

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev32gm002t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (DS70000600) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EVXXXGM00X/10X family interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33EVXXXGM00X/10X CPU. The Interrupt Vector Table (IVT) provides 246 interrupt sources (unused sources are reserved for future use) that can be programmed with different priority levels.

The interrupt controller has the following features:

- · Interrupt Vector Table with up to 246 Vectors
- Alternate Interrupt Vector Table (AIVT)
- Up to Eight Processor Exceptions and Software Traps
- Seven User-Selectable Priority Levels
- Interrupt Vector Table (IVT) with a Unique Vector for Each Interrupt or Exception Source
- Fixed Priority within a Specified User Priority Level
- · Fixed Interrupt Entry and Return Latencies
- Software can Generate any Peripheral Interrupt
- Alternate Interrupt Vector Table (AIVT) is available if Boot Security is Enabled and AIVTEN = 1

7.1 Interrupt Vector Table

The dsPIC33EVXXXGM00X/10X family IVT, shown in Figure 7-2, resides in program memory, starting at location, 00004h. The IVT contains seven nonmaskable trap vectors and up to 187 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

7.2 Alternate Interrupt Vector Table

The Alternate Interrupt Vector Table (AIVT), shown in Figure 7-1, is available if the Boot Segment (BS) is defined, the AIVTEN bit is set in the INTCON2 register and if the AIVTDIS Configuration bit is set to '1'. The AIVT begins at the start of the last page of the Boot Segment.

REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	_	—		_	—	—	_	
bit 15		•	•	•		•	bit 8	
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1	
	—	—	_		LSTCH	1<3:0>		
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read				as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	
bit 15-4	Unimplemen	ted: Read as '	0'					
bit 3-0	LSTCH<3:0>	: Last DMAC C	hannel Active	e Status bits				
	1111 = No D	MA transfer ha	s occurred sin	ice system Res	set			
	1110 = Rese r	rved						
	•							
	•							
	0100 = Reser	rved						
	0011 = Last c	lata transfer w	as handled by	Channel 3				
	0010 = Last c	lata transfer w	as handled by	Channel 2				
	0001 = Last c	data transfer wa	as handled by	Channel 1				
	0000 = Last data transfer was handled by Channel 0							

9.1 CPU Clocking System

The dsPIC33EVXXXGM00X/10X family of devices provides the following six system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase-Locked Loop (PLL)
- FRC Oscillator with Postscaler
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Low-Power RC (LPRC) Oscillator

For instruction execution speed or device operating frequency, FCY, see Equation 9-1.

EQUATION 9-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

Figure 9-2 provides the block diagram of the PLL module.

Equation 9-2 provides the relationship between input frequency (FIN) and output frequency (FOSC).

Equation 9-3 provides the relationship between input frequency (FIN) and VCO frequency (FSYS).

EQUATION 9-2: Fosc CALCULATION

$$FOSC = FIN \times \left(\frac{M}{N1 \times N2}\right) = FIN \times \left(\frac{(PLLDIV < 8:0 > + 2)}{(PLLPRE < 4:0 > + 2) \times 2(PLLPOST < 1:0 > + 1)}\right)$$

Where: *N*1 = *PLLPRE*<4:0> + 2 *N*2 = 2 x (*PLLPOST*<1:0> + 1) *M* = *PLLDIV*<8:0> + 2

EQUATION 9-3: Fvco CALCULATION

$$FSYS = FIN \times \left(\frac{M}{N1}\right) = FIN \times \left(\frac{(PLLDIV < 8:0 > + 2)}{(PLLPRE < 4:0 > + 2)}\right)$$

— vit 15	—	RP70R5	RP70R4	RP70R3	RP70R2	RP70R1	RP70R0
oit 15							1.11.0
							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP69R5	RP69R4	RP69R3	RP69R2	RP69R1	RP69R0
oit 7							bit 0
U-0 — vit 7	U-0	R/W-0 RP69R5	R/W-0 RP69R4	R/W-0 RP69R3	R/W-0 RP69R2	R/W-0 RP69R1	R/ RP

REGISTER 11-26: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP70R<5:0>: Peripheral Output Function is Assigned to RP70 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP69R<5:0>: Peripheral Output Function is Assigned to RP69 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: This register is present in dsPIC33EVXXXGM004/104/006/106 devices only.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP118R5	RP118R4	RP118R3	RP118R2	RP118R1	RP118R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	RP97R5	RP97R4	RP97R3	RP97R2	RP97R1	RP97R0
bit 7							bit 0

REGISTER 11-27: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8**RP118R<5:0>:** Peripheral Output Function is Assigned to RP118 Output Pin bits
(see Table 11-3 for peripheral function numbers)bit 7-6**Unimplemented:** Read as '0'

bit 5-0 **RP97R<5:0>:** Peripheral Output Function is Assigned to RP97 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: This register is present in dsPIC33EVXXXGM004/106 devices only.

13.1 Timer2/3 and Timer4/5 Control Registers

REGISTER 13-1: TxCON (T2CON AND T4CON) CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
TON	_	TSIDL	_	_	—		_		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0		
—	TGATE	TCKPS1	TCKPS0	T32	—	TCS ⁽¹⁾	—		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own		
bit 15	bit 15 TON: Timerx On bit $ \frac{\text{When T32 = 1:}}{1 = \text{Starts 32-bit Timerx/y}} $ 0 = Stops 32-bit Timerx/y $ \frac{\text{When T32 = 0:}}{1 = \text{Starts 16-bit Timerx}} $ 0 = Stops 16 bit Timerx								
bit 14	Unimplemented: Read as '0'								
bit 13	TSIDL: Timerx Stop in Idle Mode bit								
	 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode 								
bit 12-7	Unimplemented: Read as '0'								
bit 6	TGATE: Time	rx Gated Time	Accumulation	Enable bit					
	When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled								
bit 5-4	TCKPS<1:0>	: Timerx Input (Clock Prescal	e Select bits					
	11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1								
bit 3	T32: 32-Bit Timer Mode Select bit								
	 1 = Timerx and Timery form a single 32-bit timer 0 = Timerx and Timery act as two 16-bit timers 								
bit 2	Unimplement	ted: Read as ')'						
bit 1	TCS: Timerx (Clock Source S	Select bit ⁽¹⁾						
	1 = External c 0 = Internal cl	lock is from pir ock (FP)	n, TxCK (on th	ne rising edge)					
bit 0	Unimplemented: Read as '0'								

Note 1: The TxCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_	_	_		_	_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STEP	2<7:0>			
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at POR (1' = Bit is set			'0' = Bit is cle	eared	x = Bit is unki	nown	
bit 15-8	Unimplemen	ted: Read as	0'				
bit 7-0	STEP2<7:0>	: DMT Clear Ti	mer bits				

REGISTER 14-3: DMTCLR: DEADMAN TIMER CLEAR REGISTER

00001000 = Clears STEP1<7:0>, STEP2<7:0> and the Deadman Timer if preceded by the correct loading of the STEP1<7:0> bits in the correct sequence. The write to these bits may be verified by reading the DMTCNTL/H register and observing the counter being reset.

All Other

Write Patterns = Sets the BAD2 bit; the value of STEP1<7:0> will remain unchanged and the new value being written to STEP2<7:0> will be captured. These bits are cleared when a DMT Reset event occurs.

REGISTER 15-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	IC32 ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0, HS	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG ⁽²⁾	TRIGSTAT ⁽³⁾	_	SYNCSEL4(4)	SYNCSEL3(4)	SYNCSEL2(4)	SYNCSEL1(4)	SYNCSEL0(4)
bit 7							bit 0

Legend:	HS = Hardware Settable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-9	Unimplemented: Read as '0'
bit 8	IC32: Input Capture x 32-Bit Timer Mode Select bit (Cascade mode) ⁽¹⁾
	 1 = Odd ICx and even ICx form a single 32-bit input capture module 0 = Cascade module operation is disabled
bit 7	ICTRIG: Input Capture x Trigger Operation Select bit ⁽²⁾
	 1 = Input source is used to trigger the input capture timer (Trigger mode) 0 = Input source is used to synchronize the input capture timer to the timer of another module (Synchronization mode)
bit 6	TRIGSTAT: Timer Trigger Status bit ⁽³⁾
	 1 = ICxTMR has been triggered and is running 0 = ICxTMR has not been triggered and is being held clear
bit 5	Unimplemented: Read as '0'

- **Note 1:** The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by the SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own sync or trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - 6: When the source ICx timer rolls over, then in the next clock cycle, trigger or synchronization occurs.

REGISTER 16-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits
 - 111 = Center-Aligned PWM mode: Output sets high when OCxTMR = OCxR and sets low when OCxTMR = OCxRS⁽¹⁾
 - 110 = Edge-Aligned PWM mode: Output sets high when OCxTMR = 0 and sets low when OCxTMR = $OCxR^{(1)}$
 - 101 = Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare mode: Compare event with OCxR, continuously toggles OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high, compare event with OCxR, forces OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low, compare event with OCxR, forces OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

NOTES:

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	_	—	—	—	—	—			
bit 15							bit 8			
R-0	R-0	R-0	R-0	R-0	R/C-0	R-0	R/W-0, HC			
PAUSE	NIB2	NIB1	NIB0	CRCERR	FRMERR	RXIDLE	SYNCTXEN ⁽¹⁾			
bit 7										
Legend: C = Clearable bit HC = Hardware Clearable bit										
R = Readable	bit	W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	Iown			
bit 15-8	Unimplemen	ted: Read as '	0'							
bit 7	PAUSE: Paus	se Period Statu	is bit							
	1 = The modu	ule is transmitti	ng/receiving a	pause period						
	0 = The modu	ule is not transr	mitting/receivir	ng a pause pei	riod					
bit 6-4	NIB<2:0>: Ni	bble Status bit								
	Module in Tra	nsmit Mode (R	<u> CVEN = 0):</u>							
	111 = Module	e is transmitting	a CRC nibble	9						
	101 = Module	e is transmitting	Data Nibble	5						
	100 = Module	e is transmitting	Data Nibble	4						
	011 = Module	e is transmitting	g Data Nibble 3	3						
	010 = Module	e is transmitting	g Data Nibble 2	2						
	001 = Module	e is transmitting	j Dala Nibble	I le or nause ne	eriod or is not t	ransmitting				
	Module in Re	ceive Mode (R	CVEN = 1)	ie of pause pe		ransmitting				
	111 = Module	e is receiving a	CRC nibble of	r was receiving	g this nibble wh	nen an error oc	curred			
	110 = Module	e is receiving D	ata Nibble 6 o	r was receivin	g this nibble wl	nen an error oo	curred			
	101 = Module	e is receiving D	ata Nibble 5 o	r was receivin	g this nibble wi	nen an error oc	curred			
	100 = Module	e is receiving D	ata Nibble 4 0 ata Nibble 3 o	or was receivin	g this nibble wi	nen an error oc	curred			
	010 = Module	e is receiving D	ata Nibble 2 o	r was receivin	g this nibble wi	hen an error og	curred			
	001 = Module	e is receiving D	ata Nibble 1 o	r was receivin	g this nibble wi	nen an error oo	curred			
	000 = Module	e is receiving a	status nibble	or waiting for S	Sync					
bit 3	CRCERR: CF	RC Status bit (F	Receive mode	only)						
	1 = A CRC er	ror occurred fo	r the 1-6 data	nibbles in SEI	NTxDATH/L					
	0 = A CRC er	ror has not occ	curred							
bit 2 FRMERR: Framing Error Status bit (Receive mode only)										
	\perp = A data nit	ble was receiv	ed with less th	han 12 tick per	loas or greater	than 27 tick pe	eriods			
bit 1		Ty Possiver L	dla Statua hit (Pocoivo modo						
	1 - The SEN	Ty data bus ba	s boon Idle (bi	ind) for a porio		X<15.0> or are	ator			
	0 = The SEN	Tx data bus is	not Idle	ign ior a penu			ater			
				N 1 1 1 1 1						

REGISTER 20-2: SENTxSTAT: SENTx STATUS REGISTER

Note 1: In Receive mode (RCVEN = 1), the SYNCTXEN bit is read-only.

23.1 CTMU Control Registers

REGISTER 23-1: CTMUCON1: CTMU CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CTMUE	N _	CTMUSIDL	TGEN ⁽²⁾	EDGEN	EDGSEQEN	IDISSEN ⁽¹⁾	CTTRIG			
bit 15	15 bit 8									
U-0	U-0 U-0 U-0 U-0 U-0									
bit 7	bit 7 bit 0									
Legend:										
R = Reada	able bit	W = Writable t	bit	U = Unimpler	nented bit, read	as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own			
hit 15	CTMUEN.	CTMU Enchia bit								
DIL 15										
	0 = Module	e is disabled								
bit 14	Unimpleme	Unimplemented: Read as '0'								
bit 13	CTMUSIDL	CTMUSIDL: CTMU Stop in Idle Mode bit								
	1 = Discon	tinues module op	eration when t	he device ente	rs Idle mode					
		0 = Continues module operation in Idle mode								
bit 12	TGEN: Tim	e Generation Ena	ble bit ⁽²⁾							
	1 = Edge d 0 = Edge d	1 = Edge delay generation is enabled $0 = Edge delay generation is disabled$								
bit 11	EDGEN: E	dge Enable bit								
	1 = Hardware modules are used to trigger edges (TMRx, CTEDx, etc.)									
	0 = Softwa	0 = Software is used to trigger edges (manual set of EDGxSTAT)								
bit 10	EDGSEQE	N: Edge Sequenc	e Enable bit							
	1 = Edge 1	event must occu	r before Edge	2 event can oc	cur					
hit 9		U = NO eage sequence is needed								
bit b	1 = Analog	current source of	utput is around	led						
	0 = Analog	current source of	utput is not gro	ounded						
bit 8	CTTRIG: A	DC Trigger Contro	ol bit							
	1 = CTMU	triggers the ADC	start of conver	rsion						
h:+ 7 0	0 = CIMU	does not trigger t	he ADC start c	of conversion						
U-7 JIU	Unimpleme	entea: Read as 'd	I							
Note 1:	The ADC modu	le Sample-and-H	old (S&H) cap	acitor is not au	tomatically disc	harged betwee	n sample/			
	conversion cycl ADC capacitor	onversion cycles. Any software using the ADC as part of a capacitance measurement must discharge the DC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this func-								

capacitor array.
If the TGEN bit is set to '1', then the CMP1 module should be selected as the Edge 2 source in the EDG2SELx bits field; otherwise, the module will not function.

tion. The ADC must be sampling while the IDISSEN bit is active to connect the discharge sink to the

REGISTER 24-2: ADxCON2: ADCx CONTROL REGISTER 2 (CONTINUED)

bit 1	 BUFM: Buffer Fill Mode Select bit 1 = Starts buffer filling the first half of the buffer on the first interrupt and the second half of the buffer on the next interrupt 0 = Always starts filling the buffer from the Start address
bit 0	 ALTS: Alternate Input Sample Mode Select bit 1 = Uses channel input selects for Sample MUX A on the first sample and Sample MUX B on the next sample 0 = Always uses channel input selects for Sample MUX A

Note 1: The ADCx VREFH Input is connected to AVDD and the VREFL input is connected to AVss.

REGISTER 24-7: ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH⁽²⁾ (CONTINUED)

- bit 1 CSS17: ADCx Input Scan Selection bit 1 = Selects ANx for input scan
 - 0 = Skips ANx for input scan
- bit 0 CSS16: ADCx Input Scan Selection bit
 - 1 = Selects ANx for input scan
 - 0 = Skips ANx for input scan
- **Note 1:** If the op amp is selected (OPAEN bit (CMxCON<10>) = 1), the OAx input is used; otherwise, the ANx input is used.
 - 2: All bits in this register can be selected by the user application. However, inputs selected for scan without a corresponding input on the device convert VREFL.

REGISTER 24-6. ADXCSSL: ADCX INPUT SCAN SELECT REGISTER LOW	EGISTER 24-8:	ADxCSSL: ADCx INPUT SCAN SELECT REGISTER LOW ^(1,2)
---	---------------	---

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS	<7:0>			
bit 7					bit 0		
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1'		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0 CSS<15:0>: ADCx Input Scan Selection bits

1 = Selects ANx for input scan

0 = Skips ANx for input scan

Note 1: On devices with less than 16 analog inputs, all bits in this register can be selected by the user application. However, inputs selected for scan without a corresponding input on the device convert VREFL.

2: CSSx = ANx, where 'x' = 0-5.

Bit Field	Register	Description			
BWRP	FSEC	Boot Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected			
BSS<1:0>	FSEC	Boot Segment Code Flash Protection Level bits 11 = No protection (other than BWRP write protection) 10 = Standard security 0x = High security			
BSEN	FSEC	Boot Segment Control bit 1 = No Boot Segment 0 = Boot Segment size is determined by BSLIM<12:0>			
GWRP	FSEC	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected			
GSS<1:0>	FSEC	General Segment Code Flash Protection Level bits 11 = No protection (other than GWRP write protection) 10 = Standard security 0x = High security			
CWRP	FSEC	Configuration Segment Write-Protect bit 1 = Configuration Segment is not write-protected 0 = Configuration Segment is write-protected			
CSS<2:0>	FSEC	Configuration Segment Code Flash Protection Level bits 111 = No protection (other than CWRP write protection) 110 = Standard security 10x = Enhanced security 0xx = High security			
AIVTDIS	FSEC	Alternate Interrupt Vector Table Disable bit 1 = Disables AIVT 0 = Enables AIVT			
BSLIM<12:0>	FBSLIM	Boot Segment Code Flash Page Address Limit bits Contains the page address of the first active General Segment page. The value to be programmed is the inverted page address, such that programming additional '0's can only increase the Boot Segment size. For example, $0 \times 1 FFD = 2$ pages or 1024 instruction words.			
FNOSC<2:0>	FOSCSEL	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) Oscillator with Postscaler 110 = Internal Fast RC (FRC) Oscillator with Divide-by-16 101 = LPRC Oscillator 100 = Reserved 011 = Primary (XT, HS, EC) Oscillator with PLL 010 = Primary (XT, HS, EC) Oscillator 001 = Internal Fast RC (FRC) Oscillator with PLL 000 = FRC Oscillator			
IESO	FOSCSEL	 Two-Speed Oscillator Start-up Enable bit 1 = Starts up device with FRC, then automatically switches to the user-selected oscillator source when ready 0 = Starts up device with user-selected oscillator source 			
POSCMD<1:0>	FOSC	SC Primary Oscillator Mode Select bits 11 = Primary Oscillator is disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode			

TABLE 27-2: dsPIC33EVXXXGM00X/10X CONFIGURATION BITS DESCRIPTION

Field	Description					
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}					
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions \in {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}					
Wn	One of 16 Working registers ∈ {W0W15}					
Wnd	One of 16 Destination Working registers ∈ {W0W15}					
Wns	One of 16 Source Working registers ∈ {W0W15}					
WREG	W0 (Working register used in file register instructions)					
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }					
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }					
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}					
Wxd	X Data Space Prefetch Destination register for DSP instructions \in {W4W7}					
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}					
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}					

TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

FIGURE 30-17: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

FIGURE 30-23: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-41:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard (unless o Operating	Operatin otherwise temperat	ig Condit stated) ture -40° -40°	i ons: 4.5 °C ≤ TA ≤ °C ≤ TA ≤	V to 5.5V +85°C for Industrial +125°C for Extended
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Units Condition				
SP10	FscP	Maximum SCK1 Frequency	—	—	25	MHz	-40°C to +125°C and see Note 3
SP20	TscF	SCK1 Output Fall Time	—	_		ns	See Parameter DO32 and Note 4
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDO1 Data Output Fall Time	—	—		ns	See Parameter DO32 and Note 4
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	20	—	—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 33-19: TYPICAL LPRC ACCURACY vs. TEMPERATURE (5.5V VDD)

33.7 Leakage Current

