

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev32gm004t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 4-33: PORTA REGISTER MAP FOR dsPIC33EVXXXGMX02 DEVICES

																		· · · · · · · · · · · · · · · · · · ·
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	—	_	—	—	—	—	_	_	_	_		-	TRISA<4:0>	>		DF9F
PORTA	0E02	_	_	_	_	_	_	_	_	_	_	_			RA<4:0>			0000
LATA	0E04	_	_	_	_	_	_	_	_	_	_	_	LATA<4:0>				0000	
ODCA	0E06	_	_	_	_	_	_	_	_	_	_	_	ODCA<4:0>			0000		
CNENA	0E08	_	_	_	_	_	_	_	_	_	_	_		(CNIEA<4:0	>		0000
CNPUA	0E0A	_	_	_	_	_	_	_	_	_	_	_		C	NPUA<4:0	>		0000
CNPDA	0E0C	_	_	_	_	_	_	_	_	_	_	_		C	NPDA<4:0	>		0000
ANSELA	0E0E	_	_	_	_	_	_	_	_	_	_	_	ANSA4 — ANSA<2:0>			1813		
SR1A	0E10	_	—	_	_	_	_	_	_	—	_	_	SR1A4	_	—	—	—	0000
SR0A	0E12	_	_	_	—	—	-	—		_	_		SR0A4	_	_	-	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-34: PORTB REGISTER MAP FOR dsPIC33EVXXXGMX06 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E14		TRISB<15:0> F									FFFF						
PORTB	0E16		RB<15:0> xx									xxxx						
LATB	0E18		LATB<15:0> xxx								xxxx							
ODCB	0E1A								ODCB<15	:0>								0000
CNENB	0E1C								CNIEB<15	:0>								0000
CNPUB	0E1E								CNPUB<15	5:0>								0000
CNPDB	0E20								CNPDB<15	5:0>								0000
ANSELB	0E22		ANSB<9:7> ANSB<3:0> 038								038F							
SR1B	0E24		_	_	_				SR1B<9:7>		_		SR1B4	—	_	—		0000
SR0B	0E26	_	—	_	_	_	_	:	SR0B<9:7>		_	_	SR0B4	_	-	_	_	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3	SLEEP: Wake-up from Sleep Flag bit
	1 = Device has been in Sleep mode
	0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit
	1 = Device was in Idle mode
	0 = Device was not in Idle mode
bit 1	BOR: Brown-out Reset Flag bit
	1 = A Brown-out Reset has occurred
	0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit
	1 = A Power-on Reset has occurred
	0 = A Power-on Reset has not occurred

- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
—	_	_	—	—	_	_	_					
bit 15							bit 8					
r												
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1					
		<u> </u>	—		LSTCH	l<3:0>						
bit 7												
r												
Legend:												
R = Readabl	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'								
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown					
bit 15-4	Unimplemen	ted: Read as '	0'									
bit 3-0	LSTCH<3:0>	: Last DMAC C	hannel Active	Status bits								
		MA transfer has	s occurred sin	ce system Res	set							
	1110 = Rese i	rved										
	•											
	•											
	0100 = Reserved											
	0100		as handled by	Channel 3								
		0011 = Last data transfer was handled by Channel 3 0010 = Last data transfer was handled by Channel 2										
		0001 = Last data transfer was handled by Channel 1										
		lata transfer wa	-									

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SCK2R6	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SDI2R6	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
						bit C
bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown
• • 000000001 = 00000000 =	Input tied to Cl	MP1 SS				
(see Table 1 ⁻ 10110101 = • •	1-2 for input pin Input tied to RI	selection num PI181		esponding RPn	Pin bits	
	SCK2R6 R/W-0 SDI2R6 e bit POR SCK2R<7:0:	SCK2R6 SCK2R5 R/W-0 R/W-0 SDI2R6 SDI2R5 e bit W = Writable POR '1' = Bit is set SCK2R<7:0>: Assign SPI2 (see Table 11-2 for input pin 10110101 = Input tied to RI . 00000001 = Input tied to VS SDI2R<7:0>: Assign SPI2 E (see Table 11-2 for input pin	SCK2R6 SCK2R5 SCK2R4 R/W-0 R/W-0 R/W-0 SDI2R6 SDI2R5 SDI2R4 e bit W = Writable bit POR '1' = Bit is set SCK2R<7:0>: Assign SPI2 Clock Input (S (see Table 11-2 for input pin selection num 10110101 = Input tied to RPI181 . .	SCK2R6 SCK2R5 SCK2R4 SCK2R3 R/W-0 R/W-0 R/W-0 R/W-0 SDI2R6 SDI2R5 SDI2R4 SDI2R3 e bit W = Writable bit U = Unimpler POR '1' = Bit is set '0' = Bit is cle SCK2R<7:0>: Assign SPI2 Clock Input (SCK2) to the Correct (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 . . . 00000001 = Input tied to CMP1 00000001 = Input tied to Vss SDI2R<7:0>: Assign SPI2 Data Input (SDI2) to the Correct (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 . . .	SCK2R6 SCK2R5 SCK2R4 SCK2R3 SCK2R2 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 SDI2R6 SDI2R5 SDI2R4 SDI2R3 SDI2R2 e bit W = Writable bit U = Unimplemented bit, read POR '1' = Bit is set '0' = Bit is cleared SCK2R<7:0>: Assign SPI2 Clock Input (SCK2) to the Corresponding R (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 .	SCK2R6 SCK2R5 SCK2R4 SCK2R3 SCK2R2 SCK2R1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 SDI2R6 SDI2R5 SDI2R4 SDI2R3 SDI2R2 SDI2R1 e bit W = Writable bit U = Unimplemented bit, read as '0' POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr SCK2R Sasign SPI2 Clock Input (SCK2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181

REGISTER 11-10: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

NOTES:

13.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

These modules are 32-bit timers, which can also be configured as four independent, 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3 and Timer4/5 operate in the following three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare Modules
- ADC1 Event Trigger (Timer2/3 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1. The T3CON and T5CON registers are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw). Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, the T3CON and T5CON control bits are ignored. Only the T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

Block diagrams for the Type B and Type C timers are shown in Figure 13-1 and Figure 13-2, respectively.

A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 13-3.

Note: Only Timer2, Timer3, Timer4 and Timer5 can trigger a DMA data transfer.

REGISTER 14-5: DMTCNTL: DEADMAN TIMER COUNT REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			COUNT	ER<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			COUN	ΓER<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, rea	i d as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				

bit 15-0 COUNTER<15:0>: Read Current Contents of Lower DMT Counter bits

REGISTER 14-6: DMTCNTH: DEADMAN TIMER COUNT REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			COUNT	ER<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			COUNT	ER<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	nented bit, read	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							nown

bit 15-0 COUNTER<31:16>: Read Current Contents of Higher DMT Counter bits

REGISTER 15-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0	SYNCSEL<4:0>: Input Source Select for Synchronization and Trigger Operation bits ⁽⁴⁾
	11111 = Reserved
	11110 = Reserved
	1110 = Reserved
	11100 = CTMU trigger is the source for the capture timer synchronization
	11011 = ADC1 interrupt is the source for the capture timer synchronization ⁽⁵⁾
	11010 = Analog Comparator 3 is the source for the capture timer synchronization ⁽⁵⁾
	11001 = Analog Comparator 2 is the source for the capture timer synchronization ⁽⁵⁾
	11000 = Analog Comparator 1 is the source for the capture timer synchronization ⁽⁵⁾
	10111 = Analog Comparator 5 is the source for the capture timer synchronization ⁽⁵⁾
	10110 = Analog Comparator 4 is the source for the capture timer synchronization ⁽⁵⁾
	10101 = Reserved
	10100 = Reserved
	10011 = Input Capture 4 interrupt is the source for the capture timer synchronization
	10010 = Input Capture 3 interrupt is the source for the capture timer synchronization
	10001 = Input Capture 2 interrupt is the source for the capture timer synchronization
	10000 = Input Capture 1 interrupt is the source for the capture timer synchronization
	01111 = GP Timer5 is the source for the capture timer synchronization
	01110 = GP Timer4 is the source for the capture timer synchronization
	01101 = GP Timer3 is the source for the capture timer synchronization
	01100 = GP Timer2 is the source for the capture timer synchronization
	01011 = GP Timer1 is the source for the capture timer synchronization
	01010 = Reserved
	01001 = Reserved
	01000 = Input Capture 4 is the source for the capture timer synchronization ⁽⁶⁾
	00111 = Input Capture 3 is the source for the capture timer synchronization ⁽⁶⁾
	00110 = Input Capture 2 is the source for the capture timer synchronization ⁽⁶⁾
	00101 = Input Capture 1 is the source for the capture timer synchronization ⁽⁶⁾ 00100 = Output Compare 4 is the source for the capture timer synchronization
	00011 = Output Compare 3 is the source for the capture timer synchronization
	00011 – Output Compare 3 is the source for the capture timer synchronization
	00001 = Output Compare 1 is the source for the capture timer synchronization
	00000 = Reserved
Note 1:	The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.

- **Note 1:** The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by the SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own sync or trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - 6: When the source ICx timer rolls over, then in the next clock cycle, trigger or synchronization occurs.

NOTES:

HS-0, HC	HS-0, HC	HS-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTSTAT ⁽¹⁾	CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽²⁾	MDCS ⁽²⁾
bit 15		·					bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
DTC1	DTC0	DTCP ⁽³⁾	—	—	CAM ^(2,4)	XPRES ⁽⁵⁾	IUE ⁽²⁾
bit 7							bit (
Legend:		HC = Hardware	Clearable bit	HS = Hardwa	are Settable bit		
R = Readable	bit	W = Writable bi	t	U = Unimple	mented bit, rea	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 15	FLTSTAT: Fai	ult Interrupt Statu	us bit ⁽¹⁾				
		rupt is pending					
		rrupt is not pendi ared by setting F					
bit 14		rent-Limit Interru					
		mit interrupt is pe	•				
	0 = Current-lin	mit interrupt is no ared by setting C	ot pending				
bit 13		igger Interrupt Si					
		terrupt is pending					
		terrupt is not per ared by setting T					
bit 12	FLTIEN: Fault	t Interrupt Enable	e bit				
		rrupt is enabled	and the FLTST	AT bit is cleare	ed		
bit 11	CLIEN: Curre	nt-Limit Interrup	t Enable bit				
		mit interrupt is er mit interrupt is di		CLSTAT bit is	cleared		
bit 10		ger Interrupt Ena					
	1 = Trigger ev	vent generates a vent interrupts ar	n interrupt requ		bit is cleared		
bit 9		dent Time Base I					
bit 0	1 = PHASEx I	register provides	time base per				
bit 8		er Duty Cycle Re					
	1 = MDC regi	ster provides du ister provides du	ty cycle information	ation for this P			
Note 1: So	ftware must clea	ar the interrupt st	atus here and	in the correspo	onding IFSx bit	in the interrupt	controller.
		not be changed a		-	-		
		DTCP to be effe					
	e Independent T M bit is ignored.	īme Base (ITB =	1) mode mus	t be enabled to	use Center-Al	igned mode. If	ITB = 0, the
	operate in Exter jister must be '0	nal Period Rese '.	t mode, the ITI	B bit must be ':	1' and the CLM	OD bit in the F	CLCONx

REGISTER 17-7: PWMCONx: PWMx CONTROL REGISTER

REGISTER 20-1: SENTxCON1: SENTx CONTROL REGISTER 1 (CONTINUED)

- bit 3 Unimplemented: Read as '0'
- bit 2-0 NIBCNT<2:0>: Nibble Count Control bits
 - 111 = Reserved; do not use
 - 110 = Module transmits/receives 6 data nibbles in a SENT data pocket
 - 101 = Module transmits/receives 5 data nibbles in a SENT data pocket
 - 100 = Module transmits/receives 4 data nibbles in a SENT data pocket
 - 011 = Module transmits/receives 3 data nibbles in a SENT data pocket
 - 010 = Module transmits/receives 2 data nibbles in a SENT data pocket
 - $\tt 001$ = Module transmits/receives 1 data nibbles in a SENT data pocket
 - 000 = Reserved; do not use
- **Note 1:** This bit has no function in Receive mode (RCVEN = 1).
 - 2: This bit has no function in Transmit mode (RCVEN = 0).

REGISTER 20-3:	SENTXDATL: SENTX RECEIVE DATA REGISTER LOW ⁽¹⁾

1							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	DATA4	<3:0>			DATAS	5<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

	10,00-0		10,00-0	10,00-0			10,00-0	
Γ		DATA6	<3:0>	CRC<3:0>				
	bit 7						bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	DATA4<3:0>: Data Nibble 4 Data bits
bit 11-8	DATA5<3:0>: Data Nibble 5 Data bits
bit 7-4	DATA6<3:0>: Data Nibble 6 Data bits
bit 3-0	CRC<3:0>: CRC Nibble Data bits

Note 1: Register bits are read-only in Receive mode (RCVEN = 1). In Transmit mode, the CRC<3:0> bits are read-only when automatic CRC calculation is enabled (RCVEN = 0, CRCEN = 1).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	STA	۲<3:0>		DATA1<3:0>				
bit 15			·			bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	DATA	2<3:0>		DATA3<3:0>				
bit 7							bit C	
Legend:								
R = Readable	R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'					
	a = Value at POR '1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown		

bit 15-12 STAT<3:0>: Status Nibble Data bits

bit 11-8 **DATA1<3:0>:** Data Nibble 1 Data bits

bit 7-4 DATA2<3:0>: Data Nibble 2 Data bits

bit 3-0 DATA3<3:0>: Data Nibble 3 Data bits

Note 1: Register bits are read-only in Receive mode (RCVEN = 1). In Transmit mode, the CRC<3:0> bits are read-only when automatic CRC calculation is enabled (RCVEN = 0, CRCEN = 1).

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15	•						bit 8
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0
		O Oleenskie	L :4				
Legend:	L :4	C = Clearable			are Clearable bit		
R = Readable		W = Writable	DIT	•	mented bit, read		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN
 bit 15,13 UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits 11 = Reserved; do not use 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result the transmit buffer becomes empty 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmore operations are completed 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is 						r; all transmit	
bit 14	$\frac{\text{If IREN = 0:}}{1 = \text{UxTX Idle}}$ $0 = \text{UxTX Idle}$ $\frac{\text{If IREN = 1:}}{1 = \text{IrDA}^{\textcircled{\ensuremath{\mathbb{R}}}} \text{ end}$ $0 = \text{IrDA ended}$	e state is '1' coded UxTX Id oded UxTX Idle	le state is '1' e state is '0'				
bit 12	Unimplemen	ted: Read as 'o)'				
bit 11	1 = Sends Sy bit; cleare 0 = Sync Bre	ed by hardware ak transmission	ext transmis upon comp n is disabled		followed by twe	elve '0' bits, foll	lowed by Stop
bit 10	UTXEN: UAR	Tx Transmit Er	nable bit ⁽¹⁾				
	0 = Transmit			ntrolled by UAR ransmission is	Tx aborted and the	e buffer is rese	t; UxTX pin is
bit 9	UTXBF: UAR	Tx Transmit Bu	iffer Full Stat	us bit (read-onl	y)		
	1 = Transmit 0 = Transmit		ll, at least on	e more charact	er can be writte	n	
bit 8	1 = Transmit	Shift Register is	s empty and		ly) s empty (the last is in progress o		as completed)
bit 7-6	URXISEL<1:	0>: UARTx Red	ceive Interrup	ot Mode Selecti	on bits		
	10 = Interrupt 0x = Interrupt	t is set on UxRS	SR transfer, r	naking the rece is received and	eive buffer full (i. ive buffer 3/4 fu d transferred fro	ll (i.e., has 3 da	ita characters)

REGISTER 21-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Note 1: Refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/ PIC24 Family Reference Manual" for information on enabling the UART module for transmit operation.

22.3 CAN Control Registers

REGISTER 22-1: CxCTRL1: CANx CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
—	—	CSIDL	ABAT	CANCKS	REQOP2	REQOP1	REQOP0
bit 15							bit 8
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
OPMODE2	OPMODE1	OPMODE0	_	CANCAP	—	—	WIN
bit 7	•						bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

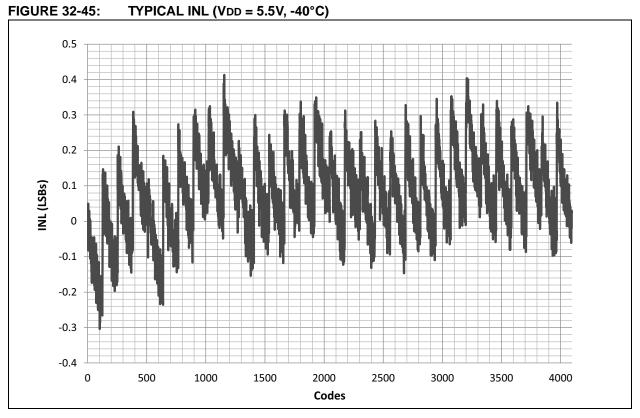
bit 15-14	Unimplemented: Read as '0'
bit 13	CSIDL: CANx Stop in Idle Mode bit
	1 = Discontinues module operation when the device enters Idle mode
	0 = Continues module operation in Idle mode
bit 12	ABAT: Abort All Pending Transmissions bit
	1 = Signals all transmit buffers to abort transmission
	0 = Module will clear this bit when all transmissions are aborted
bit 11	CANCKS: CANx Module Clock (FCAN) Source Select bit
	1 = FCAN is equal to 2 * FP
	0 = FCAN is equal to FP
bit 10-8	REQOP<2:0>: Request Operation Mode bits
	111 = Sets Listen All Messages mode
	110 = Reserved 101 = Reserved
	100 = Sets Configuration mode
	011 = Sets Listen Only mode
	010 = Sets Loopback mode
	001 = Sets Disable mode
	000 = Sets Normal Operation mode
bit 7-5	OPMODE<2:0>: Operation Mode bits
	111 = Module is in Listen All Messages mode 110 = Reserved
	10 = Reserved
	100 = Module is in Configuration mode
	011 = Module is in Listen Only mode
	010 = Module is in Loopback mode
	001 = Module is in Disable mode 000 = Module is in Normal Operation mode
bit 4	
	Unimplemented: Read as '0'
bit 3	CANCAP: CANx Message Receive Timer Capture Event Enable bit
	 1 = Enables input capture based on CAN message receive 0 = Disables CAN capture
bit 2-1	Unimplemented: Read as '0'
bit 0	WIN: SFR Map Window Select bit
	1 = Uses filter window
	0 = Uses buffer window

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F7MSK1	F7MSK0	F6MSK1	F6MSK0	F5MSK1	F5MSK0	F4MSK1	F4MSK0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F3MSK1	F3MSK0	F2MSK1	F2MSK0	F1MSK1	F1MSK0	F0MSK1	F0MSK0	
bit 7							bit C	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'		
-n = Value at POR		'1' = Bit is set	t	'0' = Bit is cleared x = Bit		x = Bit is unkr	is unknown	
bit 15-14	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta	nce Mask 2 ree nce Mask 1 ree nce Mask 0 ree	gisters contain gisters contain gisters contain	the mask the mask the mask				
bit 13-12	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0>	nce Mask 2 re nce Mask 1 re nce Mask 0 re nce Mask 0 re	gisters contain gisters contain gisters contain gisters contain for Filter 6 bit	the mask the mask the mask (same values				
bit 13-12 bit 11-10	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0>	nce Mask 2 re nce Mask 1 re nce Mask 0 re : Mask Source : Mask Source	gisters contain gisters contain gisters contain e for Filter 6 bit e for Filter 5 bit	the mask the mask the mask (same values (same values	as bits 15-14)			
bit 13-12	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0>	nce Mask 2 re nce Mask 1 re nce Mask 0 re : Mask Source : Mask Source	gisters contain gisters contain gisters contain e for Filter 6 bit e for Filter 5 bit	the mask the mask the mask (same values	as bits 15-14)			
bit 13-12 bit 11-10	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0> F5MSK<1:0> F4MSK<1:0>	nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg : Mask Source : Mask Source : Mask Source	gisters contain gisters contain gisters contain e for Filter 6 bit e for Filter 5 bit e for Filter 4 bit	the mask the mask the mask (same values (same values	as bits 15-14) as bits 15-14)			
bit 13-12 bit 11-10 bit 9-8	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0> F5MSK<1:0> F4MSK<1:0> F3MSK<1:0>	nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg : Mask Source : Mask Source : Mask Source : Mask Source : Mask Source	gisters contain gisters contain gisters contain e for Filter 6 bit e for Filter 5 bit e for Filter 4 bit e for Filter 3 bit	the mask the mask the mask (same values (same values (same values	as bits 15-14) as bits 15-14) as bits 15-14)			
bit 13-12 bit 11-10 bit 9-8 bit 7-6	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0> F5MSK<1:0> F4MSK<1:0> F3MSK<1:0> F3MSK<1:0>	ed nce Mask 2 ree nce Mask 1 ree nce Mask 0 ree : Mask Source : Mask Source : Mask Source : Mask Source : Mask Source	gisters contain gisters contain gisters contain e for Filter 6 bit e for Filter 5 bit for Filter 4 bit e for Filter 3 bit e for Filter 2 bit	the mask the mask the mask (same values (same values (same values (same values	as bits 15-14) as bits 15-14) as bits 15-14) as bits 15-14)			

REGISTER 22-18: CxFMSKSEL1: CANx FILTERS 7-0 MASK SELECTION REGISTER 1

REGISTER 24-6: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER (CONTINUED)

- **Note 1:** AN0 to AN7 are repurposed when comparator and op amp functionality are enabled. See Figure 24-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: If the op amp is selected (OPAEN bit (CMxCON<10>) = 1), the OAx input is used; otherwise, the ANx input is used.
 - 3: See the "Pin Diagrams" section for the available analog channels for each device.


26.0 COMPARATOR VOLTAGE REFERENCE

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Op Amp/Comparator" (DS70000357) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

26.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRxCON registers (Register 26-1 and Register 26-2). The comparator voltage reference provides a range of output voltages with 128 distinct levels. The comparator reference supply voltage can come from either VDD and Vss, or the external CVREF+ and AVss pins. The voltage source is selected by the CVRSS bit (CVRxCON<11>). The settling time of the comparator voltage reference must be considered when changing the CVREF output.

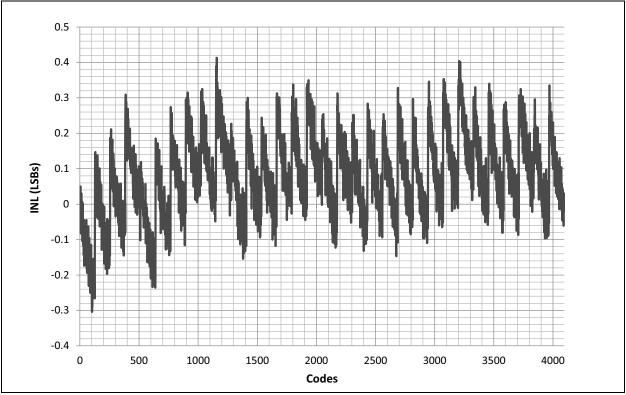


FIGURE 32-46: TYPICAL INL (VDD = 5.5V, +25°C)

SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0)	
SPI2 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	
Timer1-Timer5 External Clock	
UARTx I/O	
U	
UART	

Control Registers	
Helpful Tips	
Universal Asynchronous Receiver	
Transmitter (UART)	247
Universal Asynchronous Receiver Transmitter. See I	JART.
User OTP Memory	324

۱/	
v	

Voltage Regulator (On-Chip)		
W		
Watchdog Timer (WDT)	317, 325	
Programming Considerations	325	
WWW Address	493	
WWW, On-Line Support	11	