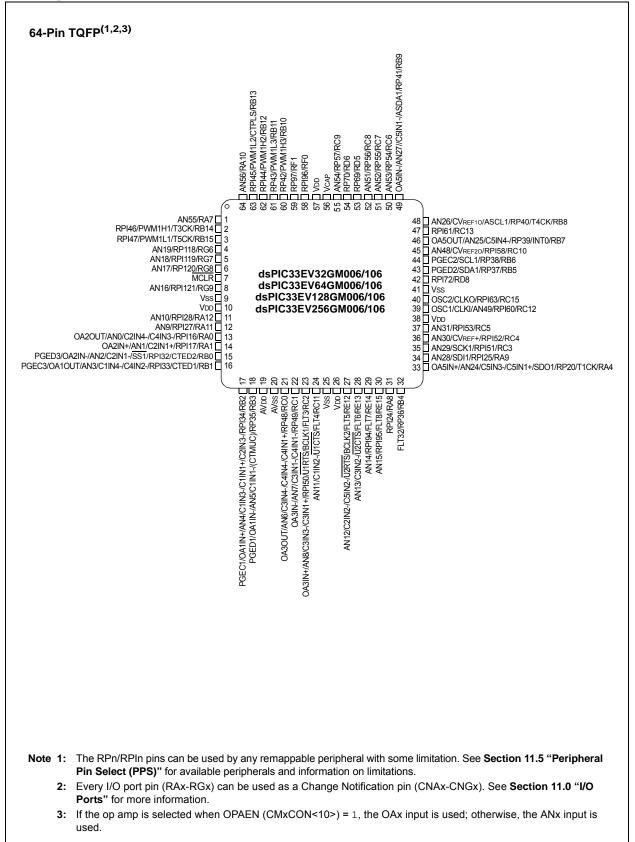


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Dectano	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev32gm102-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2)
	<pre>111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)</pre>
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop is in progress 0 = REPEAT loop is not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = Overflow has not occurred for signed arithmetic
bit 1	Z: MCU ALU Zero bit
	 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	 1 = A carry-out from the Most Significant bit (MSb) of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1.	The IPI <2:0> hits are concatenated with the IPI 3 hit (CORCON<3>) to form the CPU Interrupt Priority

- **Note 1:** The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL3 = 1. User interrupts are disabled when IPL3 = 1.
 - 2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
 - **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using the bit operations.

TABLE 4-19: NVM REGISTER MAP

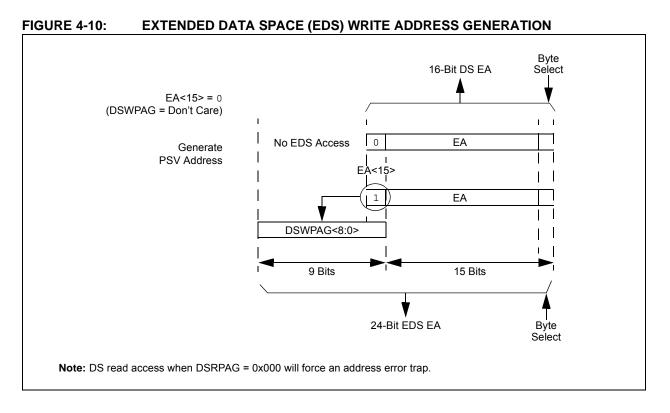
									-			-					-	
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0728	WR	WREN	WRERR	NVMSIDL	_	_	RPDF	URERR	_	—	_	_	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000
NVMADR	072A		NVMADR<15:0> 00									0000						
NVMADRU	072C	_	_	_	_		_	_	_	NVMADRU<23:16>				0000				
NVMKEY	072E	_	_	_	_		_	_	_				NVMK	EY<7:0>				0000
NVMSRCADRL	0730								NVMSF	RCADR<15:	1>						0	0000
NVMSRCADRH	0732	_	_	_	_		_	_	_	NVMSRCADR<23:16>					0000			
Lonondy																		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: SYSTEM CONTROL REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR		_	VREGSF		СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	_	_	OSWEN	Note 2
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	FRCDIV2	FRCDIV1	FRCDIV0	PLLPOST1	PLLPOST0	_	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0	0000
PLLFBD	0746	-	—		—	_	_	—				PL	LDIV<8:0>					0000
OSCTUN	0748	-	—		—	_	_	—	TUN<5:0> 00					0000				

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.


Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the Configuration fuses.

TABLE 4-21: REFERENCE CLOCK REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
REFOCON	074E	ROON	-	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	_	_	—	_	_	_	—	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

The paged memory scheme provides access to multiple 32-Kbyte windows in the EDS and PSV memory. The Data Space Page registers, DSxPAG, in combination with the upper half of the Data Space address, can provide up to 16 Mbytes of additional address space in the EDS and 8 Mbytes (DSRPAG only) of PSV address space. The paged data memory space is shown in Figure 4-11.

The Program Space (PS) can be accessed with a DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG. Writes to PS are not supported, therefore, the DSWPAG is dedicated to DS, including EDS. The Data Space and EDS can be read from and written to using DSRPAG and DSWPAG, respectively.

4.3.2 EXTENDED X DATA SPACE

The lower portion of the base address space range, between 0x0000 and 0x2FFF, is always accessible regardless of the contents of the Data Space Page registers; it is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x002FFF with the base address bit, EA<15> = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of Base Data Space, in combination with DSRPAG = 0x000 or DSWPAG = 0x000. Consequently, the DSRPAG and DSWPAG registers are initialized to 0x001 at Reset.

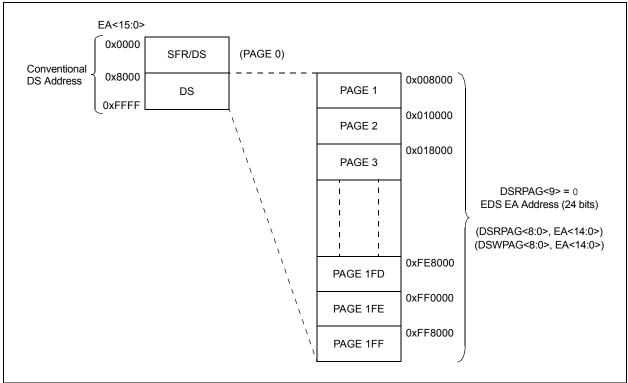

- Note 1: DSxPAG should not be used to access Page 0. An EDS access with DSxPAG set to 0x000 will generate an address error trap.
 - 2: Clearing the DSxPAG in software has no effect.

FIGURE 4-12: EDS MEMORY MAP

The remaining pages, including both EDS and PSV pages, are only accessible using the DSRPAG or DSWPAG registers in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where the base address bit, EA<15> = 1.

For example, when DSRPAG = 0x001 or DSWPAG = 0x001, accesses to the upper 32 Kbytes, 0x8000 to 0xFFFF of the Data Space, will map to the EDS address range of 0x008000 to 0x00FFFF. When DSRPAG = 0x002 or DSWPAG = 0x002, accesses to the upper 32 Kbytes of the Data Space will map to the EDS address range of 0x010000 to 0x017FFF and so on, as shown in the EDS memory map in Figure 4-12.

For more information on the PSV page access using Data Space Page registers, refer to **Section 5.0 "Program Space Visibility from Data Space"** in **"dsPIC33E/PIC24E Program Memory"** (DS70000613) of the *"dsPIC33/PIC24 Family Reference Manual"*.

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾ (CONTINUED)

- **Note 1:** This bit is cleared when the ROI bit is set and an interrupt occurs.
 - 2: This register resets only on a Power-on Reset (POR).
 - **3:** DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - 4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	—	—	_	—	—	—	PLLDIV8
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLD	IV<7:0>			
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	at POR	:	'0' = Bit is cle	ared	x = Bit is unk	nown	
bit 15-9	Unimplemer	nted: Read as '	0'				
bit 8-0	PLLDIV<8:0	>: PLL Feedba	ck Divisor bits	s (also denoted	as 'M', PLL mul	tiplier)	
	111111111	= 513					
	•						
	•						
	000110000	= 50 (default)					
	•						
	•						
	•						
	000000010						
	000000000	-					

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER⁽¹⁾

Note 1: This register is reset only on a Power-on Reset (POR).

REGISTER 11-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			T2CK	R<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **T2CKR<7:0>:** Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 •

• 00000001 = Input tied to CMP1 00000000 = Input tied to Vss

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
FLT2R7	FLT2R6	FLT2R5	FLT2R4	FLT2R3	FLT2R2	FLT2R1	FLT2R0			
bit 15	·						bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
FLT1R7	FLT1R6	FLT1R5	FLT1R4	FLT1R3	FLT1R2	FLT1R1	FLT1R0			
oit 7	I						bit 0			
_egend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unknown				
bit 15-8	FLT2R<7:0>: Assign PWM Fault 2 (FLT2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)									
	(see Table 11-2 for input pin selection numbers)									
	•	Input tied to R	PI181							
	•									
	•									
		Input tied to C Input tied to V								
bit 7-0		Assign PWM -2 for input pin			onding RPn Pi	n bits				
	•	Input tied to R		,						
	•									
	•									
	00000001 = Input tied to CMP1									

REGISTER 11-7: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

00000000 = Input tied to Vss

REGISTER 18-2: SPIxCON1: SPIx CONTROL REGISTER 1 (CONTINUED)

- bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode)⁽³⁾
 - 111 = Secondary prescale 1:1
 - 110 = Secondary prescale 2:1

 - 000 = Secondary prescale 8:1
- bit 1-0 **PPRE<1:0>:** Primary Prescale bits (Master mode)⁽³⁾
 - 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- Note 1: The CKE bit is not used in Framed SPI modes. Program this bit to '0' for Framed SPI modes (FRMEN = 1).
 - 2: This bit must be cleared when FRMEN = 1.
 - **3:** Do not set both primary and secondary prescalers to the value of 1:1.

19.2 I²C Control Registers

REGISTER 19-1: I2CxCON1: I2Cx CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/S-1	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN		I2CSIDL	SCLREL ⁽¹⁾	STRICT	A10M	DISSLW	SMEN
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0, HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7	•		•		•		bit 0

Legend:	S = Settable bit	HC = Hardware Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	k = Bit is unknown

bit 15	I2CEN: I2Cx Enable bit (writable from SW only)
	 1 = Enables the I²C module and configures the SDAx and SCLx pins as serial port pins 0 = Disables the I²C module and all I²C pins are controlled by port functions
bit 14	Unimplemented: Read as '0'
bit 13	I2CSIDL: I2Cx Stop in Idle Mode bit
	 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	SCLREL: SCLx Release Control bit (I ² C Slave mode only) ⁽¹⁾
	Module resets and (I2CEN = 0) sets SCLREL = 1.
	$\frac{\text{If STREN = }0}{2}$
	1 = Releases clock
	0 = Forces clock low (clock stretch)
	If STREN = 1: 1 = Releases clock
	0 = Holds clock low (clock stretch); user may program this bit to '0', clock stretch at the next SCLx low
bit 11	STRICT: Strict I ² C Reserved Address Rule Enable bit
	1 = Strict reserved addressing is enforced
	In Slave mode, the device does not respond to reserved address space and addresses falling in that category are NACKed.
	0 = Reserved addressing would be Acknowledged
	In Slave mode, the device will respond to an address falling in the reserved address space. When there is a match with any of the reserved addresses, the device will generate an ACK.
bit 10	A10M: 10-Bit Slave Address Flag bit
	1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address
bit 9	DISSLW: Slew Rate Control Disable bit
	 1 = Slew rate control is disabled for Standard Speed mode (100 kHz, also disabled for 1 MHz mode) 0 = Slew rate control is enabled for High-Speed mode (400 kHz)
bit 8	SMEN: SMBus Input Levels Enable bit
	 1 = Enables the input logic so thresholds are compliant with the SMBus specification 0 = Disables the SMBus-specific inputs
Note 1:	Automatically cleared to '0' at the beginning of slave transmission; automatically cleared to '0' at the end of slave reception.

2: Automatically cleared to '0' at the beginning of slave transmission.

REGISTER 24-2: ADxCON2: ADCx CONTROL REGISTER 2 (CONTINUED)

bit 1	 BUFM: Buffer Fill Mode Select bit 1 = Starts buffer filling the first half of the buffer on the first interrupt and the second half of the buffer on the next interrupt 0 = Always starts filling the buffer from the Start address
bit 0	 ALTS: Alternate Input Sample Mode Select bit 1 = Uses channel input selects for Sample MUX A on the first sample and Sample MUX B on the next sample 0 = Always uses channel input selects for Sample MUX A

Note 1: The ADCx VREFH Input is connected to AVDD and the VREFL input is connected to AVss.

Base Instr #	Assembly Mnemonic	Assembly Syntax Description			# of Words	# of Cycles	Status Flags Affected
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC BTSC f, #bit4 Bit Test f, Skip if Clear		Bit Test f, Skip if Clear	1	1 (2 or 3)	None	
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	4	SFA
		CALL	Wn	Call indirect subroutine	1	4	SFA
		CALL.L	Wn	Call indirect subroutine (long address)	1	4	SFA
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA, SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	$f = \overline{f}$	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - C)$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
22	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
23	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
24	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
					-	,	

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected						
53	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None						
		MUL.SS	Wb,Ws,Acc	Accumulator = signed(Wb) * signed(Ws)	1	1	None						
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None						
		MUL.SU	Wb,Ws,Acc	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None						
		MUL.SU	Wb,#lit5,Acc	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None						
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None						
		MUL.US	Wb,Ws,Acc	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None						
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None						
		MUL.UU	Wb,#lit5,Acc	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None						
		MUL.UU	Wb,Ws,Acc	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None						
		MULW.SS	Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None						
		MULW.SU	Wb,Ws,Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None						
		MULW.US	Wb,Ws,Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None						
		MULW.UU	Wb,Ws,Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None						
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None						
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None						
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None						
		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None						
		MUL	f	W3:W2 = f * WREG	1	1	None						
54	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB						
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z						
		NEG	f,WREG	WREG = $f + 1$	1	1	C,DC,N,OV,Z						
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z						
55	NOP	NOP		No Operation	1	1	None						
		NOPR		No Operation	1	1	None						
56	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None						
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None						
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None						
		POP.S		Pop Shadow Registers	1	1	All						
57	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	I None 1 OA,OB,OAB, SA,SB,SAB 1 C,DC,N,OV,Z 1 C,DC,N,OV,Z 1 None 1 None						
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	NoneOA,OB,OAB,SA,SBC,DC,N,OV,ZC,DC,N,OV,ZC,DC,N,OV,ZNone						
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None						
		PUSH.S		Push Shadow Registers	1	1	None						
58	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep						
59	RCALL	RCALL Expr Relative Call		1	4	SFA							
		RCALL	Wn	Computed Call	1	4	SFA						
60	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 times	1	1	None						
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None						
61	RESET	RESET		Software device Reset	1	1	None						
62	RETFIE	RETFIE		Return from interrupt	1	6 (5)	SFA						

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

TABLE 30-43:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	—		25	MHz	See Note 3
SP72	TscF	SCK1 Input Fall Time	—	_	_	ns	See Parameter DO32 and Note 4
SP73	TscR	SCK1 Input Rise Time	—	_	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDO1 Data Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	—	_	ns	
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	—	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	See Note 4
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 TCY + 40	—	_	ns	See Note 4
SP60	TssL2doV	SDO1 Data Output Valid after SS1 Edge	—	—	50	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 40 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

AC CHA	RACTERI	STICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characte	eristic ⁽³⁾	Min.	Max.	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7		μS		
			400 kHz mode	1.3	—	μs		
			1 MHz mode ⁽¹⁾	0.5	—	μs		
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5		μs		
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	100	ns		
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	300	ns		
IS25	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns		
			400 kHz mode	100	—	ns		
			1 MHz mode ⁽¹⁾	100		ns		
IS26	THD:DAT	Data Input Hold Time	100 kHz mode	0		μs		
			400 kHz mode	0	0.9	μS		
			1 MHz mode ⁽¹⁾	0	0.3	μs		
IS30	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7	—	μS	Only relevant for Repeated	
			400 kHz mode	0.6	—	μS	Start condition	
			1 MHz mode ⁽¹⁾	0.25		μs		
IS31	THD:STA	Start Condition	100 kHz mode	4.0	—	μS	After this period, the first	
		Hold Time	400 kHz mode	0.6	—	μs	clock pulse is generated	
			1 MHz mode ⁽¹⁾	0.25	—	μS		
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	_	μS		
		Setup Time	400 kHz mode	0.6	_	μS		
			1 MHz mode ⁽¹⁾	0.6	—	μS		
IS34	THD:STO	Stop Condition	100 kHz mode	4	—	μs		
		Hold Time	400 kHz mode	0.6	—	μs		
			1 MHz mode ⁽¹⁾	0.25		μs		
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns		
		From Clock	400 kHz mode	0	1000	ns		
			1 MHz mode ⁽¹⁾	0	350	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free	
			400 kHz mode	1.3		μS	before a new transmission	
			1 MHz mode ⁽¹⁾	0.5	—	μS	can start	
IS50	Св	Bus Capacitive Lo	ading		400	pF		
IS51	TPGD	Pulse Gobbler De	lay	65	390	ns	See Note 2	

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

2: The typical value for this parameter is 130 ns.

3: These parameters are characterized but not tested in manufacturing.

TABLE 30-51: OP AMP/COMPARATOR x VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 2): 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
VRD310	TSET	Settling Time	_	1	10	μS	See Note 1

Note 1: Settling time measured while CVRSS = 1 and the CVR<6:0> bits transition from '0000000' to '1111111'.

2: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

TABLE 30-52: OP AMP/COMPARATOR x VOLTAGE REFERENCE SPECIFICATIONS

			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristics	Min. Typ. Max. Units Conditions						
VRD311	CVRAA	Absolute Accuracy of Internal DAC Input to Comparators	_	±25	_	mV	AVDD = CVRSRC = 5.0V		
VRD312	CVRAA1	Absolute Accuracy of CVREFxO Pins	—		+35/-65	mV	AVDD = CVRSRC = 5.0V		
VRD313	CVRSRC	Input Reference Voltage	0	_	AVDD + 0.3	V			
VRD314	CVRout	Buffer Output Resistance	_	1.5k	—	Ω			
VRD315	CVCL	Permissible Capacitive Load (CVREFxO pins)	—	_	25	pF			
VRD316	IOCVR	Permissible Current Output (CVREFxO pins)	—	_	1	mA			
VRD317	ION	Current Consumed when Module is Enabled	—	_	500	μA	AVDD = 5.0V		
VRD318	IOFF	Current Consumed when Module is Disabled	_	_	1	nA	AVDD = 5.0V		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

AC CH/	ARACTER	RISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
			Devic	e Suppl	у				
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or VBOR	_	Lesser of: VDD + 0.3 or 5.5	V			
AD02	AVss	Module Vss Supply	Vss – 0.3		Vss + 0.3	V			
			Refere	nce Inpu	its				
AD05	Vrefh	Reference Voltage High	4.5	—	5.5	V	VREFH = AVDD, VREFL = AVSS = 0		
AD06	VREFL	Reference Voltage Low	AVss		AVDD - VBORMIN	V	See Note 1		
AD06a			0		0	V	VREFH = AVDD, VREFL = AVSS = 0		
AD07	Vref	Absolute Reference Voltage	4.5	_	5.5	V	Vref = Vrefh – Vrefl		
AD08	IREF	Current Drain			10 600	μΑ μΑ	ADC off ADC on		
AD09	lad	Operating Current		5 2		mA mA	ADC operating in 10-bit mode (see Note 1) ADC operating in 12-bit mode (see Note 1)		
		•	Anal	og Input			•		
AD12	VINH	Input Voltage Range Vinн	VINL		Vrefh	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input		
AD13	VINL	Input Voltage Range Vın∟	VREFL	_	AVss + 1V	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), negative input		
AD17	Rin	Recommended Impedance of Analog Voltage Source			200	Ω	Impedance to achieve maximum performance of ADC		

TABLE 30-54: ADC MODULE SPECIFICATIONS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

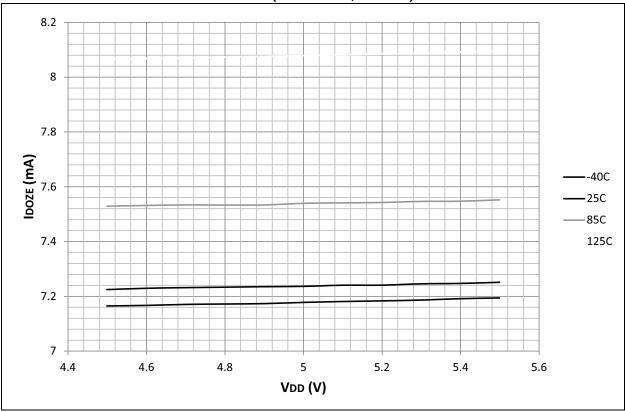
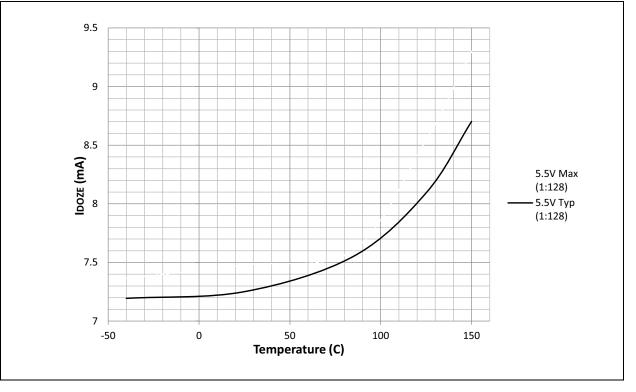



FIGURE 32-15: TYPICAL IDOZE vs. VDD (DOZE 1:128, 70 MIPS)

FIGURE 32-16: TYPICAL/MAXIMUM IDOZE vs. TEMPERATURE (DOZE 1:128, 70 MIPS)

NOTES: