

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev32gm002-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Type	Buffer Type	PPS	Description							
AVDD	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.							
AVss	Р	Р	No	o Ground reference for analog modules.							
Vdd	Р	—	No	Positive supply for peripheral logic and I/O pins.							
VCAP	Р	_	No	CPU logic filter capacitor connection.							
Vss	Р	_	No	No Ground reference for logic and I/O pins.							
Legend: CMOS = CM ST = Schmit		•									

PPS = Peripheral Pin Select

TTL = TTL input buffer

3.5 **Programmer's Model**

The programmer's model for the dsPIC33EVXXXGM00X/ 10X family is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register. In addition to the registers contained in the programmer's model, the dsPIC33EVXXXGM00X/10X family devices contain control registers for Modulo Addressing and Bit-Reversed Addressing, and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory-mapped, as shown in Table 4-1.

TABLE 3-1:	PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Register(s) Name	Description
W0 through W15 ⁽¹⁾	Working Register Array
W0 through W14 ⁽¹⁾	Alternate Working Register Array 1
W0 through W14 ⁽¹⁾	Alternate Working Register Array 2
ACCA, ACCB	40-Bit DSP Accumulators
PC	23-Bit Program Counter
SR	ALU and DSP Engine STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
DSRPAG	Extended Data Space (EDS) Read Page Register
RCOUNT	REPEAT Loop Counter Register
DCOUNT	DO Loop Count Register
DOSTARTH ⁽²⁾ , DOSTARTL ⁽²⁾	DO Loop Start Address Register (High and Low)
DOENDH, DOENDL	DO Loop End Address Register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

Note 1: Memory-mapped W0 through W14 represents the value of the register in the currently active CPU context.

2: The DOSTARTH and DOSTARTL registers are read-only.

IABLE	4-3:	INP	UICA	APIUR	EIH	ROUGI		CAP	IURE 4	REGIS		,						
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1	0140	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	—	—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC1CON2	0142	_	_	_	_	_	_	-	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC1BUF	0144								Inp	ut Capture	1 Buffer Regi	ster						xxxx
IC1TMR	0146								Inp	ut Capture	1 Timer Regis	ster						0000
IC2CON1	0148	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	-	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC2CON2	014A	_	_	_	_	_	_	-	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC2BUF	014C								Inp	ut Capture	2 Buffer Regi	ster						xxxx
IC2TMR	014E								Inp	ut Capture	2 Timer Regi	ster						0000
IC3CON1	0150	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	-	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC3CON2	0152	_	_	_	_	_	_	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC3BUF	0154								Inp	ut Capture	3 Buffer Regi	ster						xxxx
IC3TMR	0156								Inp	ut Capture	3 Timer Regi	ster						0000
IC4CON1	0158			ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC4CON2	015A			—	—	_	_	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC4BUF	015C								Inp	ut Capture	4 Buffer Regi	ster						xxxx
IC4TMR	015E								Inp	ut Capture	4 Timer Regi	ster						0000
Lamandi				aati -	unimanlama	optod road	Loo '0' Boo	at value	ara ahawa	in hovedor	simal							

TABLE 4-3: INDUT CARTINE 1 THROUGH INDUT CARTINE A REGISTER MAD

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-4: **I2C1 REGISTER MAP**

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1CON1	0200	I2CEN	—	I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1CON2	0202	_	_	_	_	_	_	_	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	1000
I2C1STAT	0204	ACKSTAT	TRSTAT	ACKTIM		_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	0206					_						I2C1 Addr	ess Register					0000
I2C1MSK	0208					_					12	2C1 Address	Mask Regis	ster				0000
I2C1BRG	020A							E	Baud Rate	Generator F	Register							0000
I2C1TRN	020C					_		I2C1 Transmit Register 002								OOFF		
I2C1RCV	020E					_		I2C1 Receive Register 0000									0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-5: UART1 AND UART2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_	_	_				UART1	Transmit Re	egister				xxxx
U1RXREG	0226	_	_	_	_	_	_	_	UART1 Receive Register									0000
U1BRG	0228					UART1 Baud Rate Generator Prescaler Register 0000											0000	
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	_	_				UART2	Transmit Re	egister				xxxx
U2RXREG	0236	_	_	_	_	—	_	—				UART2	Receive Re	egister				0000
U2BRG	0238						U	ART2 Bau	2 Baud Rate Generator Prescaler Register									0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-6: SPI1 AND SPI2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	-	SPISIDL		_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI1CON1	0242	_		_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	—	_	_	_	_	—	—	_	_	_	FRMDLY	SPIBEN	0000
SPI1BUF	0248							SPI1 Tra	ansmit and R	eceive Buf	fer Registe	r						0000
SPI2STAT	0260	SPIEN	_	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI2CON1	0262	_		_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	—	_	—	_	_	_	—	_	_	_	FRMDLY	SPIBEN	0000
SPI2BUF	0268							SPI2 Tra	ansmit and R	eceive Buf	fer Registe	r						0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

	••																	
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC1 Da	ta Buffer	0							xxxx
ADC1BUF1	0302								ADC1 Da	ta Buffer	1							xxxx
ADC1BUF2	0304								ADC1 Da	ta Buffer	2							xxxx
ADC1BUF3	0306								ADC1 Da	ta Buffer	3							xxxx
ADC1BUF4	0308								ADC1 Da	ta Buffer	4							xxxx
ADC1BUF5	030A								ADC1 Da	ta Buffer	5							xxxx
ADC1BUF6	030C								ADC1 Da	ta Buffer	6							xxxx
ADC1BUF7	030E								ADC1 Da	ta Buffer	7							xxxx
ADC1BUF8	0310								ADC1 Da	ta Buffer	8							xxxx
ADC1BUF9	0312								ADC1 Da	ta Buffer	9							xxxx
ADC1BUFA	0314								ADC1 Dat	ta Buffer 1	0							xxxx
ADC1BUFB	0316								ADC1 Dat	ta Buffer 1	1							xxxx
ADC1BUFC	0318								ADC1 Dat	ta Buffer 1	2							xxxx
ADC1BUFD	031A								ADC1 Dat	ta Buffer 1	3							xxxx
ADC1BUFE	031C								ADC1 Dat	ta Buffer 1	4							xxxx
ADC1BUFF	031E								ADC1 Dat	ta Buffer 1	5							xxxx
AD1CON1	0320	ADON	I	ADSIDL	ADDMABM	—	AD12B	FORM1	FORM0	SSRC2	SSRC1	SSRC0	SSRCG	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	—	—	CSCNA	CHPS1	CHPS0	BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	I		SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS123	0326	_	I		CH123SB2	CH123SB1	CH123NB1	CH123NB0	CH123SB0	—			CH123SA2	CH123SA1	CH123NA1	CH123NA0	CH123SA0	0000
AD1CHS0	0328	CH0NB		CH0SB5	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA	-	CH0SA5	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1CSSH	032E					CSS<31:24>				_	_	_	—		CSS<	<19:16>		0000
AD1CSSL	0330								CSS	<15:0>								0000
AD1CON4	0332	-	_	_	—	—	_	_	ADDMAEN	_	_	_	_	-	DMABL2	DMABL1	DMABL0	0000
							D											

TABLE 4-7: ADC1 REGISTER MAP

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: CTMU REGISTER MAP

	SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset s
Ī	CTMUCON1	033A	CTMUEN	-	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	_	—		_	_	_	_		0000
Ī	CTMUCON2	033C	EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0	_	_	0000
	CTMUICON	033E	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0	-	_		_	_	_	_	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Allocating different Page registers for read and write access allows the architecture to support data movement between different pages in the data memory. This is accomplished by setting the DSRPAG register value to the page from which you want to read, and configure the DSWPAG register to the page to which it needs to be written. Data can also be moved from different PSV to EDS pages by configuring the DSRPAG and DSWPAG registers to address PSV and EDS space, respectively. The data can be moved between pages by a single instruction.

When an EDS or PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the EDS or PSV pages can occur at the page boundaries when:

- The initial address, prior to modification, addresses an EDS or a PSV page.
- The EA calculation uses Pre- or Post-Modified Register Indirect Addressing. However, this does not include Register Offset Addressing.

In general, when an overflow is detected, the DSxPAG register is incremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. When an underflow is detected, the DSxPAG register is decremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. This creates a linear EDS and PSV address space, but only when using the Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0, EDS and PSV spaces. Table 4-43 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when an overflow or underflow occurs, the EA<15> bit is set and the DSxPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- · Register Indirect with Register Offset Addressing
- Modulo Addressing
- · Bit-Reversed Addressing

TABLE 4-43: OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0, EDS AND PSV SPACE BOUNDARIES^(2,3,4)

0/11			Before			After	
0/U, R/W	Operation	DSxPAG	DS EA<15>	Page Description	DSxPAG	DS EA<15>	Page Description
O, Read		DSRPAG = 0x1FF	1	EDS: Last Page	DSRPAG = 0x1FF	0	See Note 1
O, Read	[++Wn]	DSRPAG = 0x2FF	1	PSV: Last Isw Page	DSRPAG = 0x300	1	PSV: First MSB Page
O, Read	or [Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB Page	DSRPAG = 0x3FF	0	See Note 1
O, Write		DSWPAG = 0x1FF	1	EDS: Last Page	DSWPAG = 0x1FF	0	See Note 1
U, Read	r 1	DSRPAG = 0x001	1	PSV Page	DSRPAG = 0x001	0	See Note 1
U, Read	[Wn] Or [Wn]	DSRPAG = 0x200	1	PSV: First Isw Page	DSRPAG = 0x200	0	See Note 1
U, Read	[WII]	DSRPAG = 0x300	1	PSV: First MSB Page	DSRPAG = 0x2FF	1	PSV: Last lsw Page

Legend: O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The Register Indirect Addressing now addresses a location in the Base Data Space (0x0000-0x8000).

2: An EDS access with DSxPAG = 0x000 will generate an address error trap.

3: Only reads from PS are supported using DSRPAG. An attempt to write to PS using DSWPAG will generate an address error trap.

4: Pseudolinear Addressing is not supported for large offsets.

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
TRAPF	R IOPUWR		—	VREGSF		CM	VREGS
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit (
Legend:							
R = Reada		W = Writable	oit	•	nented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
6:4 <i>4 C</i>		Deast Flag bit					
bit 15		o Reset Flag bit onflict Reset ha	e occurrod				
		onflict Reset ha		ed			
bit 14	•	egal Opcode or			ess Reset Flag	a bit	
		al Opcode detec		•	-		ter used as ar
		Pointer caused		· · · · · · · · · · · ·			
		I Opcode Rese		zed W Register	Reset has not	occurred	
bit 13-12	-	nted: Read as '					
bit 11		ash Voltage Reg			o bit		
		Itage regulator i		•	ing Sleep mode	2	
bit 10		nted: Read as '	-		ing cleep mout		
bit 9	-	ration Mismatch					
	•	uration Mismatc	•	occurred.			
		uration Mismato					
bit 8	VREGS: Volt	age Regulator S	Standby Durii	ng Sleep bit			
		regulator is activ					
	•	regulator goes i		mode during Sle	еер		
bit 7		nal Reset (MCL	,				
		Clear (pin) Res Clear (pin) Res					
bit 6		are RESET (Instr					
		instruction has					
	0 = A reset	instruction has	not been exe	ecuted			
bit 5	SWDTEN: So	oftware Enable/	Disable of W	DT bit ⁽²⁾			
	1 = WDT is e						
	0 = WDT is d						
bit 4		hdog Timer Tim	-	it			
		e-out has occur e-out has not oc					
Note 1:	All of the Reset sta cause a device Re		set or cleare	a in software. S	etting one of th	ese bits in soft	ware does not
2:	If the FWDTEN<1		n hits are '1 1	' (unprogramm	ed) the WDT is	always enable	od rogardlaar

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

If the FWDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

7.3 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EVXXXGM00X/10X family devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

7.4 Interrupt Control and Status Registers

dsPIC33EVXXXGM00X/10X family devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- IFSx
- IECx
- IPCx
- INTTREG

7.4.1 INTCON1 THROUGH INTCON4

Global interrupt control functions are controlled from the INTCON1, INTCON2, INTCON3 and INTCON4 registers.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS), as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior and also contains the Global Interrupt Enable bit (GIE).

INTCON3 contains the status flags for the DMT (Deadman Timer), DMA and ${\tt DO}$ stack overflow status trap sources.

The INTCON4 register contains the ECC Double-Bit Error (ECCDBE) and Software-Generated Hard Trap (SGHT) status bit.

7.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared through software.

7.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into Vector Number (VECNUM<7:0>) and Interrupt Priority Level bit (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

7.4.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers, refer to **"CPU"** (DS70359) in the *"dsPIC33/PIC24 Family Reference Manual"*.

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU Interrupt Priority Level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-3 to Register 7-7.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred
	0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

REGISTER 11-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

bit 15							bit 8
—	—	—	—	—	—	—	—
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
OCFAR<7:0>								
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 OCFAR<7:0>: Assign Output Compare Fault A (OCFA) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 •

> 00000001 = Input tied to CMP1 00000000 = Input tied to Vss

NOTES:

dsPIC33EVXXXGM00X/10X FAMILY

REGISTER 17-12: TRGCONX: PWMx TRIGGER CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	TRGSTRT5 ⁽¹⁾	TRGSTRT4 ⁽¹⁾	TRGSTRT3 ⁽¹⁾	TRGSTRT2 ⁽¹⁾	TRGSTRT1 ⁽¹⁾	TRGSTRT0 ⁽¹⁾
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-12 TRGDIV<3:0>: Trigger Output Divider bits

- 1111 = Triggers output for every 16th trigger event
- 1110 = Triggers output for every 15th trigger event
- 1101 = Triggers output for every 14th trigger event
- 1100 = Triggers output for every 13th trigger event
- 1011 = Triggers output for every 12th trigger event
- 1010 = Triggers output for every 11th trigger event
- 1001 = Triggers output for every 10th trigger event
- 1000 = Triggers output for every 9th trigger event
 - 0111 = Triggers output for every 8th trigger event
 - 0110 = Triggers output for every 7th trigger event
 - 0101 = Triggers output for every 6th trigger event
 - 0100 = Triggers output for every 5th trigger event 0011 = Triggers output for every 4th trigger event
 - 0010 = Triggers output for every 3rd trigger event
 - 0001 = Triggers output for every 2nd trigger event
- 0000 = Triggers output for every trigger event
- bit 11-6 **Unimplemented:** Read as '0'

bit 5-0 TRGSTRT<5:0>: Trigger Postscaler Start Enable Select bits⁽¹⁾

111111 = Waits 63 PWM cycles before generating the first trigger event after the module is enabled

- •
- •

000010 = Waits 2 PWM cycles before generating the first trigger event after the module is enabled 000001 = Waits 1 PWM cycle before generating the first trigger event after the module is enabled 000000 = Waits 0 PWM cycles before generating the first trigger event after the module is enabled

Note 1: The secondary PWM generator cannot generate PWMx trigger interrupts.

REGISTER 22-16: CxRXFnSID: CANx ACCEPTANCE FILTER n STANDARD IDENTIFIER REGISTER (n = 0-15)

		-	•							
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3			
bit 15							bit 8			
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x			
SID2	SID1	SID0		EXIDE		EID17	EID16			
bit 7							bit C			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	ed x = Bit is unknown				
bit 15-5	SID<10:0>: S	Standard Identif	ier bits							
	0		•	1' to match filte						
	0	-		0' to match filte	er					
bit 4	Unimplemen	ted: Read as '	0'							
bit 3	EXIDE: Exter	nded Identifier I	Enable bit							
	If MIDE = 1:									
		 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses 								
	0 = Matches	only messages	with Standar		resses					
	Ignores EXID)E bit.								
bit 2	•	ted: Read as '	0'							
bit 1-0	•	Extended Iden								
				1' to match filte	er					
	0		•	0' to match filte						
	0									

REGISTER 22-17: CxRXFnEID: CANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID)<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-0	EID<15:0>:	Extended Identifie	er bits				

1 = Message address bit, EIDx, must be '1' to match filter

0 = Message address bit, EIDx, must be '0' to match filter

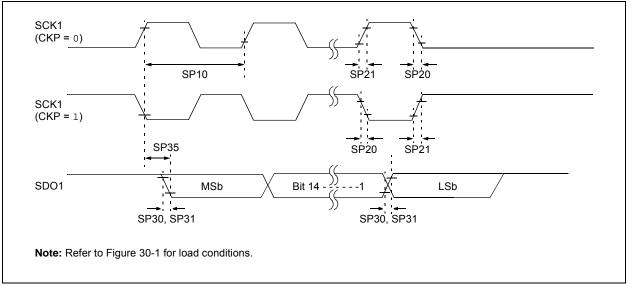
REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2, 3 OR 5) (CONTINUED)

- bit 7-6 EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits⁽³⁾
 - 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0)
 - 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0)

 $\frac{\text{If CPOL} = 1 \text{ (inverted polarity):}}{\text{Low-to-high transition of the comparator output.}}$ $\frac{\text{If CPOL} = 0 \text{ (non-inverted polarity):}}{\text{High-to-low transition of the comparator output.}}$

01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity selected comparator output (while CEVT = 0)

If CPOL = 1 (inverted polarity):


High-to-low transition of the comparator output.

- If CPOL = 0 (non-inverted polarity):
- Low-to-high transition of the comparator output.
- 00 = Trigger/event/interrupt generation is disabled
- bit 5 Unimplemented: Read as '0'
- bit 4 **CREF:** Comparator x Reference Select bit (VIN+ input)⁽¹⁾
 - 1 = VIN+ input connects to the internal CVREFIN voltage
 - 0 = VIN+ input connects to the CxIN1+ pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Op Amp/Comparator x Channel Select bits⁽¹⁾
 - 11 = Inverting input of op amp/comparator connects to the CxIN4- pin
 - 10 = Inverting input of op amp/comparator connects to the CxIN3- pin
 - 01 = Inverting input of op amp/comparator connects to the CxIN2- pin
 - 00 = Inverting input of op amp/comparator connects to the CxIN1- pin
- Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.
 - **2:** The op amp and the comparator can be used simultaneously in these devices. The OPAEN bit only enables the op amp while the comparator is still functional.
 - 3: After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the Comparator x Event bit, CEVT (CMxCON<9>), and the Comparator Interrupt Flag, CMPIF (IFS1<2>), must be cleared before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

TABLE 30-38: SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
25 MHz	Table 30-39	_	_	0,1	0,1	0,1	
25 MHz	—	Table 30-40	—	1	0,1	1	
25 MHz	—	Table 30-41	—	0	0,1	1	
25 MHz	—	—	Table 30-42	1	0	0	
25 MHz	_	_	Table 30-43	1	1	0	
25 MHz	_	—	Table 30-44	0	1	0	
25 MHz	—	—	Table 30-45	0	0	0	

FIGURE 30-20: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

AC CH/	ARACTER	RISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
Device Supply									
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or VBOR	_	Lesser of: VDD + 0.3 or 5.5	V			
AD02	AVss	Module Vss Supply	Vss – 0.3	_	Vss + 0.3	V			
			Refere	nce Inpu	ıts				
AD05	Vrefh	Reference Voltage High	4.5	—	5.5	V	VREFH = AVDD, VREFL = AVSS = 0		
AD06	VREFL	Reference Voltage Low	AVss		AVDD - VBORMIN	V	See Note 1		
AD06a			0	_	0	V	VREFH = AVDD, VREFL = AVSS = 0		
AD07	Vref	Absolute Reference Voltage	4.5	_	5.5	V	Vref = Vrefh – Vrefl		
AD08	IREF	Current Drain	—		10 600	μA μA	ADC off ADC on		
AD09	lad	Operating Current	_	5 2		mA mA	ADC operating in 10-bit mode (see Note 1) ADC operating in 12-bit mode (see Note 1)		
		•	Anal	og Input					
AD12	VINH	Input Voltage Range Vinн	VINL		VREFH	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input		
AD13	VINL	Input Voltage Range Vın∟	VREFL	_	AVss + 1V	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), negative input		
AD17	Rin	Recommended Impedance of Analog Voltage Source			200	Ω	Impedance to achieve maximum performance of ADC		

TABLE 30-54: ADC MODULE SPECIFICATIONS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

dsPIC33EVXXXGM00X/10X FAMILY

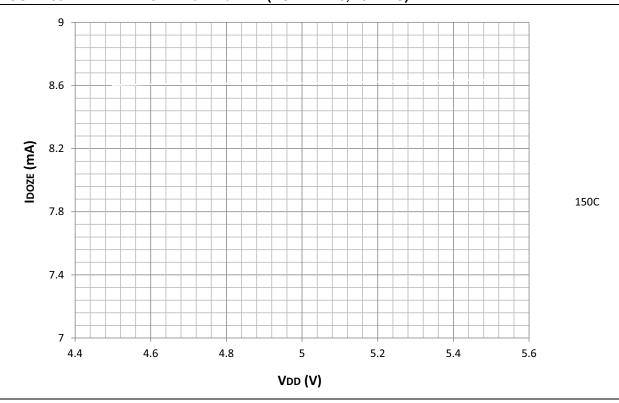


FIGURE 33-12: TYPICAL/MAXIMUM IDOZE vs. TEMPERATURE (DOZE 1:128, 70 MIPS)

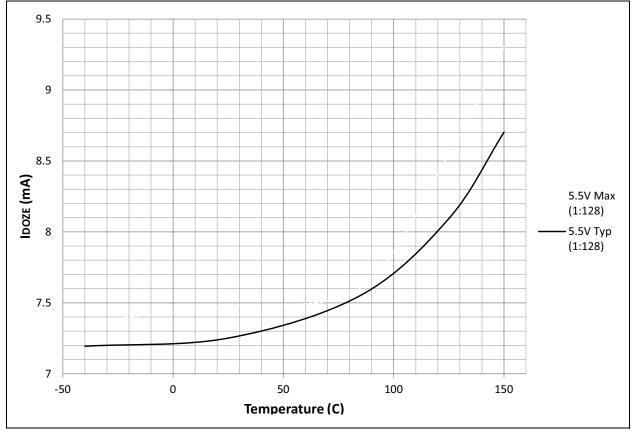
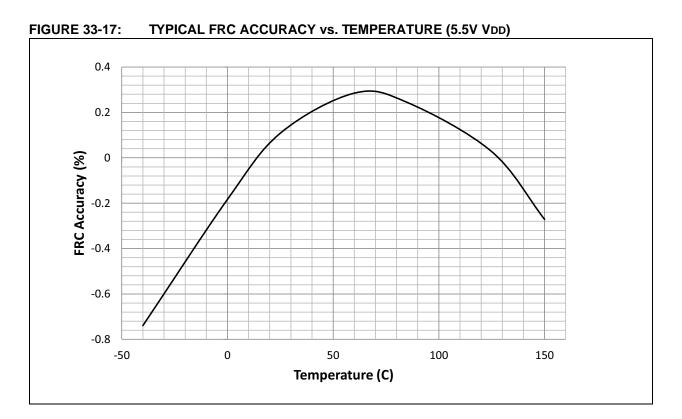
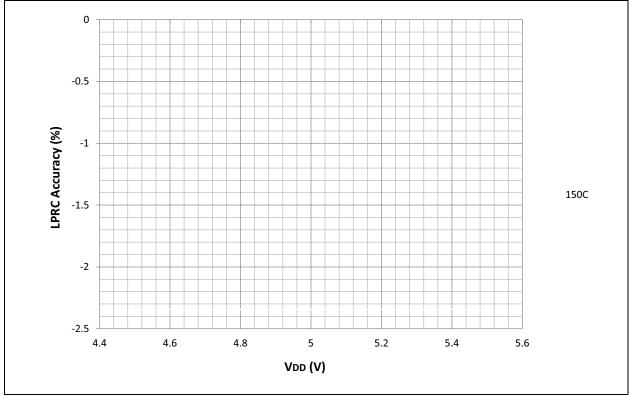
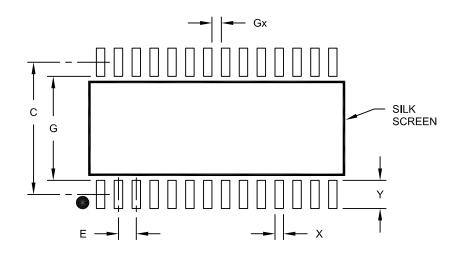




FIGURE 33-11: TYPICAL IDOZE vs. VDD (DOZE 1:128, 70 MIPS)

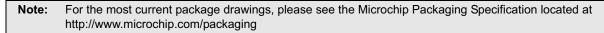


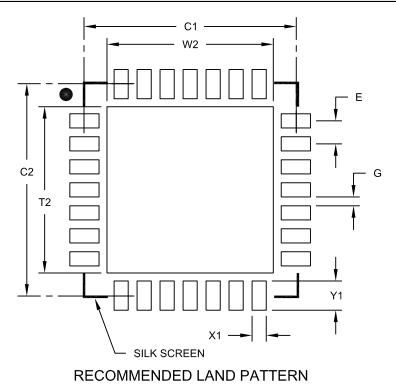
28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units					
Dimensior	Dimension Limits			MAX		
Contact Pitch	E		1.27 BSC			
Contact Pad Spacing	С		9.40			
Contact Pad Width (X28)	Х			0.60		
Contact Pad Length (X28)	Y			2.00		
Distance Between Pads	Gx	0.67				
Distance Between Pads	G	7.40				


Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			4.70
Optional Center Pad Length	T2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.40
Contact Pad Length (X28)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A