

Welcome to E-XFL.COM

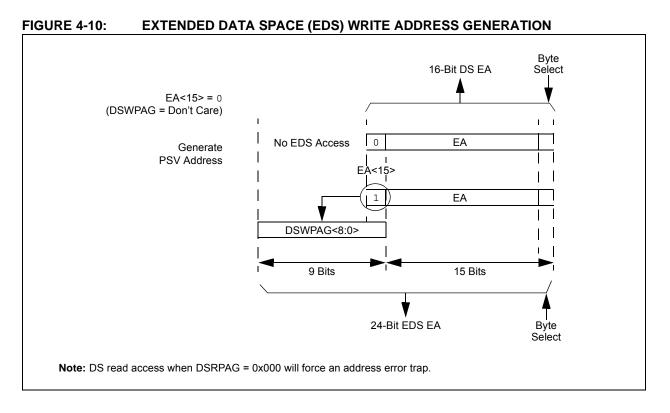
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI


Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev32gm004-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-3: CTXTSTAT: CPU W REGISTER CONTEXT STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
_			—	_	CCTXI2	CCTXI1	CCTXI0
oit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R-0	R/W-0	R/W-0
_			_	—	MCTXI2	MCTXI1	MCTXI0
bit 7							bit C
Legend:							
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7-3	001 = Alterna 000 = Default	ed te Working Re te Working Re register set is	gister Set 1 is currently in us	currently in us			
	-	ted: Read as '					
bit 2-0	111 = Reserv • • 011 = Reserv 010 = Alterna	ed te Working Re te Working Re	gister Set 2 w	as most recen as most recen	tly manually se tly manually se		

The paged memory scheme provides access to multiple 32-Kbyte windows in the EDS and PSV memory. The Data Space Page registers, DSxPAG, in combination with the upper half of the Data Space address, can provide up to 16 Mbytes of additional address space in the EDS and 8 Mbytes (DSRPAG only) of PSV address space. The paged data memory space is shown in Figure 4-11.

The Program Space (PS) can be accessed with a DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG. Writes to PS are not supported, therefore, the DSWPAG is dedicated to DS, including EDS. The Data Space and EDS can be read from and written to using DSRPAG and DSWPAG, respectively.

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset
 - Illegal Address Mode Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this device data sheet for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR and BOR bits (RCON<1:0>) that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in the other sections of this device data sheet.

Note: The status bits in the RCON register should be cleared after they are read. Therefore, the next RCON register value after a device Reset is meaningful.

Note: In all types of Resets, to select the device clock source, the contents of OSCCON are initialized from the FNOSCx Configuration bits in the FOSCSEL Configuration register.

U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0		
	—		SENT2MD	SENT1MD	_	_	DMTMD		
bit 15	·		•	•			bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—		—	—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
-n = Value at	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown					
bit 15-13	Unimplemen	ted: Read as '	כי						
bit 12	SENT2MD: S	ENT2 Module	Disable bit						
		odule is disable							
		odule is enable							
bit 11		ENT1 Module							
		odule is disabl							
		odule is enable							
bit 10-9	-	ted: Read as '							
bit 8	DMTMD: Dea	idman Timer D	isable bit						
		Timer is disab							
		Timer is enabl							
bit 7-0	Unimplemen	ted: Read as '	כ'						

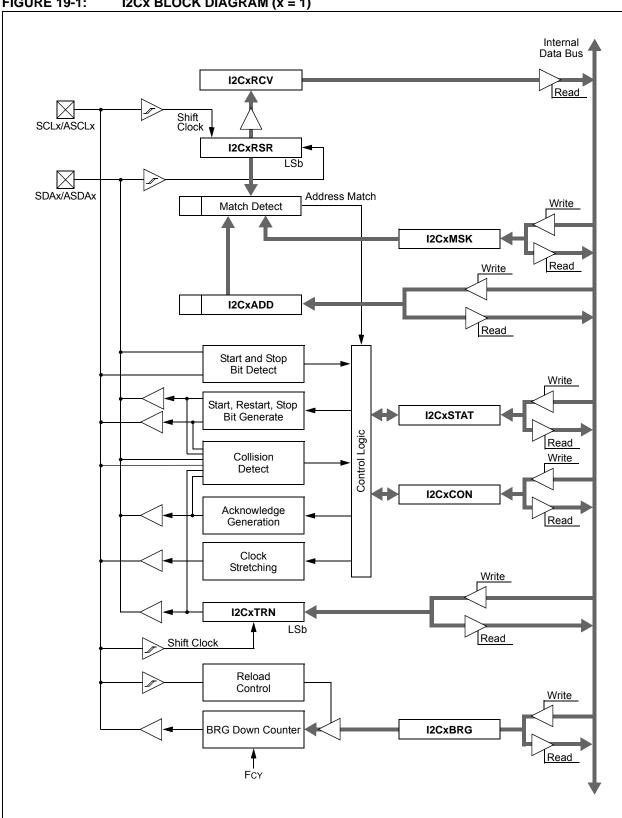
REGISTER 10-7: PMD8: PERIPHERAL MODULE DISABLE CONTROL REGISTER 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STEP	2<7:0>				
bit 7							bit 0	
Legend:								
R = Readable b	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown		
bit 15-8	Unimplemen	ted: Read as	0'					
bit 7-0	bit 7-0 STEP2<7:0>: DMT Clear Timer bits							
-n = Value at P bit 15-8	OR Unimplemen	'1' = Bit is set	0'				nown	

REGISTER 14-3: DMTCLR: DEADMAN TIMER CLEAR REGISTER

00001000 = Clears STEP1<7:0>, STEP2<7:0> and the Deadman Timer if preceded by the correct loading of the STEP1<7:0> bits in the correct sequence. The write to these bits may be verified by reading the DMTCNTL/H register and observing the counter being reset.

All Other


Write Patterns = Sets the BAD2 bit; the value of STEP1<7:0> will remain unchanged and the new value being written to STEP2<7:0> will be captured. These bits are cleared when a DMT Reset event occurs.

REGISTER 15-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0	SYNCSEL<4:0>: Input Source Select for Synchronization and Trigger Operation bits ⁽⁴⁾
	11111 = Reserved
	11110 = Reserved
	1110 = Reserved
	11100 = CTMU trigger is the source for the capture timer synchronization
	11011 = ADC1 interrupt is the source for the capture timer synchronization ⁽⁵⁾
	11010 = Analog Comparator 3 is the source for the capture timer synchronization ⁽⁵⁾
	11001 = Analog Comparator 2 is the source for the capture timer synchronization ⁽⁵⁾
	11000 = Analog Comparator 1 is the source for the capture timer synchronization ⁽⁵⁾
	10111 = Analog Comparator 5 is the source for the capture timer synchronization ⁽⁵⁾
	10110 = Analog Comparator 4 is the source for the capture timer synchronization ⁽⁵⁾
	10101 = Reserved
	10100 = Reserved
	10011 = Input Capture 4 interrupt is the source for the capture timer synchronization
	10010 = Input Capture 3 interrupt is the source for the capture timer synchronization
	10001 = Input Capture 2 interrupt is the source for the capture timer synchronization
	10000 = Input Capture 1 interrupt is the source for the capture timer synchronization
	01111 = GP Timer5 is the source for the capture timer synchronization
	01110 = GP Timer4 is the source for the capture timer synchronization
	01101 = GP Timer3 is the source for the capture timer synchronization
	01100 = GP Timer2 is the source for the capture timer synchronization
	01011 = GP Timer1 is the source for the capture timer synchronization
	01010 = Reserved
	01001 = Reserved
	01000 = Input Capture 4 is the source for the capture timer synchronization ⁽⁶⁾
	00111 = Input Capture 3 is the source for the capture timer synchronization ⁽⁶⁾ 00110 = Input Capture 2 is the source for the capture timer synchronization ⁽⁶⁾
	00110 = Input Capture 2 is the source for the capture timer synchronization ⁽⁶⁾
	00100 = Output Compare 4 is the source for the capture timer synchronization
	00011 = Output Compare 3 is the source for the capture timer synchronization
	00011 = Output Compare 2 is the source for the capture timer synchronization
	00001 = Output Compare 1 is the source for the capture timer synchronization
	00000 = Reserved
Note 1:	The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.

- **Note 1:** The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by the SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own sync or trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - 6: When the source ICx timer rolls over, then in the next clock cycle, trigger or synchronization occurs.

dsPIC33EVXXXGM00X/10X FAMILY

NOTES:

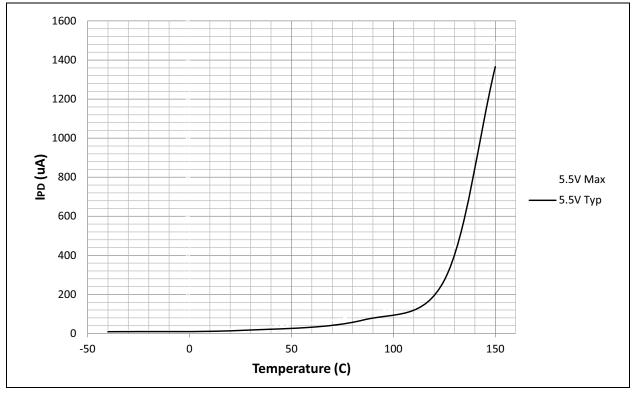
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1 ⁽²⁾	IRNG0 ⁽²⁾
bit 15	- 1			1	1		bit
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
	000001 = Mir 000000 = No 111111 = Mir 111110 = Mir •	nimum positive minal current o nimum negativ nimum negativ	change from r output specified e change from e change from	nominal current nominal current d by IRNG<1:0> nominal curren nominal curren	+ 2% t – 2% t – 4%		
				n nominal currer n nominal currer			
bit 9-8	11 = 100 × Ba 10 = 10 × Bas 01 = Base Cu 00 = 1000 × B	ase Current se Current Irrent Level Base Current ⁽¹)		bits ⁽²⁾			
bit 7-0	Unimplemen	ted: Read as '	0'				
	This current range Refer to the CTML				-		

REGISTER 23-3: CTMUICON: CTMU CURRENT CONTROL REGISTER⁽³⁾

for the current range selection values.3: Current sources are not generated when 12-Bit ADC mode is chosen. Current sources are active only when 10-Bit ADC mode is chosen.

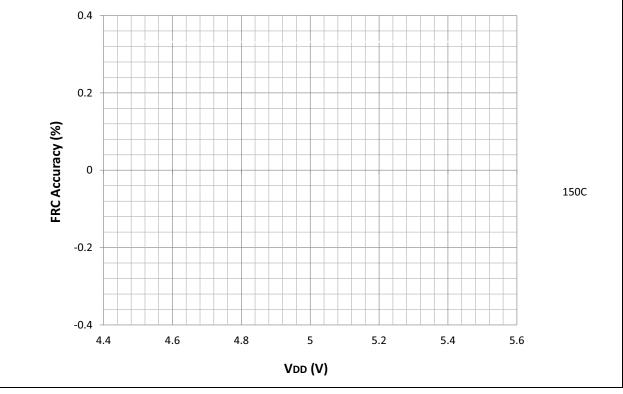

TABLE 30-10:	DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS
--------------	--

DC CHARACTERISTICS			Standard Ope (unless other Operating tem	t ed) -40°C ≤ ⁻	5.5V 5°C for Industrial 25°C for Extended		
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
	VIL	Input Low Voltage					
DI10		I/O Pins	Vss		0.2 Vdd	V	
	Vih	Input High Voltage					
DI20		I/O Pins	0.75 VDD		5.5	V	
DI30	ICNPU	Change Notification Pull-up Current	200	375	600	μA	VDD = 5.0V, VPIN = VSS
DI31	ICNPD	Change Notification Pull-Down Current ⁽⁷⁾	175	400	625	μA	VDD = 5.0V, VPIN = VDD
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O Pins	-100	-	100	nA	$Vss \le VPIN \le VDD,$ pin at high-impedance
DI55		MCLR	-700		700	nA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSC1	-200	_	200	nA	$\label{eq:VSS} \begin{split} &VSS \leq V \text{PIN} \leq V \text{DD}, \\ &XT \text{ and } HS \text{ modes} \end{split}$
Dl60a	licl	Input Low Injection Current	0	_	₋₅ (4,6)		All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP and RB7
DI60b	ІІСН	Input High Injection Current	0	—	+5 ^(5,6)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB7 and all 5V tolerant pins ⁽⁵⁾
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	₋₂₀ (7)	_	+20(7)		Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT


Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.
- **3:** Negative current is defined as current sourced by the pin.
- 4: VIL source < (VSS 0.3). Characterized but not tested.
- 5: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 6: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.
- 7: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

32.4 IPD


© 2013-2016 Microchip Technology Inc.

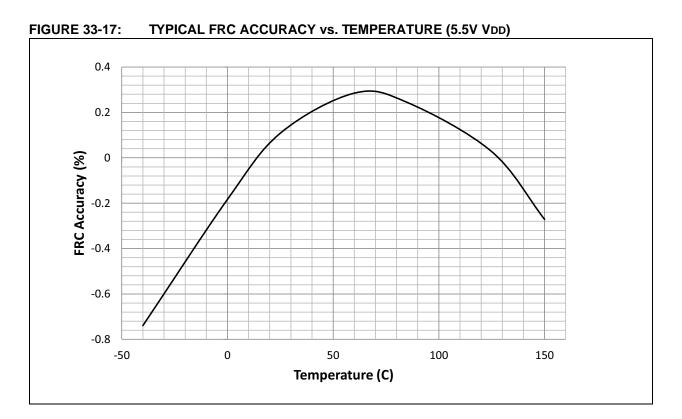
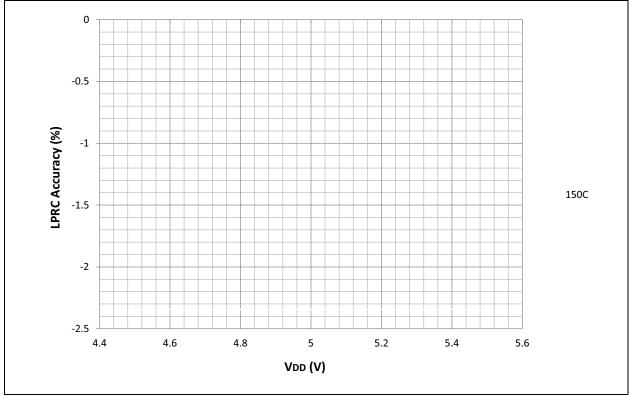
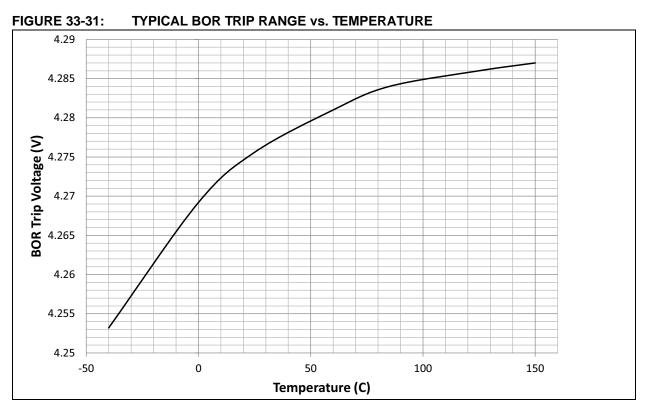
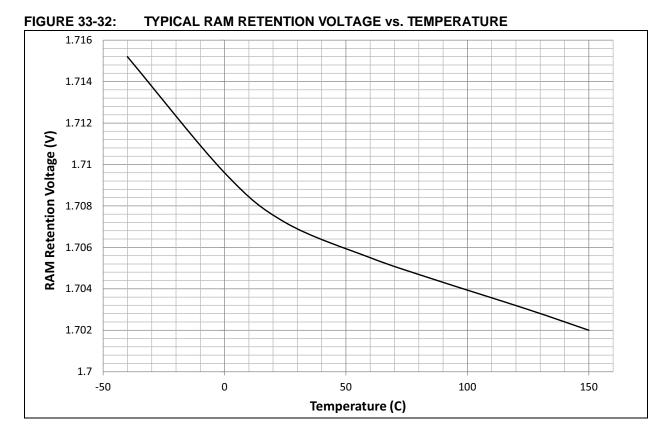

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 33-15: **TYPICAL/MAXIMUM** ∆IwDT vs. **TEMPERATURE** 12 10 8 IPD (NA) 6 5.5V Max - 5.5V Typ 4 2 0 -50 0 50 100 150 **Temperature (C)**

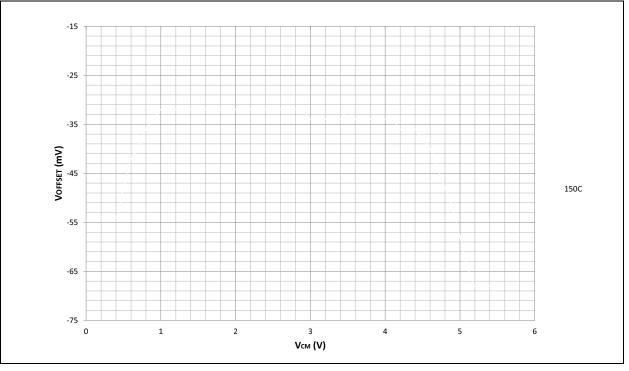
33.5 FRC

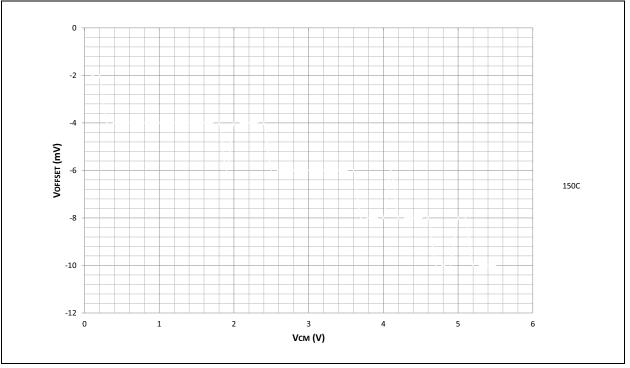






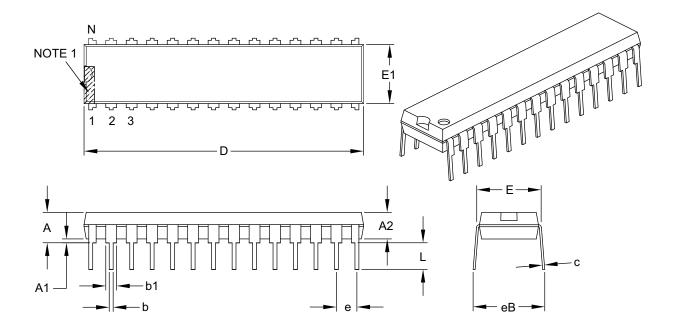
33.12 VBOR


33.13 RAM Retention


© 2013-2016 Microchip Technology Inc.

33.14 Comparator Op Amp Offset

FIGURE 33-33: TYPICAL COMPARATOR OFFSET vs. Vcm



34.2 Package Details

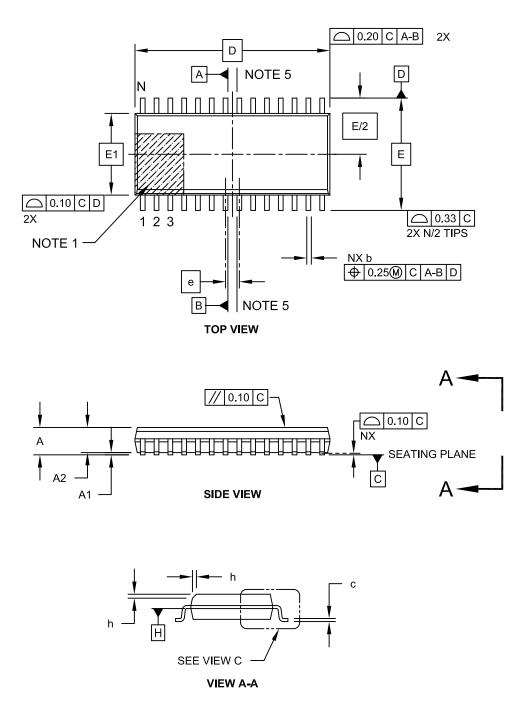
The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		28	•
Pitch	e		.100 BSC	
Top to Seating Plane	A	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	-	.430

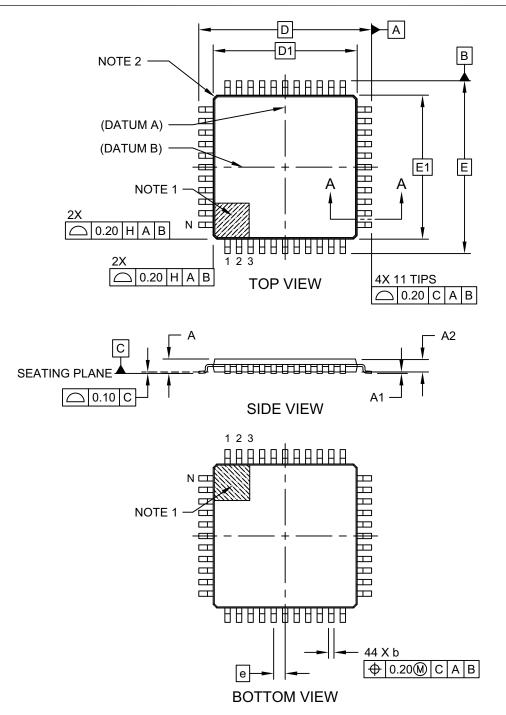
Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

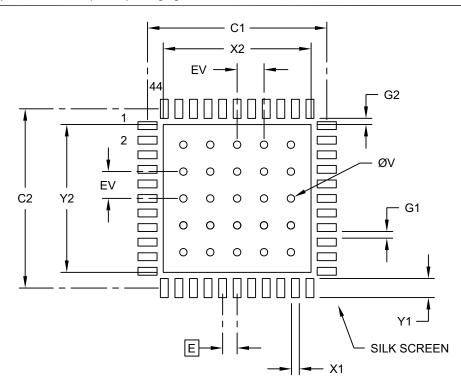
Microchip Technology Drawing C04-070B

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-076C Sheet 1 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Ν	IILLIMETER	S	
Dimension	MIN	NOM	MAX	
Contact Pitch	Contact Pitch E			
Optional Center Pad Width	X2			6.60
Optional Center Pad Length	Y2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Contact Pad to Contact Pad (X40)	G1	0.30		
Contact Pad to Center Pad (X44)	G2	0.28		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2103C

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351

Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

06/23/16