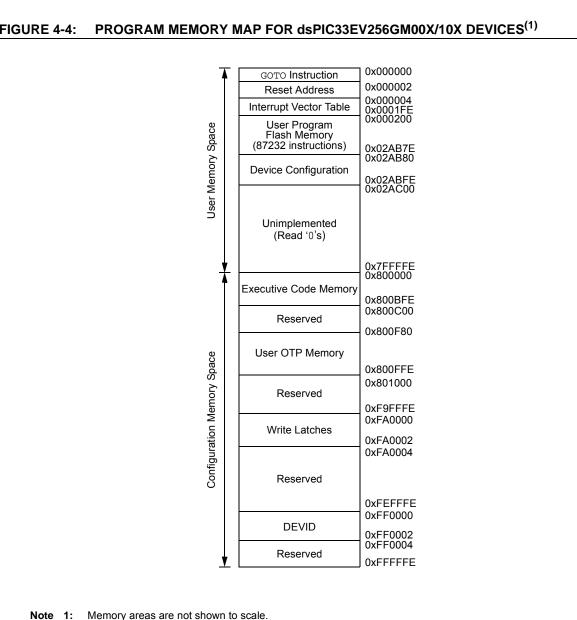


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XE

Detalls	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 36x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev256gm106-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-4:

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

R/SO-0		R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
WR ⁽¹⁾	WREN ⁽¹⁾	WRERR ⁽¹⁾	NVMSIDL ⁽²⁾			RPDF	URERR
bit 15						•	bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	NVMOP3 ^(1,3,4)	NVMOP2 ^(1,3,4)	NVMOP1 ^(1,3,4)	NVMOP0 ^{(1,3,4}
bit 7							bit (
Legend:		SO = Settable	e Onlv bit				
R = Reada	able bit	W = Writable	3	U = Unimplem	ented bit, read a	as '0'	
-n = Value	at POR	'1' = Bit is set	t	'0' = Bit is clea		x = Bit is unkn	own
bit 15	WR: Write C	Control bit ⁽¹⁾					
						ion is self-time	d and the bit is
				tion is complete			
bit 14	-	e Enable bit ⁽¹⁾	ation is comp	lete and inactive	J		
011 14		ogram or erase	operations a	re enabled			
		ogram or erase					
bit 13	=	rite Sequence I					
				nce attempt, or t	termination has	occurred (bit is s	et automaticall
		set attempt of th					
L:1 10	-	-	-	npleted normally	/		
bit 12		NVM Stop in Idl			ce enters Idle m		
					enters Idle mod		
bit 11-10	-	nted: Read as					
bit 9	RPDF: Row	Programming	Data Format (Control bit			
				compressed fo	rmat		
	0 = Row data	a to be stored i	in RAM is in a	n uncompresse	d format		
bit 8		-	-	run Error Flag b			
		gramming ope underrun has o		en terminated du	ue to a data unc	lerrun error	
bit 7-4	Unimpleme	nted: Read as	' 0'				
Note 1:	These bits can c	only be reset or	n a POR				
	If this bit is set, t	-		avings (lidle). a	and upon exiting	ldle mode, the	re is a delav
	(TVREG) before I					,,	· · · j
٥.							

- 3: All other combinations of NVMOP<3:0> are unimplemented.
- 4: Execution of the PWRSAV instruction is ignored while any of the NVM operations are in progress.
- **5:** Two adjacent words on a 4-word boundary are programmed during execution of this operation.

TABLE 7-1: INTERRUPT VECTOR DETAILS

Informent Course	Vector	IRQ		In	Interrupt Bit Location			
Interrupt Source	No.	No.	IVT Address	Flag	Enable	Priority		
		Highest	Natural Order Priority					
External Interrupt 0 (INT0)	8	0	0x000014	IFS0<0>	IEC0<0>	IPC0<2:0>		
Input Capture 1 (IC1)	9	1	0x000016	IFS0<1>	IEC0<1>	IPC0<6:4>		
Output Compare 1 (OC1)	10	2	0x000018	IFS0<2>	IEC0<2>	IPC0<10:8>		
Timer1 (T1)	11	3	0x00001A	IFS0<3>	IEC0<3>	IPC0<14:12>		
DMA Channel 0 (DMA0)	12	4	0x00001C	IFS0<4>	IEC0<4>	IPC1<2:0>		
Input Capture 2 (IC2)	13	5	0x00001E	IFS0<5>	IEC0<5>	IPC1<6:4>		
Output Compare 2 (OC2)	14	6	0x000020	IFS0<6>	IEC0<6>	IPC1<10:8>		
Timer2 (T2)	15	7	0x000022	IFS0<7>	IEC0<7>	IPC1<14:12>		
Timer3 (T3)	16	8	0x000024	IFS0<8>	IEC0<8>	IPC2<2:0>		
SPI1 Error (SPI1E)	17	9	0x000026	IFS0<9>	IEC0<9>	IPC2<6:4>		
SPI1 Transfer Done (SPI1)	18	10	0x000028	IFS0<10>	IEC0<10>	IPC2<10:8>		
UART1 Receiver (U1RX)	19	11	0x00002A	IFS0<11>	IEC0<11>	IPC2<14:12>		
UART1 Transmitter (U1TX)	20	12	0x00002C	IFS0<12>	IEC0<12>	IPC3<2:0>		
ADC1 Convert Done (AD1)	21	13	0x00002E	IFS0<13>	IEC0<13>	IPC3<6:4>		
DMA Channel 1 (DMA1)	22	14	0x000030	IFS0<14>	IEC0<14>	IPC3<10:8>		
NVM Write Complete (NVM)	23	15	0x000032	IFS0<15>	IEC0<15>	IPC3<14:12>		
I2C1 Slave Event (SI2C1)	24	16	0x000034	IFS1<0>	IEC1<0>	IPC4<2:0>		
I2C1 Master Event (MI2C1)	25	17	0x000036	IFS1<1>	IEC1<1>	IPC4<6:4>		
Comparator Combined Event (CMP1)	26	18	0x000038	IFS1<2>	IEC1<2>	IPC4<10:8>		
Input Change Interrupt (CN)	27	19	0x00003A	IFS1<3>	IEC1<3>	IPC4<14:12>		
External Interrupt 1 (INT1)	28	20	0x00003C	IFS1<4>	IEC1<4>	IPC5<2:0>		
DMA Channel 2 (DMA2)	32	24	0x000044	IFS1<8>	IEC1<8>	IPC6<2:0>		
Output Compare 3 (OC3)	33	25	0x000046	IFS1<9>	IEC1<9>	IPC6<6:4>		
Output Compare 4 (OC4)	34	26	0x000048	IFS1<10>	IEC1<10>	IPC6<10:8>		
Timer4 (T4)	35	27	0x00004A	IFS1<11>	IEC1<11>	IPC6<14:12>		
Timer5 (T5)	36	28	0x00004C	IFS1<12>	IEC1<12>	IPC7<2:0>		
External Interrupt 2 (INT2)	37	29	0x00004E	IFS1<13>	IEC1<13>	IPC7<6:4>		
UART2 Receiver (U2RX)	38	30	0x000050	IFS1<14>	IEC1<14>	IPC7<10:8>		
UART2 Transmitter (U2TX)	39	31	0x000052	IFS1<15>	IEC1<15>	IPC7<14:12>		
SPI2 Error (SPI2E)	40	32	0x000054	IFS2<0>	IEC2<0>	IPC8<2:0>		
SPI2 Transfer Done (SPI2)	41	33	0x000056	IFS2<1>	IEC2<1>	IPC8<6:4>		
CAN1 RX Data Ready (C1RX) ⁽¹⁾	42	34	0x000058	IFS2<2>	IEC2<2>	IPC8<10:8>		
CAN1 Event (C1) ⁽¹⁾	43	35	0x00005A	IFS2<3>	IEC2<3>	IPC8<14:12>		
DMA Channel 3 (DMA3)	44	36	0x00005C	IFS2<4>	IEC2<4>	IPC9<2:0>		
Input Capture 3 (IC3)	45	37	0x00005E	IFS2<5>	IEC2<5>	IPC9<6:4>		
Input Capture 4 (IC4)	46	38	0x000060	IFS2<6>	IEC2<6>	IPC9<10:8>		
Reserved	54	46	0x000070	_	_	_		
PWM Special Event Match Interrupt (PSEM)	65	57	0x000086	IFS3<9>	IEC3<9>	IPC14<6:4>		
Reserved	69	61	0x00008E	—				
Reserved	71-72	63-64	0x000092-0x000094	_	_	_		

Note 1: This interrupt source is available on dsPIC33EVXXXGM10X devices only.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT	DL2	DL1	DL0
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0
Legend:		C = Clearable	e bit				
R = Readable	hit	W = Writable	bit	U = Unimpler	mented hit read	as '0'	

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 VAR: Variable Exception Processing Latency Control bit 1 = Variable exception processing latency is enabled 0 = Fixed exception processing latency is enabled

bit 3 **IPL3:** CPU Interrupt Priority Level Status bit 3⁽²⁾

1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	-	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0

REGISTER 8-14: DMAPPS: DMA PING-PONG STATUS REGISTER

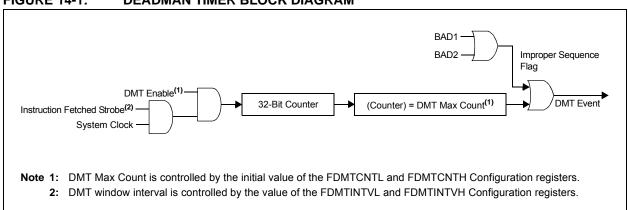
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	PPST3	PPST2	PPST1	PPST0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	PPST3: Channel 3 Ping-Pong Mode Status Flag bit
	1 = DMA3STB register is selected0 = DMA3STA register is selected
bit 2	PPST2: Channel 2 Ping-Pong Mode Status Flag bit
	1 = DMA2STB register is selected
	0 = DMA2STA register is selected
bit 1	PPST1: Channel 1 Ping-Pong Mode Status Flag bit
	1 = DMA1STB register is selected
	0 = DMA1STA register is selected
bit 0	PPST0: Channel 0 Ping-Pong mode Status Flag bit
	1 = DMA0STB register is selected
	0 = DMA0STA register is selected

NOTES:

14.0 DEADMAN TIMER (DMT)


- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Deadman Timer (DMT)" (DS70005155) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The primary function of the Deadman Timer (DMT) is to reset the processor in the event of a software malfunction. The DMT, which works on the system clock, is a free-running instruction fetch timer, which is clocked whenever an instruction fetch occurs, until a count match occurs. Instructions are not fetched when the processor is in Sleep mode.

DMT can be enabled in the Configuration fuse or by software in the DMTCON register by setting the ON bit. The DMT consists of a 32-bit counter with a time-out count match value, as specified by the two 16-bit Configuration Fuse registers: FDMTCNTL and FDMTCNTH.

A DMT is typically used in mission-critical, and safetycritical applications, where any single failure of the software functionality and sequencing must be detected.

Figure 14-1 shows a block diagram of the Deadman Timer module.

FIGURE 14-1: DEADMAN TIMER BLOCK DIAGRAM

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F15BP3	F15BP2	F15BP1	F15BP0	F14BP3	F14BP2	F14BP1	F14BP0	
bit 15					•		bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F13BP3	F13BP2	F13BP1	F13BP0	F12BP3	F12BP2	F12BP1	F12BP0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-12	F15BP<3:0>:	RX Buffer Ma	sk for Filter 15	5 bits				
	1111 = Filter	hits received in	n RX FIFO but	ffer				
	1110 = Filter	hits received in	n RX Buffer 14	ļ.				
	•							
	•							
	0001 = Filter	hits received ir	n RX Buffer 1					
	0000 = Filter	hits received in	n RX Buffer 0					
bit 11-8	F14BP<3:0>:	RX Buffer Ma	sk for Filter 14	l bits (same va	lues as bits 15-	12)		
bit 7-4	F13BP<3:0>:	RX Buffer Ma	sk for Filter 13	3 bits (same va	lues as bits 15-	12)		
bit 3-0	F12BP<3:0>:	RX Buffer Ma	sk for Filter 12	2 bits (same va	lues as bits 15-	12)		

REGISTER 22-15: CxBUFPNT4: CANx FILTERS 12-15 BUFFER POINTER REGISTER 4

REGISTER 22-26: CxTRmnCON: CANx TX/RX BUFFER mn CONTROL REGISTER

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPRI1	TXnPRI0
bit 15							bit 8
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPRI1	TXmPRI0
bit 7	170 DTH	TXDARDIN	TALKAII	IXILQIII			bit (
Logondy							
Legend: R = Readable	hit	W = Writable	hit	II – Unimplor	monted bit read		
				-	nented bit, read		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	lown
bit 15-8	See Definition	n for bits 7-0, co	ontrols Buffer n	1			
bit 7		RX Buffer Selec					
		RBm, is a transi					
		RBm, is a receiv					
bit 6	TXABTm: Me	essage Abortec	l bit ⁽¹⁾				
	1 = Message 0 = Message	was aborted completed trar	smission succ	essfully			
bit 5	TXLARBm: N	/lessage Lost A	vrbitration bit ⁽¹⁾				
		lost arbitration					
	0 = Message	did not lose arl	pitration while I	being sent			
bit 4	TXERRm: Er	ror Detected D	uring Transmis	sion bit ⁽¹⁾			
		or occurred whi					
bit 3	TXREQm: Me	essage Send R	equest bit				
	1 = Requests sent	s that a messag	je be sent; the	bit automatica	ally clears when	the message	is successfull
	0 = Clearing	the bit to '0' wh	ile set request	s a message	abort		
bit 2	RTRENm: Au	ito-Remote Tra	nsmit Enable b	oit			
		emote transmit emote transmit					
bit 1-0	TXmPRI<1:0	>: Message Tra	ansmission Pri	ority bits			
	11 = Highest 10 = High inte	message priori					

Note: The buffers, SID, EID, DLC, Data Field and Receive Status registers, are located in DMA RAM.

Figure 25-2, shows the user-programmable blanking function block diagram.

FIGURE 25-2: USER-PROGRAMMABLE BLANKING FUNCTION BLOCK DIAGRAM

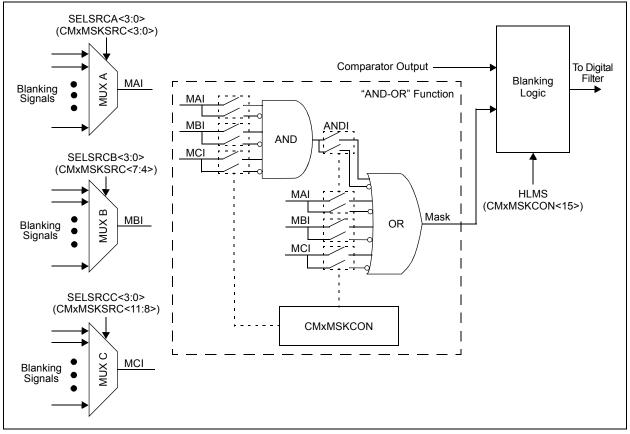
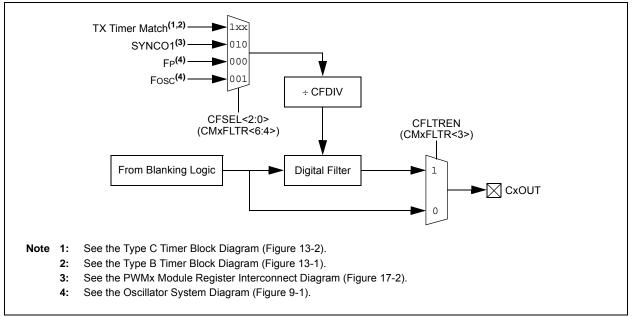
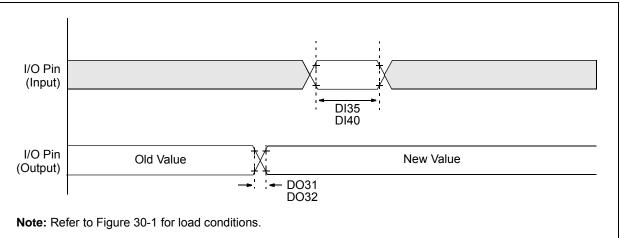



Figure 25-3, shows the digital filter interconnect block diagram.

FIGURE 25-3: DIGITAL FILTER INTERCONNECT BLOCK DIAGRAM

26.2 Comparator Voltage Reference Registers

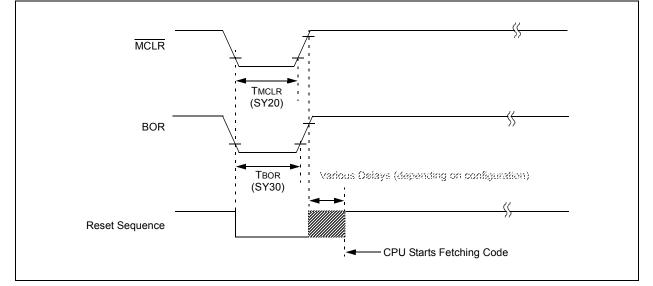
REGISTER 26-1: CVR1CON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER 1

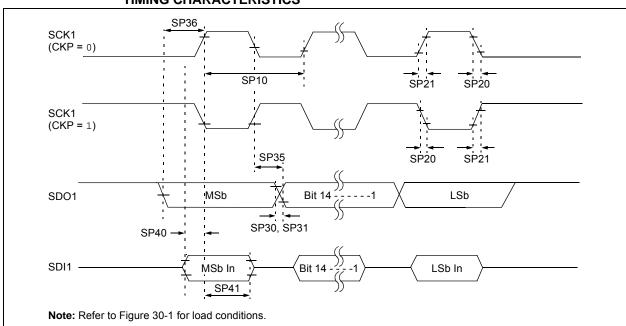

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0
CVREN	CVROE	—	_	CVRSS	VREFSEL	—	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	CVR6	CVR5	CVR4	CVR3	CVR2	CVR1	CVR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CVREN: Comparator Voltage Reference Enable bit
	1 = Comparator voltage reference circuit is powered on
	0 = Comparator voltage reference circuit is powered down
bit 14	CVROE: Comparator Voltage Reference Output Enable (CVREF10 Pin) bit
	1 = Voltage level is output on the CVREF10 pin
	0 = Voltage level is disconnected from the CVREF10 pin
bit 13-12	Unimplemented: Read as '0'
bit 11	CVRSS: Comparator Voltage Reference Source Selection bit
	1 = Comparator reference source, CVRsRC = CVREF+ – AVss
	0 = Comparator reference source, CVRSRC = AVDD – AVSS
bit 10	VREFSEL: Voltage Reference Select bit
	1 = CVREFIN = CVREF+
	0 = CVREFIN is generated by the resistor network
bit 9-7	Unimplemented: Read as '0'
bit 6-0	CVR<6:0>: Comparator Voltage Reference Value Selection bits
	1111111 = 127/128 x VREF input voltage
	•
	•
	•
	0000000 = 0.0 volts

dsPIC33EVXXXGM00X/10X FAMILY




TABLE 30-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Conditions	
DO31	TioR	Port Output Rise Time	_	5	10	ns	
DO32	TIOF	Port Output Fall Time	_	5	10	ns	
DI35	TINP	INTx Pin High or Low Time (input)	20	—	_	ns	
DI40	Trbp	CNx High or Low Time (input)	2	—	_	TCY	

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

FIGURE 30-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

FIGURE 30-22: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-40:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency	_	_	25	MHz	See Note 3
SP20	TscF	SCK1 Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDO1 Data Output Fall Time	—	—		ns	See Parameter DO32 and Note 4
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2sc, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	—		ns	

Note 1: These parameters are characterized but not tested in manufacturing.

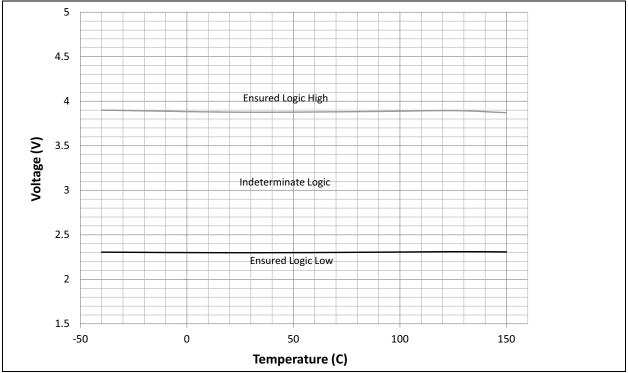
2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

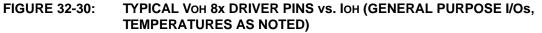
4: Assumes 50 pF load on all SPI1 pins.

TABLE 31-16: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS		Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$							
Param No.	Param No. Symbol Characteristic ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions		
	CTMU Current Source								
HCTMUI1	IOUT1	Base Range	_	550		nA	CTMUICON<9.8> = 01		
HCTMUI2	IOUT2	10x Range	—	5.5	_	μA	CTMUICON<9.8> = 10		
HCTMUI3	IOUT3	100x Range	—	55	_	μA	CTMUICON<9.8> = 11		
HCTMUI0	IOUT4	1000x Range	—	550	_	μA	CTMUICON<9.8> = 00		
HCTMUFV1	VF	Temperature Diode Forward Voltage ⁽²⁾	—	0.525	_	V	TA = +25°C, CTMUICON<9.8> = 01		
			—	0.585	_	V	TA = +25°C, CTMUICON<9.8> = 10		
			—	0.645		V	TA = +25°C, CTMUICON<9.8> = 11		


Note 1: Normal value at center point of current trim range (CTMUICON<15:10> = 000000).

2: Parameters are characterized but not tested in manufacturing. Measurements are taken with the following conditions:


- VREF = AVDD = 5.0V
- ADC module configured for 10-bit mode
- ADC module configured for conversion speed of 500 ksps
- All PMDx bits are cleared (PMDx = 0)
- CPU executing
 while(1)
 {
 NOP();
 - }
- · Device operating from the FRC with no PLL

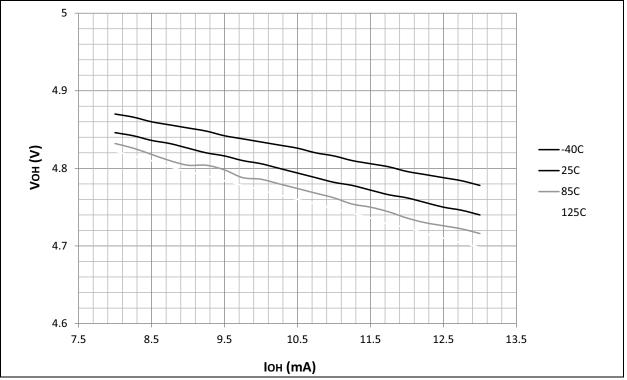


FIGURE 32-29: TYPICAL VIH/VIL vs. TEMPERATURE (GENERAL PURPOSE I/Os)

32.10 Voltage Output Low (VOL) – Voltage Output High (VOH)

32.12 VBOR

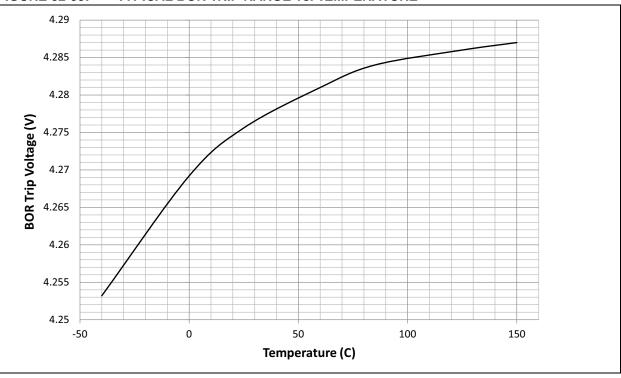


FIGURE 32-35: TYPICAL BOR TRIP RANGE vs. TEMPERATURE

32.13 RAM Retention

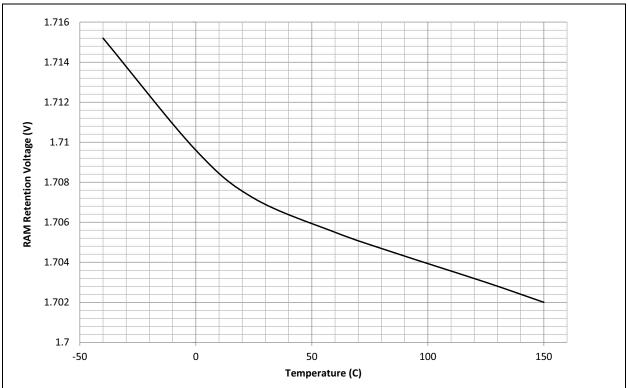
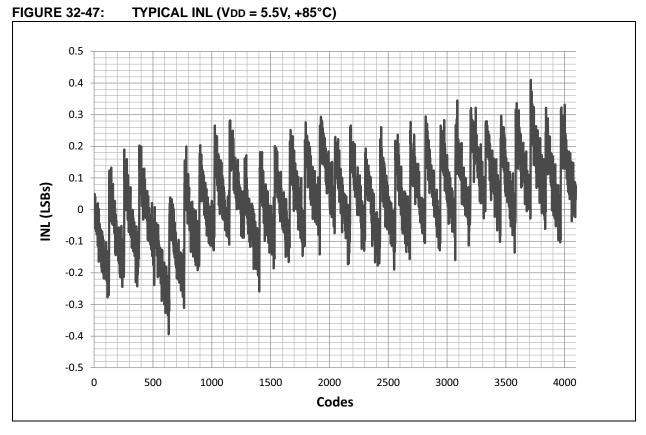



FIGURE 32-36: TYPICAL RAM RETENTION VOLTAGE vs. TEMPERATURE

dsPIC33EVXXXGM00X/10X FAMILY

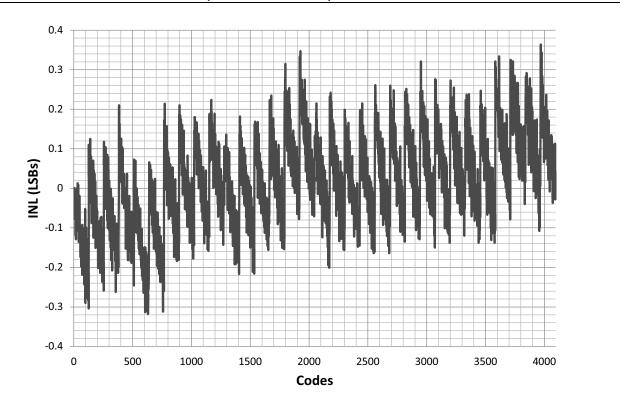
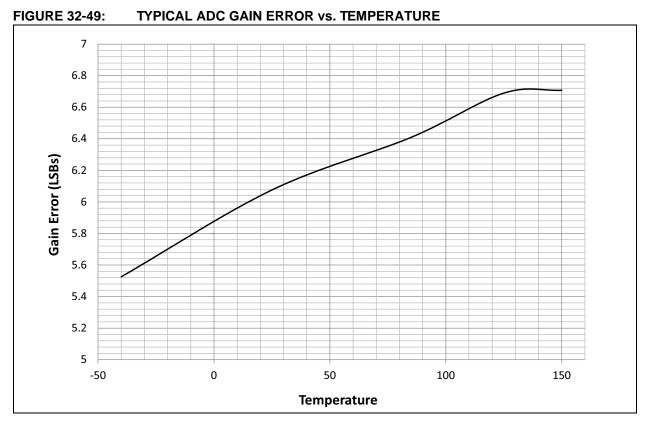
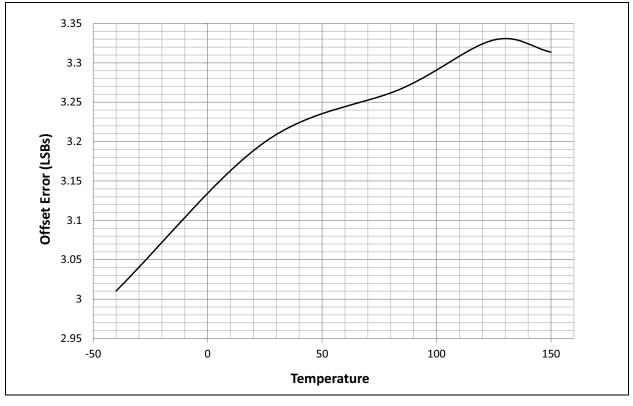
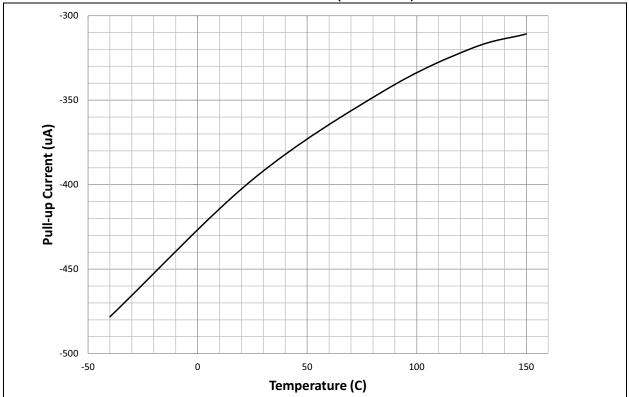
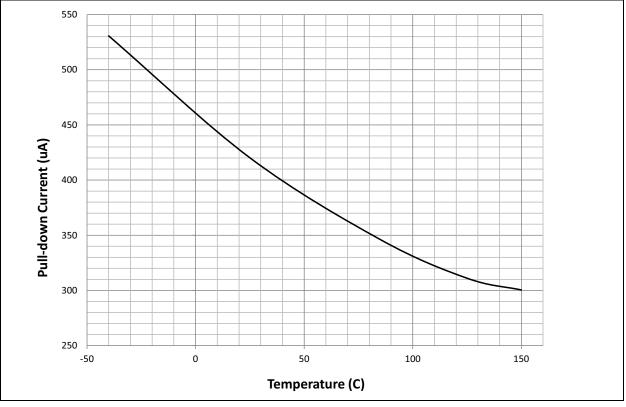
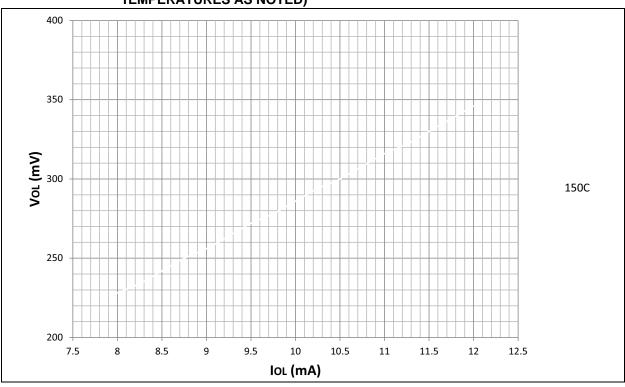




FIGURE 32-48: TYPICAL INL (VDD = 5.5V, +125°C)


32.19 ADC Gain Offset Error


© 2013-2016 Microchip Technology Inc.


33.8 Pull-up/Pull-Down Current

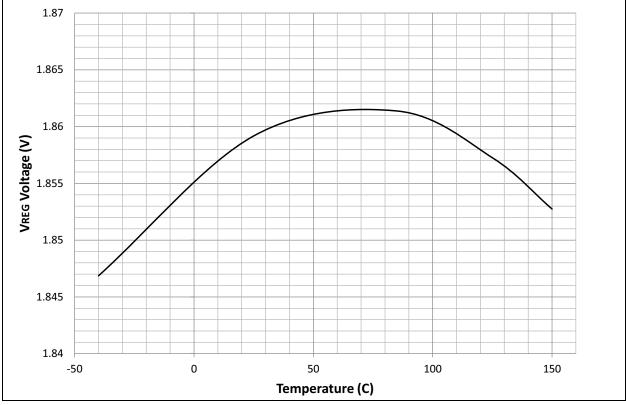


FIGURE 33-29: TYPICAL Vol 4x DRIVER PINS vs. Iol (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

33.11 VREG

