

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 36x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev256gm106-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 3-1: dsPIC33EVXXXGM00X/10X FAMILY CPU BLOCK DIAGRAM

TABLE 4-29: PWM GENERATOR 2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON2	0C40	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	_	_	CAM	XPRES	IUE	0000
IOCON2	0C42	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON2	0C44	—	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC2	0C46								PDC2	2<15:0>								0000
PHASE2	0C48								PHASE	2<15:0>								0000
DTR2	0C4A	—	-							DTR2	<13:0>							0000
ALTDTR2	0C4C	—	-							ALTDTF	2<13:0>							0000
TRIG2	0C52								TRGCM	/IP<15:0>								0000
TRGCON2	0C54	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	_	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP2	0C58								PWMCA	AP2<15:0>								0000
LEBCON2	0C5A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY2	0C5C	—	-	_	_						LEB<	:11:0>						0000
AUXCON2	0C5E	—	—	—	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	—	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: PWM GENERATOR 3 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON3	0C60	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	—	—	CAM	XPRES	IUE	0000
IOCON3	0C62	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON3	0C64	_	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC3	0C66								PDC	3<15:0>								0000
PHASE3	0C68								PHAS	E3<15:0>								0000
DTR3	0C6A	_	_							DTR3	<13:0>							0000
ALTDTR3	0C6C	_	_							ALTDTF	3<13:0>							0000
TRIG3	0C72								TRGC	MP<15:0>								0000
TRGCON3	0C74	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	_	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP3	0C78								PWMC	AP3<15:0>								0000
LEBCON3	0C7A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	—		BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY3	0C7C	_	_	_	_						LEB<	:11:0>						0000
AUXCON3	0C7E	_	_	—	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	—	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-37: PORTC REGISTER MAP FOR dsPIC33EVXXXGMX06 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E28	TRISC15	—							TRISC<1	3:0>							BFFF
PORTC	0E2A	RC15	_							RC<13:	0>							xxxx
LATC	0E2C	LATC15	_							LATC<13	:0>							xxxx
ODCC	0E2E	ODCC15	_							ODCC<1	3:0>							0000
CNENC	0E30	CNIEC15	_							CNIEC<1	3:0>							0000
CNPUC	0E32	CNPUC15	_							CNPUC<1	3:0>							0000
CNPDC	0E34	CNPDC15	_							CNPDC<1	3:0>							0000
ANSELC	0E36	_	_	_						AN	SC<12:0>							1FFF
SR1C	0E38	_	_	_	_	_	_		SR1C	<9:6>		_	_	SR1C3	_	_	_	0000
SR0C	0E3A	_	_	_	_	_	_		SR0C	<9:6>		_	_	SR0C3	_	_		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-38: PORTC REGISTER MAP FOR dsPIC33EVXXXGMX04 DEVICES

r	1				1		1	1	1			1	1	1		1	1	
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E28	—	—	—	—	_	—					TRIS	C<9:0>					BFFF
PORTC	0E2A	_	_	—	—	—	—					RC<	:9:0>					xxxx
LATC	0E2C	_	_	_	_	_	_					LATC	<9:0>					xxxx
ODCC	0E2E	_	_	_	_	_	_					ODCO	C<9:0>					0000
CNENC	0E30	_	_	_	_	_	_					CNIE	C<9:0>					0000
CNPUC	0E32	_	_	_	_	_	_					CNPU	C<9:0>					0000
CNPDC	0E34	_	_	_	_	_	_					CNPD	C<9:0>					0000
ANSELC	0E36	_	_	_	_	_	_					ANSC	<9:0>					0807
SR1C	0E38	_	_	—	—	—	—		SR1C	<9:6>		_		SR1C3	_	_	—	0000
SR0C	0E3A	_		_		_			SR0C	<9:6>		—	_	SR0C3	_		_	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.7.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through the Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a Program Space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. The TBLRDL and TBLWTL instructions access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the Program Space location (P<15:0>) to a data address (D<15:0>).
 - In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.

- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>) is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, as in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

Similarly, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space. Accessing the program memory with table instructions is shown in Figure 4-18.

FIGURE 4-18: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

r							
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMKE	Y<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY<7:0>: NVM Key Register bits (write-only)

REGISTER 5-5: NVMSRCADRH: NVM DATA MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	_	_	—	—	_
bit 15	·						bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMSRCAD)R<23:16>			
bit 7							bit 0
Logondi							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMSRCADRH<23:16>: Data Memory Upper Address bits

REGISTER 5-6: NVMSRCADRL: NVM DATA MEMORY LOWER ADDRESS REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
			NVMSRC	ADR<15:8>					
bit 15							bit 8		
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	r-0		
		NV	MSRCADR<	7:1>			—		
bit 7							bit 0		
Legend:		r = Reserved	bit						
R = Readable I	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		

bit 15-1 NVMSRCADRL<15:1>: Data Memory Lower Address bits

bit 0 Reserved: Maintain as '0'

11.4 Slew Rate Selection

The slew rate selection feature allows the device to have control over the slew rate selection on the required I/O pin which supports this feature. For this purpose, for each I/O port, there are two registers: SR1x and SR0x, which configure the selection of the slew rate. The register outputs are directly connected to the associated I/O pins, which support the slew rate selection function. The SR1x register specifies the MSb and the SR0x register provides the LSb of the 2-bit field that selects the desired slew rate. For example, slew rate selections for PORTA are as follows:

EXAMPLE 11-2: SLEW RATE SELECTIONS FOR PORTA

SR1Ax, SR0Ax = 00 = Fastest Slew rate SR1Ax, SR0Ax = 01 = 4x slower Slew rate SR1Ax, SR0Ax = 10 = 8x slower Slew rate SR1Ax, SR0Ax = 11 = 16x slower Slew rate

11.5 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

The Peripheral Pin Select (PPS) configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The PPS configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping after it has been established.

11.5.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the PPS feature include the designation, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

11.5.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and Interrupt-on-Change (IOC) inputs.

In comparison, some digital only peripheral modules are never included in the PPS feature, because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C and the PWM. A similar requirement excludes all modules with analog inputs, such as the ADC Converter.

A key difference between the remappable and nonremappable peripherals is that the remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, the non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all the other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.5.3 CONTROLLING PERIPHERAL PIN SELECT

The PPS features are controlled through two sets of SFRs: one to map the peripheral inputs and the other to map the outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

11.5.4 INPUT MAPPING

The inputs of the PPS options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Table 11-1 and Register 11-1 through Register 11-17). Each register contains sets of 8-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 8-bit value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selects supported by the device. For example, Figure 11-2 shows the remappable pin selection for the U1RX input.

FIGURE 11-2: REMAPPABLE INPUT FOR U1RX

11.5.4.1 Virtual Connections

dsPIC33EVXXXGM00X/10X family devices support virtual (internal) connections to the output of the op amp/comparator module (see Figure 25-1 in Section 25.0 "Op Amp/Comparator Module").

These devices provide six virtual output pins (RPV0-RPV5) that correspond to the outputs of six peripheral pin output remapper blocks (RP176-RP181). The six virtual remapper outputs (RP176-RP181) are not connected to actual pins. The six virtual pins may be read by any of the input remappers as inputs, RP176-RP181. These virtual pins can be used to connect the internal peripherals, whose signals are of significant use to the other peripherals, but these output signals are not present on the device pin.

Virtual connections provide a simple way of interperipheral connection without utilizing a physical pin. For example, by setting the FLT1R<7:0> bits of the RPINR12 register to the value of 'b0000001', the output of the analog comparator, C1OUT, will be connected to the PWM Fault 1 input, which allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

17.2 **PWM Resources**

Many useful resources are provided on the main product page on the Microchip web site (www.microchip.com) for the devices listed in this data sheet. This product page contains the latest updates and additional information.

Note: In case the above link is not accessible, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

17.2.1 KEY RESOURCES

- "High-Speed PWM" (DS70645) in the "dsPIC33/ PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

18.2 SPI Control Registers

REGISTER 18-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
SPIEN	_	SPISIDL			SPIBEC2	SPIBEC1	SPIBEC0
bit 15							bit 8
R/W-0	R/C-0, HS	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HS, HC	R-0, HS, HC
SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF
bit 7							bit 0
r							
Legend:		HC = Hardware	e Clearable bit	HS = Hardwa	are Settable b	pit	
R = Readable	bit	W = Writable b	bit	U = Unimple	mented bit, re	ead as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	C = Clearable	e bit
bit 15	SPIEN: SPIx 1 = Enables tl 0 = Disables t	Enable bit he SPIx module the SPIx module	and configures	s SCKx, SDOx	, SDIx and \overline{S}	Sx as serial po	rt pins
bit 14	Unimplemen	ted: Read as '0	3				
bit 13	SPISIDL: SPI	x Stop in Idle M	ode bit				
	1 = Discontinu 0 = Continues	ues the SPIx mo the SPIx modu	odule operation Ile operation in	when the dev Idle mode	ice enters Idl	e mode	
bit 12-11	Unimplemen	ted: Read as '0	,				
bit 10-8	SPIBEC<2:0>	SPIx Buffer E	lement Count b	oits (valid in Er	hanced Buffe	er mode)	
	Master mode: Number of SF	Nx transfers are	pending.				
	Slave mode: Number of SF	Plx transfers are	unread.				
bit 7	SRMPT: SPIX	Shift Register (SPIxSR) Empt	y bit (valid in E	Inhanced Buf	fer mode)	
	1 = The SPIx 0 = The SPIx	Shift register is Shift register is	empty and rea not empty	dy to send or r	eceive the da	ata	
bit 6	SPIROV: SPI	x Receive Over	flow Flag bit				
	1 = A new by previous 0 = Overflow	yte/word is com data in the SPIx	pletely receive BUF register	d and discard	ed; the user	application ha	s not read the
bit 5	SRXMPT: SP	Ix Receive FIFC) Empty bit (val	lid in Enhance	d Buffer mode	.)	
	1 = RX FIFO	is empty is not empty				- /	
bit 4-2	SISEL<2:0>:	SPIx Buffer Inte	errupt Mode bits	s (valid in Enha	anced Buffer	mode)	
	111 = Interru 110 = Interru 101 = Interru 100 = Interru memor 011 = Interru	pt when the SP pt when the last pt when the last pt when one da ry location pt when the SP	Ix transmit buff t bit is shifted in t bit is shifted o ta is shifted in Ix receive buffe	er is full (SPIT to SPIxSR, ar ut of SPIxSR a to SPIxSR, an er is full (SPIRE	BF bit is set) ad as a result, and the transr ad as a result 3F bit is set)	, the TX FIFO i nit is complete , the TX FIFO	s empty has one open
	010 = Interru 001 = Interru 000 = Interru empty	pt when the SP pt when data is pt when the las (SRXMPT bit is	Ix receive buffe available in the st data in the S set)	er is 3/4 or mor e SPIx receive PIx receive bu	é full buffer (SRMF uffer is read,	PT bit is set) and as a resu	lt, the buffer is

21.2 UART Control Registers

REGISTER 21-1: UxMODE: UARTx MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN	(1)	USIDL	IREN ⁽²⁾	RTSMD	_	UEN1	UEN0
bit 15							bit 8
R/W-0, H	C R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7							bit 0
-							
Legend:		HC = Hardwar	re Clearable bit				
R = Reada	ible bit	W = Writable I	oit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15	UARTEN: U. 1 = UARTx 0 = UARTx is minim	ARTx Enable bit is enabled; all U is disabled; all L ial	(1) ARTx pins are o JARTx pins are	controlled by U controlled by I	ARTx as defin PORT latches;	ed by UEN<1 UARTx powe	:0> er consumption
bit 14	Unimpleme	nted: Read as 'o)'				
bit 13	USIDL: UAR	RTx Stop in Idle M	Mode bit				
	1 = Disconti 0 = Continu	nues module op es module opera	eration when th ation in Idle mod	e device enter le	s Idle mode		
bit 12	IREN: IrDA [®] 1 = IrDA end 0 = IrDA end	⁹ Encoder and Decoder and de	ecoder Enable k ler are enabled ler are disabled	_{Dit} (2)			
bit 11	RTSMD: Mo	de Selection for	UxRTS Pin bit				
	$1 = \frac{UxRTS}{UxRTS}$	pin is in Simplex pin is in Flow Co	mode mtrol mode				
bit 10	Unimpleme	nted: Read as 'o)'				
bit 9-8	UEN<1:0>: 0 11 = UxTX, 10 = UxTX, 01 = UxTX, 00 = UxTX a PORT	UARTx Pin Enab UxRX and BCLK UxRX, UxCTS a UxRX and UxRT and UxRX pins a latches	ole bits fx p <u>ins are</u> enab nd UxRTS pins S pins are enab are enabled and	led and used; are enabled a led and <u>used;</u> I used; UxCTS	UxCTS pin is c nd used ⁽⁴⁾ UxCT <u>S pin is c</u> and UxRTS/E	controlled by P controlled by P 3CLKx pins ar	ORT latches ⁽³⁾ ORT latches ⁽⁴⁾ e controlled by
bit 7	WAKE: UAR	Tx Wake-up on	Start bit Detect	During Sleep I	Mode Enable b	bit	
	1 = UARTx in hardw 0 = Wake-uj	continues to san vare on the follov p is not enabled	nple the UxRX p wing rising edge	vin; interrupt is	generated on t	the falling edge	e, bit is cleared
bit 6	LPBACK: U	ARTx Loopback	Mode Select bi	t			
	1 = Loopbac 0 = Loopbac	ck mode is enab ck mode is disab	led led				
Note 1:	Refer to "Univer <i>"dsPIC33/PIC24</i> transmit operation	sal Asynchron Family Referenc	ous Receiver	Transmitter (Information on e	UART)" (DS7 enabling the U	0000582) in th ART module fo	e or receive or
2:	This feature is on	ly available for t	he 16x BRG mc	ode (BRGH = 0)).		
3:	This feature is on	iv available on 4	4-pin and 64-pi	n devices.			

4: This feature is only available on 64-pin devices.

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R-0
CON	COE	CPOL	—		—	CEVT	COUT
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EVPOL1	(2) EVPOL0(2)		CREF ⁽¹⁾	—		CCH1 ⁽¹⁾	CCH0 ⁽¹⁾
bit 7							bit 0
r							
Legend:							
R = Reada	ible bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	CON: Op Am	p/Comparator 4	Enable bit				
	1 = Comparat	or is enabled					
bit 14	COF: Compared	rator 4 Output	Enable bit				
SIC 11	1 = Comparat	or output is pre	esent on the C	240UT nin			
	0 = Comparat	or output is inte	ernal only				
bit 13	CPOL: Comp	arator 4 Outpu	t Polarity Sele	ect bit			
	1 = Comparat	or output is inv	erted				
	0 = Comparat	or output is not	t inverted				
bit 12-10	Unimplemen	ted: Read as ')'				
bit 9	CEVT: Compa	arator 4 Event I	oit				
	1 = Compara	tor event, acc	ording to EVF	POL<1:0> sett	ings, occurred;	disables future	e triggers and
	0 = Compara	tor event did n	cleared				
hit 8	COUT: Comp	arator 4 Output	t bit				
bito	When CPOL :	= 0 (non-inverte	ed polarity):				
	1 = VIN + > VIN	N-					
	0 = VIN + < VIN	4-					
	When CPOL :	= 1 (inverted po	plarity):				
	1 = VIN + < VIN	N-					
	U = VIN + > VIN	N-					
Note 1:	Inputs that are sele	ected and not av	ailable will be	e tied to Vss. S	ee the " Pin Dia	grams" section	n for available
	inputs for each pac	ckage.					

REGISTER 25-3: CM4CON: COMPARATOR 4 CONTROL REGISTER

2: After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the comparator Event bit, CEVT (CMxCON<9>), and the Comparator Combined Interrupt Flag, CMPIF (IFS1<2>), must be cleared before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

TABLE 30-6:	DC CHARACTERISTICS: OPERATING CURRENT (IDD)	
-------------	---	--

DC CHARACT	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Typ. ⁽²⁾	Max.	Units	Conditions				
Operating Cur	rent (IDD) ⁽¹⁾							
DC20d	4.5	5.5	mA	-40°C				
DC20a	4.65	5.6	mA	+25°C	5.01/			
DC20b	4.85	6.0	mA	+85°C	5.00			
DC20c	5.6	7.2	mA	+125°C				
DC22d	8.6	10.6	mA	-40°C				
DC22a	8.8	10.8	mA	+25°C	5.0V	20 MIPS		
DC22b	9.1	11.1	mA	+85°C				
DC22c	9.8	12.6	mA	+125°C				
DC23d	16.8	18.5	mA	-40°C				
DC23a	17.2	19.0	mA	+25°C	5.0\/			
DC23b	17.55	19.2	mA	+85°C	5.0 V	40 MIF 3		
DC23c	18.3	21.0	mA	+125°C				
DC24d	25.15	28.0	mA	-40°C				
DC24a	25.5	28.0	mA	+25°C	5.0\/			
DC24b	25.5	28.0	mA	+85°C	5.0 v			
DC24c	25.55	28.5	mA	+125°C				
DC25d	29.0	31.0	mA	-40°C				
DC25a	28.5	31.0	mA	+25°C	5.0V	70 MIPS		
DC25b	28.3	31.0	mA	+85°C				

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

 Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- CPU executing
 - while(1)

```
{
NOP();
```

```
NOP ( )
```

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

FIGURE 30-16: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-51: OP AMP/COMPARATOR x VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 2): 4.5V to 5.5V \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param.	Symbol	Characteristic	Min. Typ. Max. Units Conditions					
VRD310	TSET	Settling Time	—	1	10	μS	See Note 1	

Note 1: Settling time measured while CVRSS = 1 and the CVR<6:0> bits transition from '0000000' to '1111111'.

2: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

TABLE 30-52: OP AMP/COMPARATOR x VOLTAGE REFERENCE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristics	Min. Typ. Max. Units Condition					
VRD311	CVRAA	Absolute Accuracy of Internal DAC Input to Comparators	_	±25	—	mV	AVDD = CVRSRC = 5.0V	
VRD312	CVRAA1	Absolute Accuracy of CVREFXO Pins	—	—	+35/-65	mV	AVDD = CVRSRC = 5.0V	
VRD313	CVRSRC	Input Reference Voltage	0	_	AVDD + 0.3	V		
VRD314	CVRout	Buffer Output Resistance	_	1.5k	_	Ω		
VRD315	CVCL	Permissible Capacitive Load (CVREFxO pins)	_	—	25	pF		
VRD316	IOCVR	Permissible Current Output (CVREFxO pins)	_	—	1	mA		
VRD317	ION	Current Consumed when Module is Enabled	—	—	500	μA	AVDD = 5.0V	
VRD318	IOFF	Current Consumed when Module is Disabled	_		1	nA	AVDD = 5.0V	

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Тур. ⁽⁴⁾	Max.	Units	Conditions		
		Cloc	k Parame	eters					
AD50	TAD	ADC Clock Period	75	_	_	ns			
AD51	tRC	ADC Internal RC Oscillator Period	—	250	-	ns			
		Con	version F	Rate					
AD55	tCONV	Conversion Time	—	12		TAD			
AD56	FCNV	Throughput Rate	—	_	1.1	Msps	Using simultaneous sampling		
AD57a	TSAMP	Sample Time When Sampling Any ANx Input	2			TAD			
AD57b	TSAMP	Sample Time When Sampling the Op Amp Outputs	4	_		Tad			
		Timir	ng Param	eters					
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2	_	3	Tad	Auto-convert trigger is not selected		
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2	_	3	TAD			
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾		0.5		TAD			
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽²⁾		—	20	μs	See Note 3		

TABLE 30-58: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

- **2:** Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
- **3:** The parameter, tDPU, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (ADxCON1<15>) = 1). During this time, the ADC result is indeterminate.
- 4: These parameters are characterized but not tested in manufacturing.

TABLE 30-59: DMA MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
DM1	DMA Byte/Word Transfer Latency	1 Tcy (2)			ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because DMA transfers use the CPU data bus, this time is dependent on other functions on the bus.

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 33-15: **TYPICAL/MAXIMUM** ∆IwDT vs. **TEMPERATURE** 12 10 8 IPD (NA) 6 5.5V Max – 5.5V Typ 4 2 0 -50 0 50 100 150 Temperature (C)

33.5 FRC

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Leads	Ν		44		
Lead Pitch	е		0.80 BSC		
Overall Height	Α	-	-	1.20	
Standoff	A1	0.05 - 0.15			
Molded Package Thickness	A2	0.95 1.00 1.05			
Overall Width	E	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Width	b	0.30	0.37	0.45	
Lead Thickness	С	0.09 - 0.20			
Lead Length	L	0.45 0.60 0.75			
Footprint	L1	1.00 REF			
Foot Angle	θ	0° 3.5° 7°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2

64-Lead Very Thin Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [VQFN] With 7.15 x 7.15 Exposed Pad [Also called QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-149D [MR] Sheet 1 of 2