

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Decans	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev32gm102-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R/W-0	U-0	R/W-0	R/W-0	EGISTER	R-0	R-0	R-0
VAR	0-0	US1	US0	EDT ⁽¹⁾	DL2	DL1	R-0 DL0
pit 15	_	031	030	EDI	DL2		bLU
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7	SAID	SAIDW	ACCOAL	IF LOV /	SFA	RIND	bit
Legend:		C = Clearable	- bit				
R = Readable	bit	W = Writable		U = Unimplem	onted hit rea	d as '0'	
-n = Value at F		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	
	-						
bit 15	1 = Variable e	exception proce	ocessing Later essing latency	is enabled			
L:4 4 4			sing latency is	enabled			
bit 14 bit 13-12	•	ted: Read as '	0 igned/Signed (Control hito			
	01 = DSP eng 00 = DSP eng	gine multiplies gine multiplies gine multiplies	are signed				
bit 11			ation Control bi e DO loop at th	e end of the cu	rrent loop iter	ation	
bit 10-8	111 = 7 DO lo	ops are active		ts			
bit 7		Saturation En					
		ator A saturatio ator A saturatio					
bit 6	1 = Accumula	Saturation En ator B saturatio ator B saturatio	n is enabled				
bit 5	1 = Data Space	ce write satura	from DSP Engi tion is enabled tion is disabled		Enable bit		
bit 4	-	cumulator Satu	ration Mode S				

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

TABLE 4-9: CAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 OR 1 FOR dsPIC33EVXXXGM10X DEVICES																		
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	_	—	CSIDL	ABAT	CANCKS	REQOP2	REQOP1	REQOP0	OPMODE2	OPMODE1	OPMODE0	—	CANCAP	—	-	WIN	0480
C1CTRL2	0402	_	—	—	—	_	—	—	—	—	—	_		l	DNCNT<4:0>			0000
C1VEC	0404	—	_	—	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	_	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0	0000
C1FCTRL	0406	DMABS2	DMABS1	DMABS0	_	_	—	—	—	_	—	FSA5	FSA4	FSA3	FSA2	FSA1	FSA0	0000
C1FIFO	0408	-	—	FBP5	FBP4	FBP3	FBP2	FBP1	FBP0	—	—	FNRB5	FNRB4	FNRB3	FNRB2	FNRB1	FNRB0	0000
C1INTF	040A	-	—	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	—	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C		—	—	-	—	—	—	—	IVRIE	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E	TERRCNT7	TERRCNT6	TERRCNT5	TERRCNT4	TERRCNT3	TERRCNT2	TERRCNT1	TERRCNT0	RERRCNT7	RERRCNT6	RERRCNT5	RERRCNT4	RERRCNT3	RERRCNT2	RERRCNT1	RERRCNT0	0000
C1CFG1	0410		—	—	-	—	—	—	—	SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	0000
C1CFG2	0412		WAKFIL	—	-	—	SEG2PH2	SEG2PH1	SEG2PH0	SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0	0000
C1FEN1	0414								FLTE	N<15:0>								FFFF
C1FMSKSEL1	0418	F7MSK1	F7MSK0	F6MSK1	F6MSK0	F5MSK1	F5MSK0	F4MSK1	F4MSK0	F3MSK1	F3MSK0	F2MSK1	F2MSK0	F1MSK1	F1MSK0	F0MSK1	F0MSK0	0000
C1FMSKSEL2	041A	F15MSK1	F15MSK0	F14MSK1	F14MSK0	F13MSK1	F13MSK0	F12MSK1	F12MSK0	F11MSK1	F11MSK0	F10MSK1	F10MSK0	F9MSK1	F9MSK0	F8MSK1	F8MSK0	0000

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 4-10: CAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 FOR dsPIC33EVXXXGM10X DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							Se	ee definition	when WIN :	= x							
C1RXFUL1	0420								RXFUL	<15:0>								0000
C1RXFUL2	0422								RXFUL	<31:16>								0000
C1RXOVF1	0428			RXOVF<15:0> 0000														
C1RXOVF2	042A		RXOVF<31:16>											0000				
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PRI1	TX1PRI0	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PRI1	TX0PRI0	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PRI1	TX3PRI0	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PRI1	TX2PRI0	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PRI1	TX5PRI0	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PRI1	TX4PRI0	0000
C1TR67CON	0436	TXEN7	TXABT7	TXABT7 TXLARB7 TXERR7 TXREQ7 RTREN7 TX7PR11 TX7PR10 TXEN6 TXABAT6 TXLARB6 TXER66 TXREQ6 RTREN6 TX6PR11 TX6PR10 XXXX														
C1RXD	0440		CAN1 Receive Data Word Register										xxxx					
C1TXD	0442							CAN1	Transmit Da	ata Word Re	egister							xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EVXXXGM002/102 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0670	_	_	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	_	_	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0	0000
RPOR1	0672		_	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0		_	RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0	0000
RPOR2	0674		_	RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0		_	RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0	0000
RPOR3	0676		_	RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0		_	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0	0000
RPOR4	0678		_	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0		_	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0	0000
RPOR10	0684		_			RP176	R<5:0>				_	_	_	_	_	_	_	0000
RPOR11	0686		_	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0		_	RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0	0000
RPOR12	0688	_	_	RP180R5	RP180R4	RP180R3	RP180R2	RP180R1	RP180R0	_	—	RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0	0000
RPOR13	068A	_	_	—	_	_	_	_	—	_	_			RP181	R<5:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-15: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EVXXXGM004/104 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0670	_	_	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	_	-	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0	0000
RPOR1	0672	_	_	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0	-	_	RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0	0000
RPOR2	0674	_	_	RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0	-	_	RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0	0000
RPOR3	0676	_	_	RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0	-	_	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0	0000
RPOR4	0678	_	_	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0	-	_	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0	0000
RPOR5	067A	_	_	RP49R5	RP49R4	RP49R3	RP49R2	RP49R1	RP49R0	-	_	RP48R5	RP48R4	RP48R3	RP48R2	RP48R1	RP48R0	0000
RPOR6	067C	_	—	RP55R5	RP55R4	RP55R3	RP55R2	RP55R1	RP55R0	-	_	RP54R5	RP54R4	RP54R3	RP54R2	RP54R1	RP54R0	0000
RPOR7	067E	—	_	RP57R5	RP57R4	RP57R3	RP57R2	RP57R1	RP57R0	_	_	RP56R5	RP56R4	RP56R3	RP56R2	RP56R1	RP56R0	0000
RPOR10	0684	—	_			RP176	R<5:0>			_	_	_	_	_	_	_	_	0000
RPOR11	0686	—	_	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0	_	_	RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0	0000
RPOR12	0688	_	_	RP180R5	RP180R4	RP180R3	RP180R2	RP180R1	RP180R0	_	_	RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0	0000
RPOR13	068A			—	_	_	—	_	—	—				RP181	R<5:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-35: PORTB REGISTER MAP FOR dsPIC33EVXXXGMX04 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E14								TRISB<15	:0>								DF9F
PORTB	0E16								RB<15:0	>								xxxx
LATB	0E18								LATB<15:	0>								xxxx
ODCB	0E1A		ODCB<15:0> 0000								0000							
CNENB	0E1C		CNIEB<15:0> 000								0000							
CNPUB	0E1E								CNPUB<15	5:0>								0000
CNPDB	0E20								CNPDB<15	5:0>								0000
ANSELB	0E22	_	_	_	_	_	_		ANSB<9:7>	•	_	_	_		ANSB	8<3:0>		010F
SR1B	0E24	_	_	_	_	_	_	:	SR1B<9:7>		_	_	SR1B4	_	—	_	—	0000
SR0B	0E26	—	-	_	_	—	—		SR0B<9:7>			-	SR0B4			-	_	0000

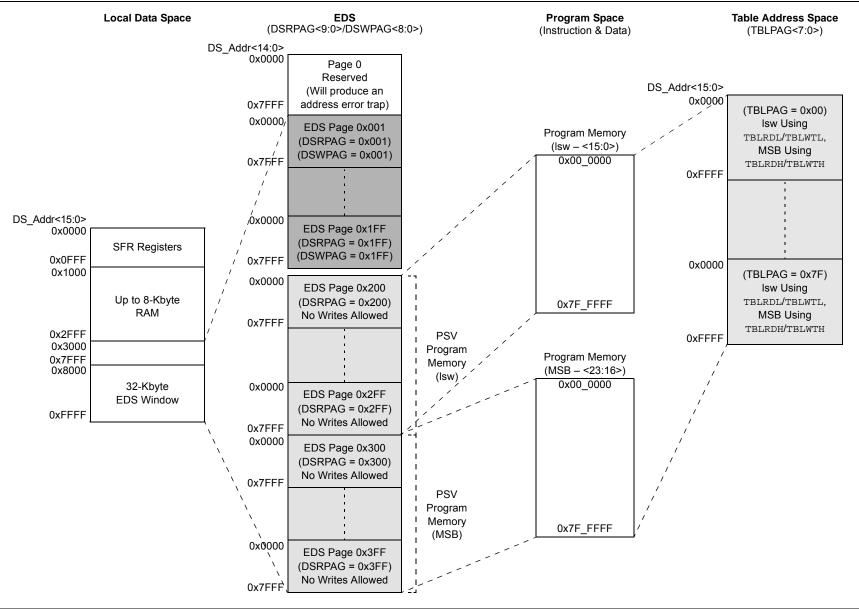

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-36: PORTB REGISTER MAP FOR dsPIC33EVXXXGMX02 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E14								TRISB<15	:0>								DF9F
PORTB	0E16								RB<15:0	>								xxxx
LATB	0E18								LATB<15:	0>								xxxx
ODCB	0E1A		ODCB<15:0> 0000								0000							
CNENB	0E1C								CNIEB<15	:0>								0000
CNPUB	0E1E								CNPUB<15	5:0>								0000
CNPDB	0E20								CNPDB<15	5:0>								0000
ANSELB	0E22		—	—	—	_	—		ANSB<9:7>	•		—	—		ANSB	<3:0>		010F
SR1B	0E24	_	_	—	—	—	—		SR1B<9:7>			—	SR1B4	_	_		—	0000
SR0B	0E26		—	—	—	_	—		SR0B<9:7>	•		—	SR0B4	_	_		—	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

FIGURE 4-11: PAGED DATA MEMORY SPACE

DS70005144E-page 70

4.5 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing, since these two registers are used as the SFP and SSP, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a Bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

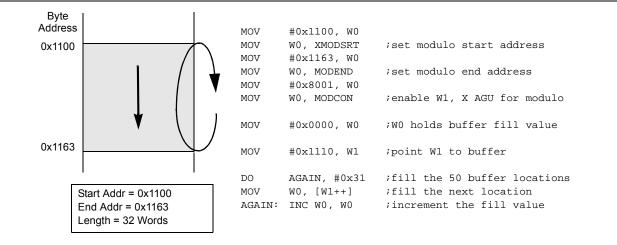
4.5.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.5.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags, as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:


- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM) to which Modulo Addressing is to be applied is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X Data Space when XWM is set to any value other than '1111' and the XMODEN bit (MODCON<15>) is set

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y Data Space when YWM is set to any value other than '1111' and the YMODEN bit (MODCON<14>) is set.

Figure 4-15 shows an example of Modulo Addressing operation.

Note: Y Data Space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear).

FIGURE 4-15: MODULO ADDRESSING OPERATION EXAMPLE

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset
 - Illegal Address Mode Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this device data sheet for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR and BOR bits (RCON<1:0>) that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in the other sections of this device data sheet.

Note: The status bits in the RCON register should be cleared after they are read. Therefore, the next RCON register value after a device Reset is meaningful.

Note: In all types of Resets, to select the device clock source, the contents of OSCCON are initialized from the FNOSCx Configuration bits in the FOSCSEL Configuration register.

dsPIC33EVXXXGM00X/10X FAMILY

▲	Reserved	BSLIM<12:0>(1) + 0x000000	
	Reserved	BSLIM<12:0> ⁽¹⁾ + 0x000002	
	Oscillator Fail Trap Vector	BSLIM<12:0>(1) + 0x000004	
	Address Error Trap Vector	BSLIM<12:0> ⁽¹⁾ + 0x000006	
	Generic Hard Trap Vector	BSLIM<12:0> ⁽¹⁾ + 0x000008	
	Stack Error Trap Vector	BSLIM<12:0>(1) + 0x00000A	
	Math Error Trap Vector	BSLIM<12:0> ⁽¹⁾ + 0x00000C	
	DMAC Error Trap Vector	BSLIM<12:0> ⁽¹⁾ + 0x00000E	
	Generic Soft Trap Vector	BSLIM<12:0>(1) + 0x000010	
	Reserved	BSLIM<12:0> ⁽¹⁾ + 0x000012	
	Interrupt Vector 0	BSLIM<12:0> ⁽¹⁾ + 0x000014	
	Interrupt Vector 1	BSLIM<12:0> ⁽¹⁾ + 0x000016	
	:	:	
	:	:	
	:	:	
Σ	Interrupt Vector 52	BSLIM<12:0> ⁽¹⁾ + 0x00007C	
	Interrupt Vector 53	BSLIM<12:0> ⁽¹⁾ + 0x00007E	
	Interrupt Vector 54	BSLIM<12:0> ⁽¹⁾ + 0x000080	See Table 7-1 for
	:	:	Interrupt Vector Details
	:	:	/
	:	:	
	Interrupt Vector 116	BSLIM<12:0> ⁽¹⁾ + 0x0000FC	
	Interrupt Vector 117	BSLIM<12:0> ⁽¹⁾ + 0x00007E	
	Interrupt Vector 118	BSLIM<12:0>(1) + 0x000100	
	Interrupt Vector 119	BSLIM<12:0> ⁽¹⁾ + 0x000102	
	Interrupt Vector 120	BSLIM<12:0> ⁽¹⁾ + 0x000104	
	:	:	
	:	:	
	:	:	
	Interrupt Vector 244	BSLIM<12:0> ⁽¹⁾ + 0x0001FC	
V	Interrupt Vector 245	BSLIM<12:0> ⁽¹⁾ + 0x0001FE	
Note	 The address depends on the si [(BSLIM<12:0> – 1) x 0x400] + 	ze of the Boot Segment defined by Offset.	y BSLIM<12:0>:

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT	DL2	DL1	DL0
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0
Legend:		C = Clearable	e bit				
R = Readable	bit $W = Writable bit$ $U = Unimplemented bit read as '0'$						

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 VAR: Variable Exception Processing Latency Control bit 1 = Variable exception processing latency is enabled 0 = Fixed exception processing latency is enabled

bit 3 **IPL3:** CPU Interrupt Priority Level Status bit 3⁽²⁾

1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

x = Bit is unknown

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—		_	—
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSADR	<23:16>			
bit 7							bit 0
Legend:							
R = Readable bi	it	W = Writable bit U = Unimplemented bit, read as '0'					

'0' = Bit is cleared

REGISTER 8-9: DSADRH: DMA MOST RECENT RAM HIGH ADDRESS REGISTER

bit 15-8 **Unimplemented:** Read as '0'

-n = Value at POR

bit 7-0 DSADR<23:16>: Most Recent DMA Address Accessed by DMA bits

'1' = Bit is set

REGISTER 8-10: DSADRL: DMA MOST RECENT RAM LOW ADDRESS REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			DSAI	DR<15:8>				
bit 15							bit 8	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
DSADR<7:0>								
bit 7							bit 0	
Legend:								
R = Readable bit	le bit W = Writable bit U =			U = Unimplem	U = Unimplemented bit, read as '0'			
-n = Value at POR	OR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			iown	

bit 15-0 DSADR<15:0>: Most Recent DMA Address Accessed by DMA bits

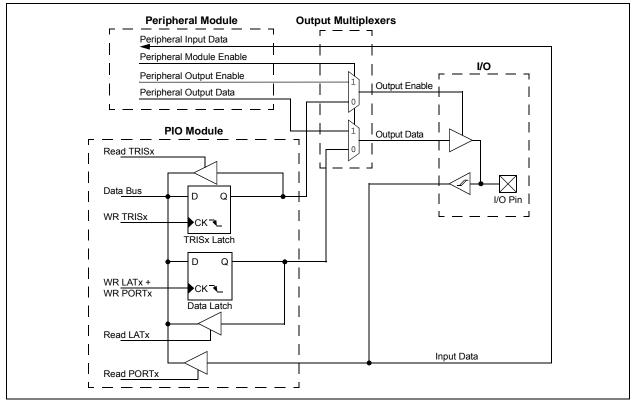
11.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports" (DS7000598) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Many of the device pins are shared among the peripherals and the Parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity. All the pins in the device are 5V tolerant pins.

11.1 Parallel I/O (PIO) Ports

Generally, a Parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.


When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have eight registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the Data Direction register bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch; writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device are disabled. This means that the corresponding LATx and TRISx registers, and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port, because there is no other competing source of output.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

© 2013-2016 Microchip Technology Inc.

REGISTER 17-10: DTRx: PWMx DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	_		DTRx<13:8>					
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			DTR	x<7:0>				
bit 7							bit	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set	s set '0' = Bit is cl		ared	x = Bit is unkr	nown	

bit 15-14Unimplemented: Read as '0'bit 13-0DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 17-11: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			ALTDTF	Rx<13:8>		
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ALTDTRx<7:0>								
bit 7							bit 0	

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Alternate Dead-Time Value for PWMx Dead-Time Unit bits

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
FRMEN	SPIFSD	FRMPOL	—	—	_	—		
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
—	_	—	_	—	_	FRMDLY	SPIBEN	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimpler	mented bit, rea	ad as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15	FRMEN: Fra	med SPIx Suppo	ort bit					
				x pin is used as	the Frame Sy	nc pulse input/or	utput)	
		SPIx support is c						
bit 14		lx Frame Sync P		on Control bit				
		ync pulse input (ync pulse output						
bit 13		ame Sync Pulse	. ,					
DIL 13		ync pulse is activ	5					
		ync pulse is activ						
bit 12-2		nted: Read as '0						
bit 1	•	ame Sync Pulse		t bit				
	1 = Frame Sync pulse coincides with the first bit clock							
	0 = Frame Sync pulse precedes the first bit clock							
bit 0	SPIBEN: SP	Ix Enhanced But	ffer Enable b	bit				
	1 = Enhanced buffer is enabled							
	0 = Enhanced buffer is disabled (Standard mode)							

REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2

REGISTER 22-24: CxRXOVF1: CANx RECEIVE BUFFER OVERFLOW REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXOVF	-<15:8>			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXOV	F<7:0>			
bit 7							bit 0
Legend:		C = Writable	bit, but only '0'	can be writter	n to clear the bit		

Logena.	$\mathbf{O} = \mathbf{V}$ include bit, but only \mathbf{O}		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	i as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **RXOVF<15:0>:** Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

REGISTER 22-25: CxRXOVF2: CANx RECEIVE BUFFER OVERFLOW REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
			RXOV	F<31:24>				
bit 15							bit 8	
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
			RXOV	F<23:16>				
bit 7							bit 0	
Legend:		C = Writable b	it, but only '()' can be written	to clear the b	bit		
R = Readable	bit	W = Writable b	bit	U = Unimplen	nented bit, rea	ad as '0'		
-n = Value at P	'OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				

bit 15-0 **RXOVF<31:16>:** Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

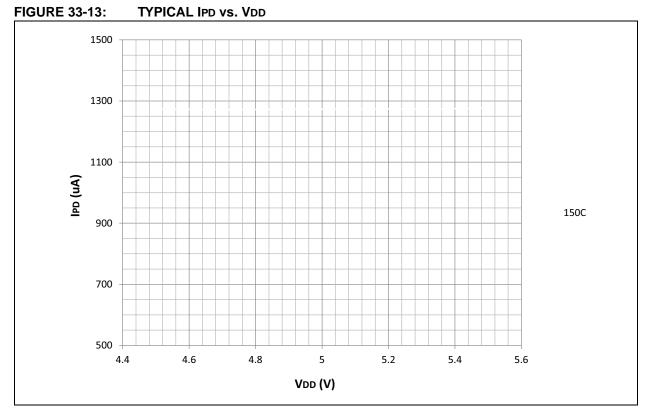
REGISTER	24-2: ADx	CON2: ADCx (CONTROL RI	EGISTER 2			
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
VCFG2 ⁽¹⁾	VCFG1 ⁽¹⁾	VCFG0 ⁽¹⁾	—	—	CSCNA	CHPS1	CHPS0
bit 15							bit
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS
bit 7			0111112			Dor m	bit
<u> </u>							
Legend: R = Readable	, hit	W = Writable I	sit	II – Unimplor	monted bit read		
-n = Value at		'1' = Bit is set	JIL	'0' = Bit is cle	nented bit, read	x = Bit is unkr	
	PUR	I = DILIS SEL			areu	X = DILIS UNKI	IOWII
bit 15-13	VCFG<2:0>	. Converter Volta	ge Reference	Configuration I	bits ⁽¹⁾		
	Value	VREFH	VREFL				
	xxx	AVdd	AVss				
bit 12-11	Unimpleme	ented: Read as '0	,				
bit 10	CSCNA: Inp	out Scan Select b	it				
		nputs for CH0+ d	uring Sample N	/UX A			
	0 = Does no	ot scan inputs					
bit 9-8	CHPS<1:0>	Channel Select	bits				
		de (AD21B = 1),		ts are Unimple	emented and ar	e Read as '0':	
		rts CH0, CH1, CH	12 and CH3				
	01 = Conve	rts CH0 and CH1 rts CH0					
bit 7		er Fill Status bit (only valid when	BUFM = 1			
		s currently filling t	-	-	he user applicat	ion should acce	ess data in th
		f of the buffer		,			
		s currently filling		the buffer; the	e user application	on should acce	ss data in th
		half of the buffer					
bit 6-2		Increment Rate	bits				
	When ADD		- (1				_
		enerates interrupt enerates interrupt					
	•						
	•						
	•						
		enerates interrupt enerates interrupt					
	When ADD	-	and complete		npic/conversion	roperation	
		crements the DM/	A address after	completion of	every 32nd sa	mple/conversio	n operation
		crements the DM					
	•				-		
	•						
	• 00001 = lpc	crements the DM	A address after	completion of	every 2nd sam	nle/conversion	operation
		crements the DM					
Note 1. TL		H Input is connec	tod to AVpp		put in passa-t-	d to AV/aa	
NOLE I: IN		·□ πουπis connec	ieu iu aviju ar	IU IIIE VREEL III	IOULIS CONNECTE	UIUAVSS.	

REGISTER 24-2: ADxCON2: ADCx CONTROL REGISTER 2

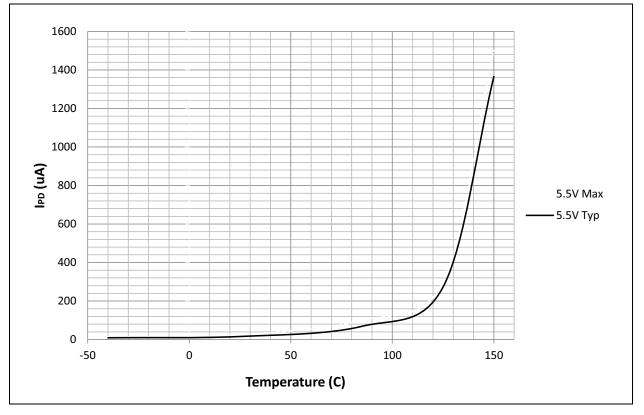
Note 1: The ADCx VREFH Input is connected to AVDD and the VREFL input is connected to AVss.

DC CHARACT	ARACTERISTICS (unles			tandard Operating Conditions: 4.5V to 5.5V inless otherwise stated) perating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Parameter No.	Typ. ⁽²⁾	Max.	Units Conditions						
Power-Down Current (IPD) – dsPIC33EVXXXGM00X/10X ⁽¹⁾									
DC60d	9.25	30	μA	-40°C					
DC60a	15.75	35	μA	+25°C	E OV	Base Power-Down Current			
DC60b	67.75	250	μA	+85°C	5.0V				
DC60c	270	750	μA	+125°C					
DC61d	1	7	μA	-40°C					
DC61a	1.25	8	μA	+25°C	=	Watchdog Timer Current: ∆IwDT ⁽³⁾			
DC61b	3.5	12	μA	+85°C	5.0V				
DC61c	5	15	μA	+125°C					

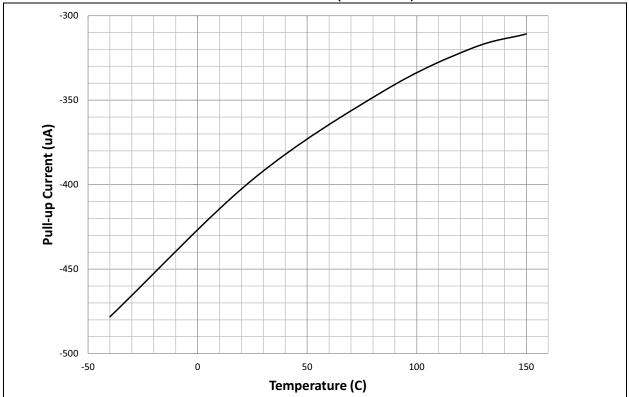
TABLE 30-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

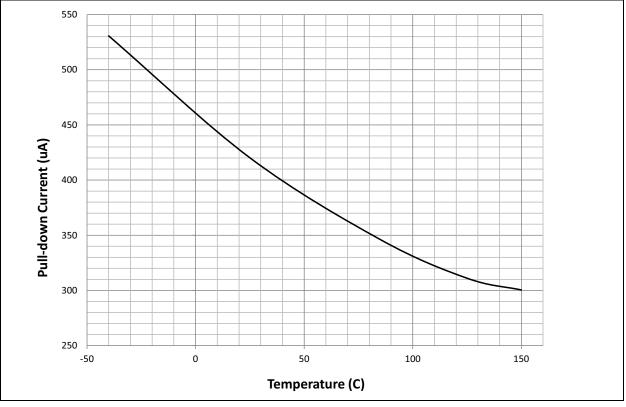

Note 1: IPD (Sleep) current is measured as follows:

 CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

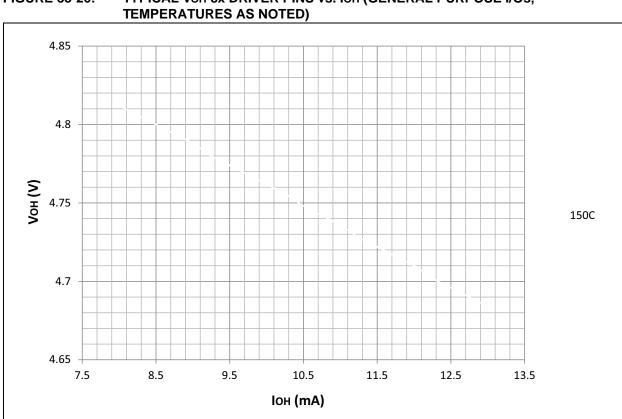

- · CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all ones)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- **2:** Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.
- **3:** The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

dsPIC33EVXXXGM00X/10X FAMILY


33.4 IPD



33.8 Pull-up/Pull-Down Current



33.10 Voltage Output Low (VOL) – Voltage Output High (VOH)

FIGURE 33-26: TYPICAL VOH 8x DRIVER PINS vs. IOH (GENERAL PURPOSE I/Os,

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2013-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0975-5