

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev32gm102-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.7 Arithmetic Logic Unit (ALU)

The dsPIC33EVXXXGM00X/10X family ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. The data for the ALU operation can come from the W register array or from the data memory, depending on the addressing mode of the instruction. Similarly, the output data from the ALU can be written to the W register array or a data memory location.

For information on the SR bits affected by each instruction, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157).

The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.7.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit signed x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.7.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

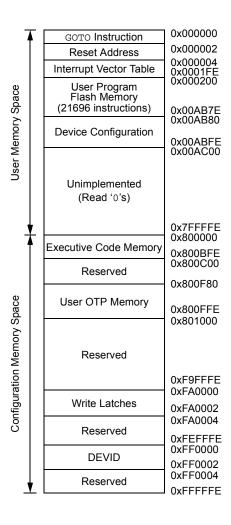
- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes the single-cycle per bit of the divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

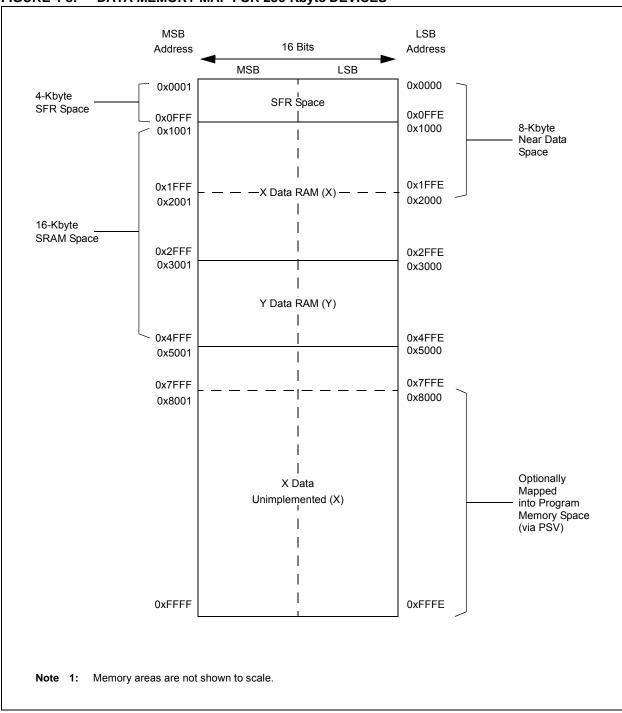
3.8 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumulatorto-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.


The DSP engine has options selected through bits in the CPU Core Control register (CORCON) as follows:

- Fractional or Integer DSP Multiply (IF)
- Signed, Unsigned or Mixed-Sign DSP Multiply (US)
- Conventional or Convergent Rounding (RND)
- · Automatic Saturation On/Off for ACCA (SATA)
- Automatic Saturation On/Off for ACCB (SATB)
- Automatic Saturation On/Off for Writes to Data Memory (SATDW)
- Accumulator Saturation mode Selection (ACCSAT)


TABLE 3-2:DSP INSTRUCTIONSSUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	$A = x \bullet y$	No
MPY	$A = x^2$	No
MPY.N	$A = -x \bullet y$	No
MSC	$A = A - x \bullet y$	Yes

Note 1: Memory areas are not shown to scale.

4.3 Special Function Register Maps

TABLE 4-1: CPU CORE REGISTER MAP

	- • •			LOISIL																			
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset s					
W0	0000								W0 (W	REG)								0000					
W1	0002								Ŵ									0000					
W2	0004								W	2								0000					
W3	0006								W	3								0000					
W4	0008												0000										
W5	000A								W	5								0000					
W6	000C								We	6								0000					
W7	000E								W	7								0000					
W8	0010								W	3								0000					
W9	0012								W	9								0000					
W10	0014								W1	0								0000					
W11	0016								W1	1								0000					
W12	0018										0000												
W13	001A								W1	3								0000					
W14	001C								W1	4								0000					
W15	001E								W1	5								0800					
SPLIM	0020								SPL	IM								xxxx					
ACCAL	0022								ACC	AL								xxxx					
ACCAH	0024								ACC	AH								xxxx					
ACCAU	0026			Sig	n Extension	of ACCA<3	9>						ACC	CAU				xxxx					
ACCBL	0028								ACC	BL								xxxx					
ACCBH	002A								ACC	BH								xxxx					
ACCBU	002C			Sig	n Extension	of ACCB<3	9>						ACC	CBU				xxxx					
PCL	002E						Pro	ogram Cou	nter Low We	ord Register	r						_	0000					
PCH	0030	_	_	_	_	_	_	_	_	_		F	Program Cou	inter High W	ord Registe	r		0000					
DSRPAG	0032	_	_	_	_	_	_				Dat	a Space Re	ad Page Reg	gister				0001					
DSWPAG	0034	_	_	_	_	_	_	_				Data Spa	ce Write Pag	e Register				0001					
RCOUNT	0036							REPEAT LC	op Counter	Register							0	xxxx					
DCOUNT	0038							DC	OUNT<15:1	>							0	xxxx					
DOSTARTL	003A							DOS	TARTL<15	:1>							0	xxxx					
DOSTARTH	003C	_	_		_	_		_	_	_	_			DOSTART	H<5:0>			00xx					
DOENDL	003E							DO	ENDL<15:1	>							—	xxxx					
Lonondi														Point where a Departs — a unimplemented read as (a). Departurely a shown is howed as incl									

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

NOTES:

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			SENT	1R<7:0>						
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—		—	—	—	—	—	—			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 15-8	(see Table 1	0>: Assign SEN 1-2 for input pin Input tied to RI	selection nur		esponding RP	n Pin bits				
		Input tied to CI								

REGISTER 11-16: RPINR44: PERIPHERAL PIN SELECT INPUT REGISTER 44

REGISTER 11-17: RPINR45: PERIPHERAL PIN SELECT INPUT REGISTER 45

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	-	_	—	—	_	—	
bit 15							bit 8	
DAMA	D/M/ O							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			SENT	2R<7:0>				
bit 7							bit 0	
Legend:								
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-8	Unimplemer	ted: Read as '	0'					
bit 7-0	(see Table 11 10110101 = • •	 Assign SEN 2 for input pin Input tied to RI Input tied to CI 	selection nun PI181		responding RPr	Pin bits		
		Input tied to Vs						

16.1 Output Compare Control Registers

REGISTER 16-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0			
	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	—			
bit 15							bit 8			
R/W-0	U-0	U-0	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0			
ENFLTA	<u> </u>	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0			
bit 7							bit (
Legend:		HSC = Hardv	vare Settable/Cl	earable bit						
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unkn	iown			
bit 12-10	OCTSEL<2:0 111 = Periphe 110 = Reserv 101 = Reserv 100 = T1CLK 011 = T5CLK 010 = T4CLK	>: Output Con eral clock (FP) red is the clock so is the clock so is the clock so	ource of the OC ource of the OC ource of the OC	elect bits x (only the syne x x		s is supported)				
	001 = T3CLK is the clock source of the OCx 000 = T2CLK is the clock source of the OCx									
bit 9-8	Unimplemen	ted: Read as '	0'							
bit 7	1 = Output C	ompare Fault	k Fault A Input E A (OCFA) input A (OCFA) input	is enabled						
bit 6-5	-	ted: Read as '								
bit 4	1 = PWM Fai	ult A condition	ndition Status bit on the OCFA pi on the OCFA pi	in has occurred						
bit 3	1 = TRIGSTA	T (OCxCON2	Mode Select bit <6>) is cleared v nly by software		= OCxTMR or i	n software				

Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

NOTES:

20.2 Transmit Mode

By default, the SENTx module is configured for transmit operation. The module can be configured for continuous asynchronous message frame transmission, or alternatively, for Synchronous mode triggered by software. When enabled, the transmitter will send a Sync followed by the appropriate number of data nibbles, an optional CRC and optional pause pulse. The tick period used by the SENTx transmitter is set by writing a value to the TICKTIME<15:0> (SENTxCON2<15:0>) bits. The tick period calculations are shown in Equation 20-1.

EQUATION 20-1: TICK PERIOD CALCULATION

 $TICKTIME < 15:0 > = \frac{TTICK}{TCLK} - 1$

An optional pause pulse can be used in Asynchronous mode to provide a fixed message frame time period. The frame period used by the SENTx transmitter is set by writing a value to the FRAMETIME<15:0> (SENTxCON3<15:0>) bits. The formulas used to calculate the value of frame time are shown in Equation 20-2.

EQUATION 20-2: FRAME TIME CALCULATIONS

FRAMETIME<15:0> = TTICK/TFRAME

FRAMETIME<15:0> \geq 122 + 27*N*

 $FRAMETIME < 15:0 \ge 848 + 12N$

Where:

 T_{FRAME} = Total time of the message from ms N = The number of data nibbles in message, 1-6

Note: The module will not produce a pause period with less than 12 ticks, regardless of the FRAMETIME<15:0> value. FRAMETIME<15:0> values beyond 2047 will have no effect on the length of a data frame.

20.2.1 TRANSMIT MODE CONFIGURATION

20.2.1.1 Initializing the SENTx Module:

Perform the following steps to initialize the module:

- 1. Write RCVEN (SENTxCON1<11>) = 0 for Transmit mode.
- Write TXM (SENTxCON1<10>) = 0 for Asynchronous Transmit mode or TXM = 1 for Synchronous mode.
- 3. Write NIBCNT<2:0> (SENTxCON1<2:0>) for the desired data frame length.
- 4. Write CRCEN (SENTxCON1<8>) for hardware or software CRC calculation.
- 5. Write PPP (SENTxCON1<7>) for optional pause pulse.
- 6. If PPP = 1, write TFRAME to SENTxCON3.
- 7. Write SENTxCON2 with the appropriate value for desired tick period.
- 8. Enable interrupts and set interrupt priority.
- 9. Write initial status and data values to SENTxDATH/L.
- 10. If CRCEN = 0, calculate CRC and write the value to CRC<3:0> (SENTxDATL<3:0>).
- 11. Set the SNTEN (SENTxCON1<15>) bit to enable the module.

User software updates to SENTxDATH/L must be performed after the completion of the CRC and before the next message frame's status nibble. The recommended method is to use the message frame completion interrupt to trigger data writes.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
_	—	—	—	—	—	—	—					
bit 15							bit 8					
R-0	R-0	R-0	R-0	R-0	R/C-0	R-0	R/W-0, HC					
PAUSE	NIB2	NIB1	NIB0	CRCERR	FRMERR	RXIDLE	SYNCTXEN ⁽¹⁾					
bit 7	NIDZ	NIDT	NIBO	GROLIN		AR RAIDLE STINGTA						
5107							bit (
Legend:		C = Clearabl	e bit	HC = Hardwa	are Clearable b	oit						
R = Readab	ole bit	W = Writable	e bit	U = Unimple	mented bit, rea	id as '0'						
-n = Value a	at POR	'1' = Bit is se	•t	'0' = Bit is cle	eared	x = Bit is unk	nown					
bit 15-8	-	nted: Read as										
bit 7		se Period Stat										
			ting/receiving a smitting/receiving a		riod							
oit 6-4		ibble Status bi	-	ng a pause per								
Module in Transmit Mode (RCVEN = 0):												
		111 = Module is transmitting a CRC nibble										
		110 = Module is transmitting Data Nibble 6										
		101 = Module is transmitting Data Nibble 5 100 = Module is transmitting Data Nibble 4										
			ng Data Nibble ng Data Nibble									
			ng Data Nibble									
			ng a status nibb		riod, or is not t	ransmitting						
		eceive Mode (F										
			a CRC nibble o									
			Data Nibble 6 c									
			Data Nibble 5 c Data Nibble 4 c									
			Data Nibble 3 c									
		•	Data Nibble 2 c		•							
			Data Nibble 1 c			hen an error o	ccurred					
		-	a status nibble	-	Sync							
bit 3			Receive mode	• ·								
	 1 = A CRC error occurred for the 1-6 data nibbles in SENTxDATH/L 0 = A CRC error has not occurred 											
oit 2	FRMERR: Fr	aming Error S	tatus bit (Rece	ive mode only))							
		•	ived with less t	• •		than 27 tick p	eriods					
		error has not o			-							
oit 1	RXIDLE: SE	NTx Receiver	Idle Status bit (Receive mode	e only)							
			as been Idle (h	igh) for a perio	d of SYNCMA	X<15:0> or gre	eater					
	0 = The SEN	Tx data bus is	not Idle									
Note 1: II	n Receive mode	(RCVEN = 1)	the SYNCTXE	EN bit is read-c	only.							

REGISTER 20-2: SENTxSTAT: SENTx STATUS REGISTER

Note 1: In Receive mode (RCVEN = 1), the SYNCTXEN bit is read-only.

22.0 CONTROLLER AREA NETWORK (CAN) MODULE (dsPIC33EVXXXGM10X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Enhanced Controller Area Network (ECAN™)" (DS70353) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

22.1 Overview

The Controller Area Network (CAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/ protocol was designed to allow communications within noisy environments. The dsPIC33EVXXXGM10X devices contain one CAN module.

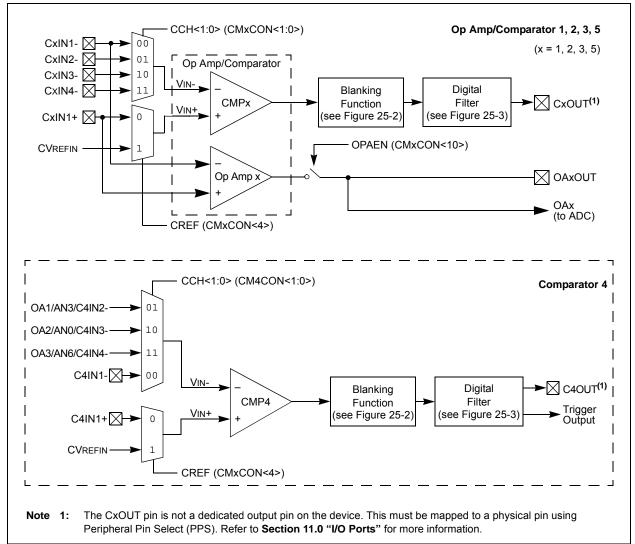
The CAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details. The CAN module features are as follows:

- Implementation of the CAN Protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and Extended Data Frames
- 0 to 8-Byte Data Length
- Programmable Bit Rate, up to 1 Mbit/sec
- Automatic Response to Remote Transmission Requests
- Up to Eight Transmit Buffers with Application Specified Prioritization and Abort Capability (each buffer can contain up to 8 bytes of data)
- Up to 32 Receive Buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 Full (Standard/Extended Identifier) Acceptance Filters
- Three Full Acceptance Filter Masks
- DeviceNet[™] Addressing Support
- Programmable Wake-up Functionality with Integrated Low-Pass Filter
- Programmable Loopback Mode Supports Self-Test Operation
- Signaling through Interrupt Capabilities for All CAN Receiver and Transmitter Error States
- Programmable Clock Source
- Programmable Link to Input Capture 2 (IC2) module for Timestamping and Network Synchronization
- Low-Power Sleep and Idle Modes

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors, and then matched against filters to see if it should be received and stored in one of the Receive registers.

Figure 22-1 shows a block diagram of the CANx module.

25.0 OP AMP/COMPARATOR MODULE


- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "**Op Amp/Comparator**" (DS70000357) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EVXXXGM00X/10X family devices contain up to five comparators that can be configured in various ways. CMP1, CMP2, CMP3 and CMP5 also have the option to be configured as op amps, with the output being brought to an external pin for gain/filtering connections. As shown in Figure 25-1, individual comparator options are specified by the comparator module's Special Function Register (SFR) control bits.

The following options allow users to:

- Select the Edge for Trigger and Interrupt Generation
- Configure the Comparator Voltage Reference
- Configure Output Blanking and Masking
- Configure as a Comparator or Op Amp (CMP1, CMP2, CMP3 and CMP5 only)

Note: Not all op amp/comparator input/output connections are available on all devices. See the "Pin Diagrams" section for available connections.

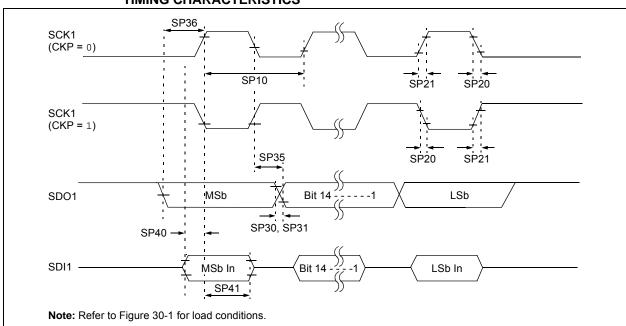


FIGURE 25-1: OP AMP/COMPARATOR x MODULE BLOCK DIAGRAM

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
53	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
54	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = $f + 1$	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
55	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
56	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
57	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
58	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
59	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
60	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
61	RESET	RESET		Software device Reset	1	1	None
62	RETFIE	RETFIE		Return from interrupt	1	6 (5)	SFA

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

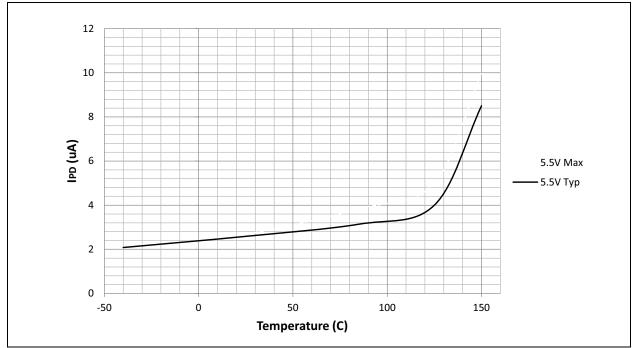
Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

FIGURE 30-22: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

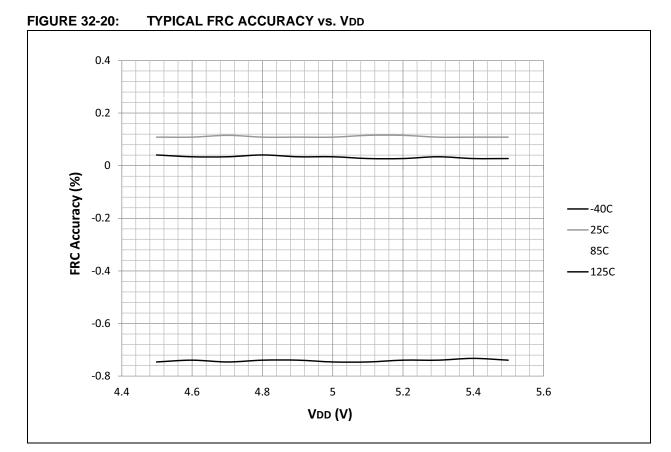
TABLE 30-40:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

АС СНА	RACTERIST	ICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions		
SP10	FscP	Maximum SCK1 Frequency		_	25	MHz	See Note 3		
SP20	TscF	SCK1 Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4		
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4		
SP30	TdoF	SDO1 Data Output Fall Time	—	—		ns	See Parameter DO32 and Note 4		
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns			
SP36	TdoV2sc, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	—	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	—	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	—		ns			

Note 1: These parameters are characterized but not tested in manufacturing.

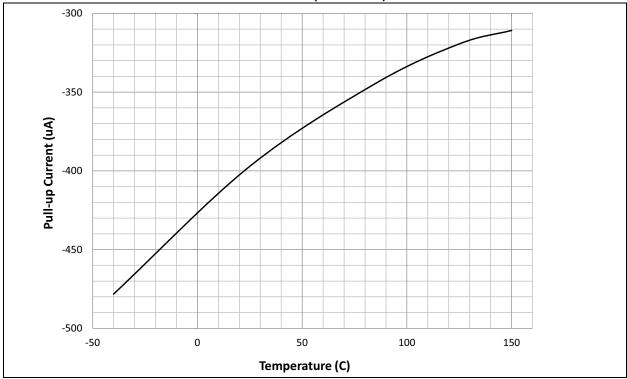

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

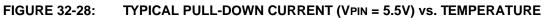

4: Assumes 50 pF load on all SPI1 pins.

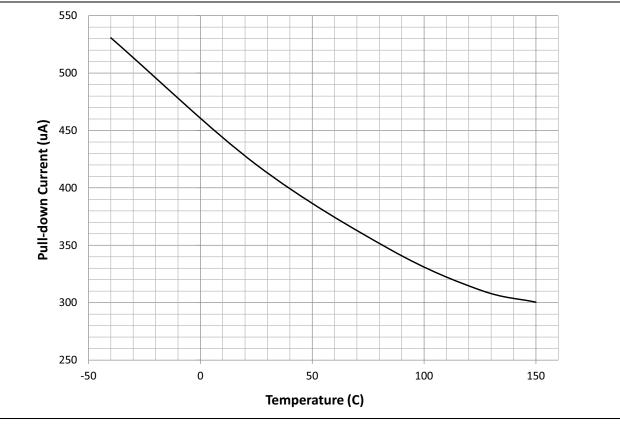
dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 32-19: TYPICAL/MAXIMUM △IwDT vs. TEMPERATURE

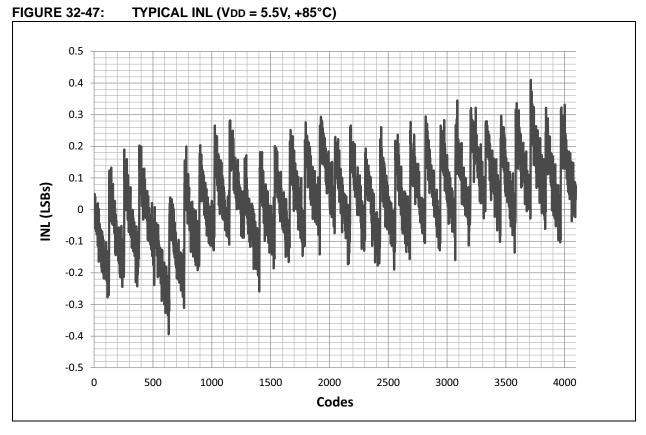


32.5 FRC




DS70005144E-page 422

32.8 Pull-up and Pull-Down Current



dsPIC33EVXXXGM00X/10X FAMILY

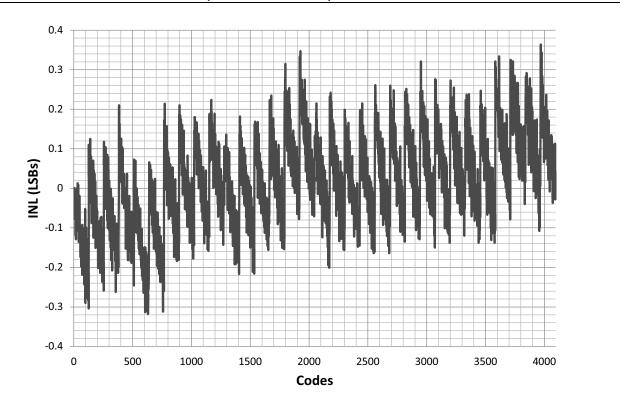
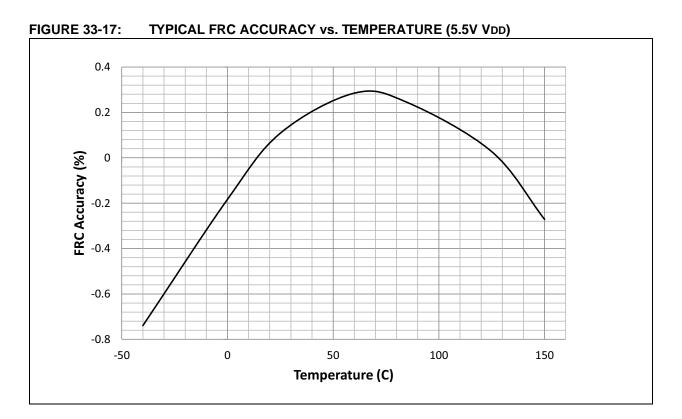
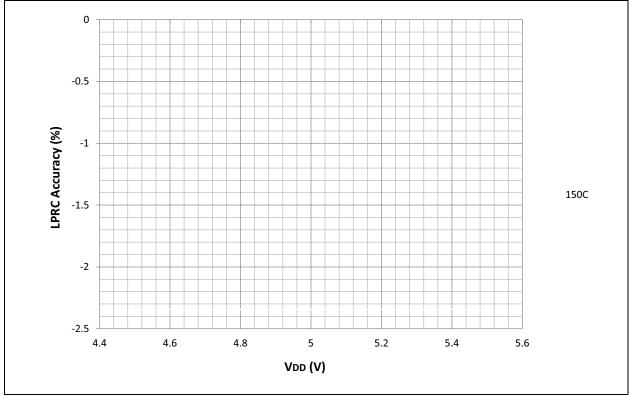
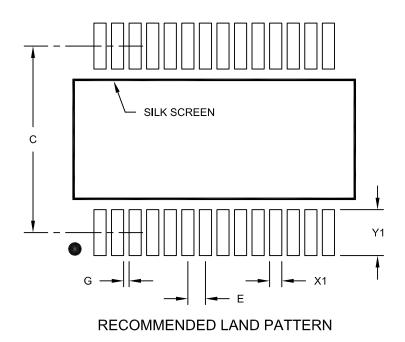




FIGURE 32-48: TYPICAL INL (VDD = 5.5V, +125°C)

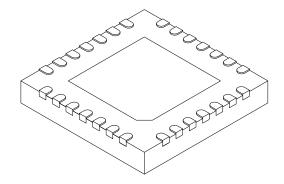


28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensior	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing	С		7.20		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	MIN	NOM	MAX				
Number of Pins	N		28				
Pitch	е		0.65 BSC				
Overall Height	A	0.80	0.90	1.00			
Standoff	A1	0.00	0.02	0.05			
Terminal Thickness	rminal Thickness A3 0.20 REF						
Overall Width	E		6.00 BSC				
Exposed Pad Width	E2	3.65	3.70	4.70			
Overall Length	D		6.00 BSC				
Exposed Pad Length	D2	3.65	3.70	4.70			
Terminal Width	b	0.23	0.30	0.35			
Terminal Length	L	0.30	0.40	0.50			
Terminal-to-Exposed Pad	K	0.20	-	-			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124C Sheet 2 of 2