Back Destination Address register ∈ {W13, [W13]+ = 2}	
bit4	4-bit bit selection field (used in word-addressed instructions) $\in \{015\}$	
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero	
Expr	Absolute address, label or expression (resolved by the linker)	
f	File register address ∈ {0x00000x1FFF}	
lit1	1-bit unsigned literal $\in \{0,1\}$	
lit4	4-bit unsigned literal $\in \{015\}$	
lit5	5-bit unsigned literal $\in \{031\}$	
lit8	8-bit unsigned literal $\in \{0255\}$	
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode	
lit14	14-bit unsigned literal $\in \{016384\}$	
lit16	16-bit unsigned literal ∈ {065535}	
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'	
None	Field does not require an entry, can be blank	
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate	
PC	Program Counter	
Slit10	10-bit signed literal ∈ {-512511}	
Slit16	16-bit signed literal ∈ {-3276832767}	
Slit6	6-bit signed literal ∈ {-1616}	
Wb	Base W register ∈ {W0W15}	
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }	
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }	
Wm,Wn	Dividend, Divisor Working register pair (Direct Addressing)	


TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	4	SFA
		CALL	Wn	Call indirect subroutine	1	4	SFA
		CALL.L	Wn	Call indirect subroutine (long address)	1	4	SFA
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA, SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	$f = \overline{f}$	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow (Wb – Ws – C)	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
22	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
I	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
23	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
24	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
					+	. /	


TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 32-19: TYPICAL/MAXIMUM △IwDT vs. TEMPERATURE

32.5 FRC

DS70005144E-page 422

NOTES:

SENTx Module	
Shared I/O Port Structure	143
SPIx Module	
Type B Timer (Timer2 and Timer4)	176
Type B/Type C Timer Pair (32-Bit Timer)	
Type C Timer (Timer3 and Timer5)	176
UARTx Module	247
User-Programmable Blanking Function	
Watchdog Timer (WDT)	
Brown-out Reset (BOR)	

С

C Compilers	
MPLAB XC	338
CAN	
CAN Module	
Control Registers	
Message Buffers	
Word 0	
Word 1	
Word 2	
Word 3	
Word 4	
Word 5	
Word 6	
Word 7	
Modes of Operation	
Overview	253
Characteristics for High-Temperature	
Devices (+150°C)	439
Characteristics for Industrial/Extended Temperature	
Devices (-40°C to +125°C)	
Charge Time Measurement Unit (CTMU)	279
Charge Time Measurement Unit. See CTMU.	
Code Examples	
Port Write/Read	144
PORTA Slew Selections	145
PWM1 Write-Protected Register	
Unlock Sequence	200
PWRSAV Instruction Syntax	133
Code Protection3	17, 326
CodeGuard Security 3	17, 326
Comparator Voltage Reference	
Configuring	313
Control Registers	315
Configuration Bits	317
Description	320
Controller Area Network (CAN)	253
Controller Area Network. See CAN.	
CPU	
Addressing Modes	
Arithmetic Logic Unit (ALU)	
Control Registers	
Data Space Addressing	21
DSP Engine	30
Instruction Set	21
Programmer's Model	23
СТМИ	
Control Registers	
Customer Change Notification Service	493
Customer Notification Service	493
Customer Support	493

D

Data Address Space
Alignment
Memory Map for 256-Kbyte Devices
Memory Map for 32-Kbyte Devices
Memory Map for 64/128-Kbyte Devices
Near Data Space
SFR Space
Width
Data Space
Extended X72
Memory Arbitration, Bus Master Priority
Paged Memory Scheme
DC Characteristics
Brown-out Reset (BOR)
CTMU Current Source
Doze Current (IDOZE)
Filter Capacitor (CEFC) Specifications
High Temperature
Brown-out Reset (BOR)
CTMU Current Source
I/O Pin Input Specifications
I/O Pin Output Specifications
Idle Current (IDLE)
Op Amp/ Comparator x
Operating Current (IDD)
Operating MIPS vs. Voltage
Power-Down Current (IPD)
Program Memory
Temperature and Voltage Specifications
Doze Current (IDOZE)
I/O Pin Input Specifications
I/O Pin Output Specifications
Idle Current (IDLE)
Internal Band Gap Reference Voltage
Op Amp/Comparator x Specifications
Op Amp/Comparator x Voltage Reference
Specifications
Operating Current (IDD)
Operating MIPS vs. Voltage
Power-Down Current (IPD)
Program Memory
Temperature and Voltage Specifications
Thermal Operating Conditions
Deadman Timer (DMT)
Control Registers
Deadman Timer. See DMT.
Development Support
Direct Memory Access. See DMA.
DMA Controller
Channel to Peripheral Associations
Control Registers 111
Supported Peripherals 109
DMAC Registers
DMAxCNT
DMAxCON 111
DMAxPAD 111
DMAxREQ 111
DMAxSTAH/L 111
DMAxSTBH/L 111
DMT
Doze Mode 135