

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev32gm002-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PINOUT I/O DESCRIPTIONS

Pin Name	Pin Type	Buffer Type	PPS	Description		
AN0-AN19	Ι	Analog	No	Analog input channels.		
AN24-AN32		_				
AN48, AN49						
AN51-AN56						
CLKI	I	ST/	No	External clock source input. Always associated with OSC1 pin		
CIKO	0	CIVIOS	No	Iunclion. Oscillator crystal output. Connects to crystal or resonator in Crystal		
CERO	0		INU	Oscillator mode, Ontionally functions as CLKO in RC and FC modes		
				Always associated with OSC2 pin function.		
OSC1	I	ST/	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS		
		CMOS		otherwise.		
OSC2	I/O		No	Oscillator crystal output. Connects to crystal or resonator in Crystal		
				Oscillator mode. Optionally functions as CLKO in RC and EC modes.		
REFCLKO	0	—	Yes	Reference clock output.		
IC1-IC4	Ι	ST	Yes	Capture Inputs 1 to 4.		
OCFA	Ι	ST	Yes	Compare Fault A input (for compare channels).		
OC1-OC4	0		Yes	Compare Outputs 1 to 4.		
INT0	Ι	ST	No	External Interrupt 0.		
INT1	I	ST	Yes	External Interrupt 1.		
INT2		ST	Yes	External Interrupt 2.		
RA0-RA4, RA7-RA12	I/O	ST	Yes	PORTA is a bidirectional I/O port.		
RB0-RB15	I/O	ST	Yes	PORTB is a bidirectional I/O port.		
RC0-RC13, RC15	I/O	ST	Yes	PORTC is a bidirectional I/O port.		
RD5-RD6, RD8	I/O	ST	Yes	PORTD is a bidirectional I/O port.		
RE12-RE15	I/O	ST	Yes	PORTE is a bidirectional I/O port.		
RF0-RF1	I/O	ST	No	PORTF is a bidirectional I/O port.		
RG6-RG9	I/O	ST	Yes	PORTG is a bidirectional I/O port.		
т1СК	1	ST	No	Timer1 external clock input.		
T2CK	i	ST	Yes	Timer2 external clock input.		
T3CK	I	ST	No	Timer3 external clock input.		
T4CK	I	ST	No	Timer4 external clock input.		
T5CK	Ι	ST	No	Timer5 external clock input.		
CTPLS	0	ST	No	CTMU pulse output.		
CTED1		ST	No	CTMU External Edge Input 1.		
CTED2		SI	NO	CTMU External Edge Input 2.		
U1CTS		ST	Yes	UART1 Clear-to-Send.		
			Yes	UARTI Ready-to-Send.		
	0	51	Yes	UARTI receive.		
		ст	Vee			
	0	51	Yes	UART2 Clear-to-Send		
U2RX	I	ST	Yes	s UART2 receive		
U2TX	0		Yes	UART2 transmit.		
SCK1	I/O	ST	No	Synchronous serial clock input/output for SPI1.		
SDI1	I	ST	No	SPI1 data in.		
SDO1	0	—	No	SPI1 data out.		
SS1	I/O	ST	No	SPI1 slave synchronization or frame pulse I/O.		
Legend: CMOS = CN	IOS co	mpatible	input c	or output Analog = Analog input P = Power		
ST = Schmit	t Trigg	er input w	/ith CN	IOS levels O = Output I = Input		
PPS = Perip	meral F	rin Select		IIL = IIL Input buffer		

TABLE	ABLE 4-23: INTERRUPT CONTROLLER REGISTER MAP FOR dspic33evXXXGM00X/10X FAMILY DEVICES (CONTINUED)																	
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC19	0866	—	_	_				_	_	_		CTMUIP<2:0>	>	_	_	_	_	0040
IPC23	086E		PWM2IP2	PWM2IP1	PWM2IP0	—	PWM1IP2	PWM1IP1	PWM1IP0	—	_	—	—	—		_		4400
IPC24	0870		—	—	_	—	—	—	—	—	_	—	—	—		PWM3IP<2:0>		0004
IPC35	0886		—	—	_	—		ICDIP<2:0>		—	_	—	—	—		_		0400
IPC43	0896	_	_	_	_	_	_	_	_	_		2C1BCIP<2:0	>	_	_	_	_	0040
IPC45	089A		SENT1IP2	SENT1IP1	SENT1IP0	—	SENT1EIP2	SENT1EIP1	SENT1EIP0	—	_	—	—	—		_		4400
IPC46	089C	_	_	_	_	_	ECCSBEIP2	ECCSBEIP1	ECCSBEIP0	_	SENT2IP2	SENT2IP1	SENT2IP0	_	SENT2EIP2	SENT2EIP1	SENT2EIP0	0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	_	_	AIVTEN	_	_	_	_	_	INT2EP	INT1EP	INT0EP	0000
INTCON3	08C4	DMT	_	_	_	_	_	_	_	_	_	DAE	DOOVR	_	_	_	_	0000
INTCON4	08C6	_	_	_	_	_	_	_	_	_	_	_	_	_	_	ECCDBE	SGHT	0000
INTTREG	08C8	_	_		_	_	ILR3	ILR2	ILR1	VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

dsPIC33EVXXXGM00X/10X FAMILY

Legend: — = unimplemented, read as '0' Reset values are shown in hexadecimal. Note 1: This feature is available only on dsPIC33EVXXXGM10X devices.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15		<u> </u>				•	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R-0, HS, SC	R-0, HS, SC
		—	—	—		ECCDBE ⁽¹⁾	SGHT
bit 7							bit 0
Legend:		HS = Hardwar	e Settable bit	SC = Softwa	re Clearable bi	t	
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

bit 15-2	Unimplemented: Read as '0'
bit 1	ECCDBE: ECC Double-Bit Error Trap bit ⁽¹⁾
	 1 = ECC double-bit error trap has occurred 0 = ECC double-bit error trap has not occurred
bit 0	SGHT: Software-Generated Hard Trap Status bit
	 1 = Software-generated hard trap has occurred 0 = Software-generated hard trap has not occurred

Note 1: ECC double-bit error causes a generic hard trap.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
T5MD	T4MD	T3MD	T2MD	T1MD	-	PWMMD	_
bit 15							bit 8
L							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD ⁽¹⁾	AD1MD
bit 7							bit 0
F							
Legend:							
R = Readable		W = Writable	Dit	U = Unimplen	nented bit, read	das'0'	-
-n = value at	POR	"I" = Bit is set		"U" = Bit is clea	ared	x = Bit is unkn	own
hit 15	T5MD. Timer	5 Module Disat	le hit				
bit 15	1 = Timer5 m	odule is disable	e bit				
	0 = Timer5 m	odule is enable	d				
bit 14	T4MD: Timer4	4 Module Disat	ole bit				
	1 = Timer4 meta	odule is disable	ed				
L:1 40	0 = 1 imer4 m	odule is enable	d La hit				
DIT 13	1 - Timor3 m	3 Module Disat					
	0 = Timer3 m	odule is enable	d				
bit 12	T2MD: Timer2	2 Module Disat	ole bit				
	1 = Timer2 m	odule is disable	ed				
	0 = Timer2 m	odule is enable	d				
bit 11	T1MD: Timer	1 Module Disat	ole bit				
	1 = 1 imer1 m 0 = Timer1 m	odule is disable odule is enable	ed ed				
bit 10	Unimplemen	ted: Read as ')'				
bit 9	PWMMD: PW	/M Module Disa	able bit				
	1 = PWM mod	dule is disabled	l				
	0 = PWM mod	dule is enabled					
bit 8	Unimplemen	ted: Read as ')'				
bit /	1 = 12C1 mod	1 Module Disat	ble bit				
	1 = 12C1 mod 0 = 12C1 mod	ule is enabled					
bit 6	U2MD: UART	2 Module Disa	ble bit				
	1 = UART2 m	odule is disabl	ed				
	0 = UART2 m	odule is enable	ed				
bit 5	U1MD: UART	1 Module Disa	ble bit				
	1 = UART1 m 0 = UART1 m	odule is disabl	ea ed				
bit 4	SPI2MD: SPI	2 Module Disal	ole bit				
	$1 = SPI2 \mod 0$	lule is disabled					
hit 3			ole hit				
	$1 = SP[1 \mod 1]$	lule is disabled					
	0 = SPI1 mod	lule is enabled					

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: This bit is available on dsPIC33EVXXXGM10X devices only.

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<7:0>
External Interrupt 2	INT2	RPINR1	INT2R<7:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<7:0>
Input Capture 1	IC1	RPINR7	IC1R<7:0>
Input Capture 2	IC2	RPINR7	IC2R<7:0>
Input Capture 3	IC3	RPINR8	IC3R<7:0>
Input Capture 4	IC4	RPINR8	IC4R<7:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<7:0>
PWM Fault 1	FLT1	RPINR12	FLT1R<7:0>
PWM Fault 2	FLT2	RPINR12	FLT2R<7:0>
UART1 Receive	U1RX	RPINR18	U1RXR<7:0>
UART2 Receive	U2RX	RPINR19	U2RXR<7:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<7:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<7:0>
SPI2 Slave Select	SS2	RPINR23	SS2R<7:0>
CAN1 Receive	C1RX	RPINR26	C1RXR<7:0>
PWM Sync Input 1	SYNCI1	RPINR37	SYNCI1R<7:0>
PWM Dead-Time Compensation 1	DTCMP1	RPINR38	DTCMP1R<7:0>
PWM Dead-Time Compensation 2	DTCMP2	RPINR39	DTCMP2R<7:0>
PWM Dead-Time Compensation 3	DTCMP3	RPINR39	DTCMP3R<7:0>
SENT1 Input	SENT1R	RPINR44	SENT1R<7:0>
SENT2 Input	SENT2R	RPINR45	SENT2R<7:0>

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

11.6 High-Voltage Detect (HVD)

dsPIC33EVXXXGM00X/10X devices contain High-Voltage Detection (HVD) which monitors the VCAP voltage. The HVD is used to monitor the VCAP supply voltage to ensure that an external connection does not raise the value above a safe level (~2.4V). If high core voltage is detected, all I/Os are disabled and put in a tristate condition. The device remains in this I/O tri-state condition as long as the high-voltage condition is present.

11.7 I/O Helpful Tips

- 1. In some cases, certain pins, as defined in Table 30-10 under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes that the resulting current being injected into the device, that is clamped internally by the VDD and VSS power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins by default after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Pin Configuration registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = $0 \ge 0$, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.

- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name, from left-to-right. The left most function name takes precedence over any function to its right in the naming convention; for example, AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD – 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specifications. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH, and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of this data sheet. For example:

VOH = 4.4V at IOH = -8 mA and VDD = 5V

The maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current, <12 mA, is technically permitted. For more information, refer to the VOH/ IOH specifications in **Section 30.0 "Electrical Characteristics"**.

dsPIC33EVXXXGM00X/10X FAMILY

REGISTER 17-12: TRGCONX: PWMx TRIGGER CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	TRGSTRT5 ⁽¹⁾	TRGSTRT4 ⁽¹⁾	TRGSTRT3 ⁽¹⁾	TRGSTRT2 ⁽¹⁾	TRGSTRT1 ⁽¹⁾	TRGSTRT0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 TRGDIV<3:0>: Trigger Output Divider bits

- 1111 = Triggers output for every 16th trigger event
- 1110 = Triggers output for every 15th trigger event
- 1101 = Triggers output for every 14th trigger event
- 1100 = Triggers output for every 13th trigger event
- 1011 = Triggers output for every 12th trigger event
- 1010 = Triggers output for every 11th trigger event
- 1001 = Triggers output for every 10th trigger event
- 1000 = Triggers output for every 9th trigger event
 - 0111 = Triggers output for every 8th trigger event
 - 0110 = Triggers output for every 7th trigger event
 - 0101 = Triggers output for every 6th trigger event
 - 0100 = Triggers output for every 5th trigger event 0011 = Triggers output for every 4th trigger event
 - 0010 = Triggers output for every 3rd trigger event
 - 0001 = Triggers output for every 2nd trigger event
- 0000 = Triggers output for every trigger event
- bit 11-6 **Unimplemented:** Read as '0'

bit 5-0 TRGSTRT<5:0>: Trigger Postscaler Start Enable Select bits⁽¹⁾

111111 = Waits 63 PWM cycles before generating the first trigger event after the module is enabled

- •
- •

000010 = Waits 2 PWM cycles before generating the first trigger event after the module is enabled 000001 = Waits 1 PWM cycle before generating the first trigger event after the module is enabled 000000 = Waits 0 PWM cycles before generating the first trigger event after the module is enabled

Note 1: The secondary PWM generator cannot generate PWMx trigger interrupts.

REGISTER 17-13: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾ (CONTINUED)

- bit 1
 SWAP: SWAP PWMxH and PWMxL Pins bit

 1 = PWMxH output signal is connected to the PWMxL pin; PWMxL output signal is connected to the PWMxH pin

 0 = PWMxH and PWMxL pins are mapped to their respective pins

 bit 0
 OSYNC: Output Override Synchronization bit

 1 = Output overrides through the OVRDAT<1:0> bits are synchronized to the PWMx time base

 0 = Output overrides through the OVRDAT<1:0> bits occur on the next CPU clock boundary
- Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1).
 - 2: If the PWMLOCK Configuration bit (FDEVOPT<0>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

REGISTER 17-14: TRIGx: PWMx PRIMARY TRIGGER COMPARE VALUE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	ИР<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	MP<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	t	U = Unimplei	mented bit, read	i as '0'	

bit 15-0 **TRGCMP<15:0>:** Trigger Control Value bits

'1' = Bit is set

When the primary PWMx functions in the local time base, this register contains the compare values that can trigger the ADC module.

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
—				_	—		—						
bit 15 bit													
U-0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
—	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN						
bit 7							bit 0						
													
Legend:													
R = Readab	ole bit	W = Writable	oit	U = Unimplemented bit, read as '0'									
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown						
bit 15-7	Unimplemen	ted: Read as ')' . =	20.01									
bit 6	PCIE: Stop C	ondition Interru	pt Enable bit (I	I ² C Slave mode	e only).								
	1 = Enables II0 = Stop dete	ction interrupts	are disabled	condition									
bit 5	SCIE: Start C	ondition Interru	pt Enable bit (I ² C Slave mode	e onlv)								
	1 = Enables i	nterrupt on dete	ection of Start of	or Restart cond	itions								
0 = Start detection interrupts are disabled													
bit 4	BOEN: Buffer	r Overwrite Ena	ble bit (I ² C Sla	ave mode only)									
	1 = The I2Cx	RCV register b	it is updated a	and an ACK is g	generated for a	received addr	ess/data byte,						
	ignoring i 0 = The I2Cx	ne state of the RCV register b	it is only updat	ed when I2CO	= 0 V is clear								
bit 3	SDAHT: SDA	x Hold Time Se	election bit										
	1 = Minimum	of 300 ns hold	time on SDAx	after the falling	edge of SCLx								
	0 = Minimum	of 100 ns hold	time on SDAx	after the falling	edge of SCLx								
bit 2	SBCDE: Slav	e Mode Bus Co	ollision Detect	Enable bit (I ² C	Slave mode or	ıly)							
	If, on the risir	ig edge of SCL	x, SDAx is sa	mpled low whe	n the module is	s outputting a l	high state, the						
	BCL bit is set	and the bus go	Des Idle. I his I	Detection mode	e is only valid d	uring data and	ACK transmit						
1 = Slave bus collision interrupts are enabled													
	0 = Slave bus	collision interr	upts are disabl	ed									
bit 1	AHEN: Address Hold Enable bit (I ² C Slave mode only)												
	1 = Following	the 8 th falling	edge of SCL	x for a matching	ng received ad	dress byte; th	e SCLREL bit						
	0 = Address	holding is disab	e cleared and t bled	ne SCLX WIII De	e neia iow								
bit 0	DHEN: Data I	Hold Enable bit	(I ² C Slave mo	de only)									
5	1 = Following	the 8 th falling e	edge of SCLx f	or a received d	ata byte; slave l	hardware clear	s the SCLREL						
	bit (I2Cx	bit (I2CxCON1<12>) and the SCLx is held low											
	0 = Data holo	ding is disabled											

REGISTER 19-2: I2CxCON2: I2Cx CONTROL REGISTER 2

NOTES:

REGISTER 20-2: SENTxSTAT: SENTx STATUS REGISTER (CONTINUED)

bit 0 SYNCTXEN: SENTx Synchronization Period Status/Transmit Enable bit⁽¹⁾ Module in Receive Mode (RCVEN = 1):

1 = A valid synchronization period was detected; the module is receiving nibble data

0 = No synchronization period has been detected; the module is not receiving nibble data

Module in Asynchronous Transmit Mode (RCVEN = 0, TXM = 0):

The bit always reads as '1' when the module is enabled, indicating the module transmits SENTx data frames continuously. The bit reads '0' when the module is disabled.

Module in Synchronous Transmit Mode (RCVEN = 0, TXM = 1):

1 = The module is transmitting a SENTx data frame

- 0 = The module is not transmitting a data frame, user software may set SYNCTXEN to start another data frame transmission
- Note 1: In Receive mode (RCVEN = 1), the SYNCTXEN bit is read-only.

22.0 CONTROLLER AREA NETWORK (CAN) MODULE (dsPIC33EVXXXGM10X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Enhanced Controller Area Network (ECAN™)" (DS70353) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

22.1 Overview

The Controller Area Network (CAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/ protocol was designed to allow communications within noisy environments. The dsPIC33EVXXXGM10X devices contain one CAN module.

The CAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details. The CAN module features are as follows:

- Implementation of the CAN Protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- · Standard and Extended Data Frames
- 0 to 8-Byte Data Length
- Programmable Bit Rate, up to 1 Mbit/sec
- Automatic Response to Remote Transmission Requests
- Up to Eight Transmit Buffers with Application Specified Prioritization and Abort Capability (each buffer can contain up to 8 bytes of data)
- Up to 32 Receive Buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 Full (Standard/Extended Identifier) Acceptance Filters
- Three Full Acceptance Filter Masks
- DeviceNet[™] Addressing Support
- Programmable Wake-up Functionality with Integrated Low-Pass Filter
- Programmable Loopback Mode Supports Self-Test Operation
- Signaling through Interrupt Capabilities for All CAN Receiver and Transmitter Error States
- · Programmable Clock Source
- Programmable Link to Input Capture 2 (IC2) module for Timestamping and Network Synchronization
- · Low-Power Sleep and Idle Modes

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors, and then matched against filters to see if it should be received and stored in one of the Receive registers.

Figure 22-1 shows a block diagram of the CANx module.

REGISTER 25-5: CMxMSKCON: COMPARATOR x MASK GATING CONTROL REGISTER (CONTINUED)

- bit 3 ABEN: AND Gate B Input Enable bit
 - 1 = MBI is connected to AND gate
 - 0 = MBI is not connected to AND gate
- bit 2 ABNEN: AND Gate B Input Inverted Enable bit 1 = Inverted MBI is connected to AND gate
 - 0 = Inverted MBI is not connected to AND gate
- bit 1 AAEN: AND Gate A Input Enable bit 1 = MAI is connected to AND gate 0 = MAI is not connected to AND gate
- bit 0 AANEN: AND Gate A Input Inverted Enable bit
 - 1 = Inverted MAI is connected to AND gate
 - 0 = Inverted MAI is not connected to AND gate

File Name	Address	Device Memory Size (Kbytes)	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
FDMTINTVL	0057AC	32																				
00AB	00ABAC	64											45.0									
	0157AC	128	_																			
1	02ABAC	256																				
FDMTINTVH	0057B0	32																				
	00ABB0	64																				
	0157B0	128			DMTIVT<31:16>																	
	02ABB0	256																				
FDMTCNTL	0057B4	32																				
	00ABB4	64																				
	0157B4	128			DMTCNT<15:0>																	
	02ABB4	256																				
FDMTCNTH	0057B8	32																				
	00AB8	64										DUTOUT	.04.40									
	0157B8	128	—									DMICNI<	<31:16>									
	02ABB8	256																				
FDMT	0057BC	32																				
	00ABBC	64																				DUTEN
	0157BC	128					_	_	_	_	-	_	—	_	_	_	_	_	—	_	—	DMIEN
	02ABBC	256																				
FDEVOPT	0057C0	32																				
	00ABC0	64															- ·(2)					
01	0157C0	128	_	_	_	_	_	-	_	_	_	_	_	_	_	ALTI2C1	Reserved ⁽²⁾	_	PWMLOCK			
	02ABC0	256																				
FALTREG	0057C4	32																				
	00ABC4	64								_	-	_	CTXT2<2:0>			_						
	0157C4	128	—		—		—	-	-								(CIXI1<2:0>				
02ABC		256																				

CONFIGURATION WORD DECISTED MAD (CONTINUED) ~ ~ 4

Legend: — = unimplemented, read as '1'.

Note 1: This bit is reserved and must be programmed as '0'.
2: This bit is reserved and must be programmed as '1'.

TABLE 30-22: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING REQUIREMENTS

AC CH	ARACTERIS	TICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$									
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions					
SY00	Τρυ	Power-up Period	—	400	600	μs						
SY10	Tost	Oscillator Start-up Time	_	1024 Tos C	—	—	Tosc = OSC1 period					
SY11	TPWRT	Power-up Timer Period	_	1	—	ms	Using LPRC parameters indicated in F21a/F21b (see Table 30-20)					
SY12	Twdt	Watchdog Timer Time-out Period	0.8	_	1.2	ms	WDTPRE = 0, WDTPS<3:0> = 0000, using LPRC tolerances indicated in F21a/F21b (see Table 30-20) at +85°C					
			3.2		4.8	ms	WDTPRE = 1, WDTPS<3:0> = 0000, using LPRC tolerances indicated in F21a/F21b (see Table 30-20) at +85°C					
SY13	Tioz	I/O H <u>igh-Im</u> pedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs						
SY20	TMCLR	MCLR Pulse Width (low)	2		_	μs						
SY30	TBOR	BOR Pulse Width (low)	1	—	—	ms						
SY35	TFSCM	Fail-Safe Clock Monitor Delay	-	500	900	μs	-40°C to +85°C					
SY36	TVREG	Voltage Regulator Standby-to-Active mode Transition Time	_	_	30	μs						
SY37	TOSCDFRC	FRC Oscillator Start-up Delay	46	48	54	μs						
SY38	Toscolprc	LPRC Oscillator Start-up Delay	—	—	70	μs						

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

FIGURE 30-24: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-50: OP AMP/COMPARATOR x SPECIFICATIONS

рс сн	ARACTERIS	STICS	Standard Op (unless othe Operating ter	erating rwise st	Conditions (s ated) $e -40^{\circ}C \le TA$	onditions (see Note 3): 4.5V to 5.5V (red) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
					$-40^{\circ}C \le TA$	-40°C \leq TA \leq +125°C for Extended							
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions						
		Con	nparator AC C	haracte	ristics								
CM10	Tresp	Response Time	—	19	80	ns	V+ input step of 100 mV, V- input held at VDD/2						
CM11	Тмс2о∨	Comparator Mode Change to Output Valid	—	_	10	μs							
Comparator DC Characteristics													
CM30	VOFFSET	Comparator Offset Voltage	-80	±60	80	mV							
CM31	VHYST	Input Hysteresis Voltage	—	30	_	mV							
CM32	TRISE/ TFALL	Comparator Output Rise/Fall Time	—	20	—	ns	1 pF load capacitance on input						
CM33	Vgain	Open-Loop Voltage Gain	—	90	—	db							
CM34	VICM	Input Common-Mode Voltage	AVss	—	AVDD	V							
	Op Amp AC Characteristics												
CM20	SR	Slew Rate	—	9	—	V/µs	10 pF load						
CM21	Рм	Phase Margin	—	35	_	°C	G = 100V/V, 10 pF load						
CM22	Gм	Gain Margin	—	20	_	db	G = 100V/V, 10 pF load						
CM23	GBW	Gain Bandwidth	—	10		MHz	10 pF load						
		O	o Amp DC Cha	aracteris	stics								
CM40	VCMR	Common-Mode Input Voltage Range	AVss	-	AVDD	V							
CM41	CMRR	Common-Mode Rejection Ratio	—	45	_	db	VCM = AVDD/2						
CM42	VOFFSET	Op Amp Offset Voltage	-50	±6	50	mV							
CM43	Vgain	Open-Loop Voltage Gain	—	90		db							
CM44	los	Input Offset Current	—	-	_	_	See pad leakage currents in Table 30-10						
CM45	Ів	Input Bias Current	—	-	_	_	See pad leakage currents in Table 30-10						
CM46	Ιουτ	Output Current	— — 420 μA W Rf			With minimum value of RFEEDBACK (CM48)							
CM48	RFEEDBACK	Feedback Resistance Value	8	_		kΩ	Note 2						
CM49a	Vout	Output Voltage	AVss + 0.075	_	AVDD - 0.075	V	Ιουτ = 420 μΑ						

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

2: Resistances can vary by ±10% between op amps.

3: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

FIGURE 32-29: TYPICAL VIH/VIL vs. TEMPERATURE (GENERAL PURPOSE I/Os)

32.10 Voltage Output Low (VOL) – Voltage Output High (VOH)

FIGURE 32-31: TYPICAL VOH 4x DRIVER PINS vs. IOH (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

FIGURE 32-32: TYPICAL Vol 8x DRIVER PINS vs. Iol (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

dsPIC33EVXXXGM00X/10X FAMILY

