

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev32gm102t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Type	Buffer Type	PPS	Description			
AVDD	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.			
AVss	Р	Р	No	Ground reference for analog modules.			
Vdd	Р	—	No	Positive supply for peripheral logic and I/O pins.			
VCAP	Р	_	No	CPU logic filter capacitor connection.			
Vss	Р	_	No	Ground reference for logic and I/O pins.			
Legend: CMOS = CM ST = Schmit		•					

PPS = Peripheral Pin Select

TTL = TTL input buffer

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
ROON		ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾					
bit 15							bit 8					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
		_	—	—	—	—	—					
bit 7							bit					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown					
bit 15		rence Oscillato	•									
				on the REFCL	-K pin ⁽²⁾							
		e oscillator out	1	1								
bit 14	-	ted: Read as '										
bit 13	ROSSLP: Reference Oscillator Run in Sleep bit											
	 1 = Reference oscillator output continues to run in Sleep mode 0 = Reference oscillator output is disabled in Sleep mode 											
bit 12	ROSEL: Reference Oscillator Source Select bit											
	1 = Oscillator crystal is used as the reference clock											
	-	lock is used as										
bit 11-8	RODIV<3:0>	: Reference Os	cillator Divide	er bits ⁽¹⁾								
	1111 = Reference clock divided by 32,768											
	1110 = Reference clock divided by 16,384 1101 = Reference clock divided by 8,192											
	1101 = Reference clock divided by 8,192 1100 = Reference clock divided by 4,096											
	1011 = Reference clock divided by 2,048											
	1010 = Reference clock divided by 1,024 1001 = Reference clock divided by 512											
	1000 = Reference clock divided by 256 0111 = Reference clock divided by 128											
	0110 = Reference clock divided by 64											
	0101 = Reference clock divided by 32											
		rence clock divi rence clock divi										
		rence clock divi	•									
	0001 = Refer											
	0000 = Refer											

REGISTER 9-5: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 11.5 "Peripheral Pin Select (PPS)" for more information.

REGISTER 11-20: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0
bit 15		-					bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP39R<5:0>: Peripheral Output Function is Assigned to RP39 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP38R<5:0>: Peripheral Output Function is Assigned to RP38 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-21: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP41R<5:0>:** Peripheral Output Function is Assigned to RP41 Output Pin bits (see Table 11-3 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP40R<5:0>:** Peripheral Output Function is Assigned to RP40 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 15-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0	SYNCSEL<4:0>: Input Source Select for Synchronization and Trigger Operation bits ⁽⁴⁾
	11111 = Reserved
	11110 = Reserved
	1110 = Reserved
	11100 = CTMU trigger is the source for the capture timer synchronization
	11011 = ADC1 interrupt is the source for the capture timer synchronization ⁽⁵⁾
	11010 = Analog Comparator 3 is the source for the capture timer synchronization ⁽⁵⁾
	11001 = Analog Comparator 2 is the source for the capture timer synchronization ⁽⁵⁾
	11000 = Analog Comparator 1 is the source for the capture timer synchronization ⁽⁵⁾
	10111 = Analog Comparator 5 is the source for the capture timer synchronization ⁽⁵⁾
	10110 = Analog Comparator 4 is the source for the capture timer synchronization ⁽⁵⁾
	10101 = Reserved
	10100 = Reserved
	10011 = Input Capture 4 interrupt is the source for the capture timer synchronization
	10010 = Input Capture 3 interrupt is the source for the capture timer synchronization
	10001 = Input Capture 2 interrupt is the source for the capture timer synchronization
	10000 = Input Capture 1 interrupt is the source for the capture timer synchronization
	01111 = GP Timer5 is the source for the capture timer synchronization
	01110 = GP Timer4 is the source for the capture timer synchronization
	01101 = GP Timer3 is the source for the capture timer synchronization
	01100 = GP Timer2 is the source for the capture timer synchronization
	01011 = GP Timer1 is the source for the capture timer synchronization
	01010 = Reserved
	01001 = Reserved
	01000 = Input Capture 4 is the source for the capture timer synchronization ⁽⁶⁾
	00111 = Input Capture 3 is the source for the capture timer synchronization ⁽⁶⁾
	00110 = Input Capture 2 is the source for the capture timer synchronization ⁽⁶⁾
	00101 = Input Capture 1 is the source for the capture timer synchronization ⁽⁶⁾ 00100 = Output Compare 4 is the source for the capture timer synchronization
	00011 = Output Compare 3 is the source for the capture timer synchronization
	00011 – Output Compare 3 is the source for the capture timer synchronization
	00001 = Output Compare 1 is the source for the capture timer synchronization
	00000 = Reserved
Note 1:	The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.

- **Note 1:** The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by the SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own sync or trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - 6: When the source ICx timer rolls over, then in the next clock cycle, trigger or synchronization occurs.

REGISTER 18-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

bit 1 SPITBF: SPIx Transmit Buffer Full Status bit 1 = Transmit has not yet started, the SPIxTXB bit is full 0 = Transmit has started, the SPIxTXB bit is empty Standard Buffer mode: Automatically set in hardware when the core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR. Enhanced Buffer mode: Automatically set in the hardware when the CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation. bit 0 SPIRBF: SPIx Receive Buffer Full Status bit 1 = Receive is complete, the SPIxRXB bit is full 0 = Receive is incomplete, the SPIxRXB bit is empty Standard Buffer mode:

Automatically set in the hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.

Enhanced Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

19.0 INTER-INTEGRATED CIRCUIT (I²C)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated Circuit™ (I²CTM)" (DS70000195) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EVXXXGM00X/10X family of devices contains one Inter-Integrated Circuit (I²C) module, I2C1.

The l^2C module provides complete hardware support for both Slave and Multi-Master modes of the l^2C serial communication standard, with a 16-bit interface.

The I²C module has the following 2-pin interface:

- The SCLx pin is clock.
- The SDAx pin is data.

The I²C module offers the following key features:

- I²C Interface Supporting Both Master and Slave modes of Operation
- I²C Slave mode Supports 7 and 10-Bit Addressing
- I²C Master mode Supports 7 and 10-Bit Addressing
- I²C Port allows Bidirectional Transfers between Master and Slaves
- Serial Clock Synchronization for I²C Port can be used as a Handshake Mechanism to Suspend and Resume Serial Transfer (SCLREL control)
- I²C Supports Multi-Master Operation, Detects Bus Collision and Arbitrates Accordingly
- · Support for Address Bit Masking up to Lower 7 Bits
- I²C Slave Enhancements:
 - SDAx hold time selection of SMBus (300 ns or 150 ns)
 - Start/Stop bit interrupt enables

Figure 19-1 shows a block diagram of the I²C module.

19.1 I²C Baud Rate Generator

The Baud Rate Generator (BRG) used for I²C mode operation is used to set the SCL clock frequency for 100 kHz, 400 kHz and 1 MHz. The BRG reload value is contained in the I2CxBRG register. The BRG will automatically begin counting on a write to the I2CxTRN register.

Equation 19-1 and Equation 19-2 provide the BRG reload formula and FSCL frequency, respectively.

EQUATION 19-1: BRG FORMULA

$$I2CxBRG = \left(\left(\frac{1}{FSCL} - Delay \right) \times \frac{FCY}{2} \right) - 2$$

Where:

Delay varies from 110 ns to 130 ns.

EQUATION 19-2: FSCL FREQUENCY

FSCL = FCY/((I2CxBRG + 2) * 2)

21.2 UART Control Registers

REGISTER 21-1: UxMODE: UARTx MODE REGISTER

REGISTER	21-1: UxMO	DE: UARTx N		TER			
R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD		UEN1	UEN0
bit 15				·	•		bit 8
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7		101100	Orodity	ыкоп	TDOLLI	TDOLLO	bit (
Legend:		HC = Hardwar	e Clearable bit	t			
R = Readable	e bit	W = Writable I	oit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15	1 = UARTx is	ARTx Enable bit s enabled; all U s disabled; all U	ARTx pins are				
	is minima						
bit 14	•	ted: Read as '0					
bit 13		Tx Stop in Idle N					
		nues module op es module opera			s Idle mode		
bit 12	IREN: IrDA [®]	Encoder and De	ecoder Enable	bit ⁽²⁾			
		oder and decod					
bit 11		le Selection for					
	1 = UxRTS p	oin is in Simplex oin is in Flow Co	mode				
bit 10		ited: Read as '0					
bit 9-8	-	IARTx Pin Enab					
	11 = UxTX, U 10 = UxTX, U 01 = UxTX, U	JxRX and BCLK JxRX, UxCTS a JxRX and UxRT nd UxRX pins a	x p <u>ins are</u> enal nd UxRTS pins S pins are enal	are enabled a bled and used;	nd used ⁽⁴⁾ UxCTS pin is o	controlled by P	ORT latches ⁽⁴
bit 7	WAKE: UAR	Tx Wake-up on	Start bit Detect	During Sleep	Mode Enable I	oit	
	in hardwa	ontinues to sam are on the follow is not enabled			generated on	the falling edge	, bit is cleare
bit 6	-	RTx Loopback	Mode Select b	it			
		k mode is enab					
		k mode is disab					
"d: tra	efer to " Univers sPIC33/PIC24 F insmit operation	amily Referenc	e <i>Manual"</i> for i	nformation on e	enabling the U		
	is feature is only	-)).		
3: Th	is feature is only	y available on 4	4-pin and 64-p	in devices.			

4: This feature is only available on 64-pin devices.

REGISTER 22-26: CxTRmnCON: CANx TX/RX BUFFER mn CONTROL REGISTER

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0				
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPRI1	TXnPRI0				
bit 15							bit 8				
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0				
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPRI1	TXmPRI0				
bit 7	170 DTH	TXDARDIN	TALKAII	IXILQIII			bit (
Logondy											
Legend: R = Readable	hit	W = Writable	hit	II – Unimplor	monted bit read						
				-	nented bit, read						
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	lown				
bit 15-8	See Definition	n for bits 7-0, co	ontrols Ruffer n	1							
bit 7											
	TXENm: TX/RX Buffer Selection bit 1 = Buffer, TRBm, is a transmit buffer										
	0 = Buffer, TRBm, is a receive buffer										
bit 6	TXABTm: Message Aborted bit ⁽¹⁾										
	1 = Message 0 = Message		smission succ	essfully							
bit 5	 0 = Message completed transmission successfully TXLARBm: Message Lost Arbitration bit⁽¹⁾ 										
		lost arbitration									
	0 = Message	did not lose arl	pitration while I	being sent							
bit 4	TXERRm: Error Detected During Transmission bit ⁽¹⁾										
		or occurred whi									
bit 3	TXREQm: Me	essage Send R	equest bit								
	1 = Requests sent	s that a messag	je be sent; the	bit automatica	ally clears when	the message	is successfull				
	0 = Clearing	the bit to '0' wh	ile set request	s a message	abort						
bit 2	RTRENm: Au	ito-Remote Tra	nsmit Enable b	oit							
		emote transmit emote transmit									
bit 1-0	TXmPRI<1:0	>: Message Tra	ansmission Pri	ority bits							
	11 = Highest 10 = High inte	message priori									

Note: The buffers, SID, EID, DLC, Data Field and Receive Status registers, are located in DMA RAM.

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC			SAMC4 ⁽¹⁾	SAMC3 ⁽¹⁾	SAMC2 ⁽¹⁾	SAMC1 ⁽¹⁾	SAMC0 ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS7 ⁽²⁾	ADCS6 ⁽²⁾	ADCS5 ⁽²⁾	ADCS4 ⁽²⁾	ADCS3 ⁽²⁾	ADCS2 ⁽²⁾	ADCS1 ⁽²⁾	ADCS0 ⁽²⁾
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 14-13	0 = Clock der Unimplemen	ernal RC clock ived from syste ted: Read as '0)'				
bit 12-8	SAMC<4:0>: 11111 = 31 T 00001 = 1 TA 00000 = 0 TA	D	īme bits ⁽¹⁾				
bit 7-0	11111111 = ' 00000010 = ' 0000001 = '	ADCx Convers TP • (ADCS<7 TP • (ADCS<7 TP • (ADCS<7 TP • (ADCS<7 TP • (ADCS<7	0> + 1) = TP • 0> + 1) = TP • 0> + 1) = TP •	256 = TAD 3 = TAD 2 = TAD			
	ese bits are only ese bits are not		-		1 and SSRCG	6 (ADxCON1<4	>) = 0.

REGISTER 24-3: ADxCON3: ADCx CONTROL REGISTER 3

dsPIC33EVXXXGM00X/10X FAMILY

R/W-	0 U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHON	IB —	CH0SB5 ^(1,3)	CH0SB4 ^(1,3)	CH0SB3 ^(1,3)	CH0SB2 ^(1,3)	CH0SB1 ^(1,3)	CH0SB0 ^(1,3)
bit 15							bit 8
R/W-		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHON	IA —	CH0SA5 ^(1,3)	CH0SA4 ^(1,3)	CH0SA3 ^(1,3)	CH0SA2 ^(1,3)	CH0SA1 ^(1,3)	CH0SA0 ^(1,3)
bit 7							bit 0
Logondi							
Legend: R = Read	table bit	W = Writable b	nit		ented bit, read	ae '0'	
	e at POR	(1) = Bit is set	JIL	'0' = Bit is clea	-	x = Bit is unkr	NWD
					lea		
bit 15		nannel 0 Negativ		for Sample MU	IX B bit		
	1 = Channe	el 0 negative inp	ut is AN1 ⁽¹⁾				
		el 0 negative inp					
bit 14	-	ented: Read as				2)	
bit 13-8		0>: Channel 0 P			e MUX B bits ^{(1,}	3)	
		Channel 0 positiv Channel 0 positiv					
		Channel 0 positiv			d aap voltage)		
	•			(III IIII	5 - F		
	•						
	• 011111 = (Channel 0 positiv	ve input is AN3	1			
		Channel 0 positiv					
	•						
	•						
	• 000001 = 0	Channel 0 positiv	ve input is AN1				
		Channel 0 positiv					
bit 7	CHONA: Ch	nannel 0 Negativ	e Input Select	for Sample MU	IX A bit		
		el 0 negative inp					
	0 = Channe	el 0 negative inp	ut is VREFL				
bit 6	Unimpleme	ented: Read as	'0'				
Note 1:	AN0 to AN7 are r		•	• •	•	•	
	determine how er	• •	· ·	-			
2:	If the op amp is a input is used.	selected (OPAE	N bit (CMxCON	N<10>) = 1), the	e OAx input is u	ised; otherwise	, the ANx
			, , , , , , , , , , , , , , , , , , ,			• • •	

REGISTER 24-6: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER

3: See the "Pin Diagrams" section for the available analog channels for each device.

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R-0				
CON	COE	CPOL	_		OPAEN ⁽²⁾	CEVT	COUT				
bit 15							bit 8				
R/W-0	R/W-0	U-0	R/W-0 CREF ⁽¹⁾	U-0	U-0	R/W-0	R/W-0				
EVPOL1 ⁽³⁾	EVPOL0 ⁽³⁾	CCH1 ⁽¹⁾	CCH0 ⁽¹⁾								
bit 7							bit C				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	CON: Op Am	p/Comparator	x Enable bit								
	1 = Op Amp/Comparator x is enabled										
	0 = Op Amp/Comparator x is disabled										
bit 14	COE: Comparator x Output Enable bit										
	 Comparator output is present on the CxOUT pin Comparator output is internal only 										
bit 13	CPOL: Comparator x Output Polarity Select bit										
	1 = Comparator output is inverted										
	0 = Comparat	tor output is no	t inverted								
bit 12-11	Unimplemen	ted: Read as '	0'								
bit 10	OPAEN: Op Amp x Enable bit ⁽²⁾										
	 1 = Op Amp x is enabled 0 = Op Amp x is disabled 										
bit 9	CEVT: Compa	arator x Event	bit								
	1 = Comparator event, according to EVPOL<1:0> settings, occurred; disables future triggers and interrupts until the bit is cleared										
	•	tor event did n									
bit 8	COUT: Comparator x Output bit										
	<u>When CPOL = 0 (non-inverted polarity):</u> 1 = VIN+ > VIN-										
	1 = VIN + 2 VIN - 0 = VIN + 2 VIN - 0										
	When CPOL = 1 (inverted polarity):										
	1 = VIN + < VIN -										
	0 = VIN + > VII	-									

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2, 3 OR 5)

- **Note 1:** Inputs that are selected and not available will be tied to Vss. See the "**Pin Diagrams**" section for available inputs for each package.
 - **2:** The op amp and the comparator can be used simultaneously in these devices. The OPAEN bit only enables the op amp while the comparator is still functional.
 - **3:** After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the Comparator x Event bit, CEVT (CMxCON<9>), and the Comparator Interrupt Flag, CMPIF (IFS1<2>), must be cleared before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

30.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EVXXXGM00X/10X family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

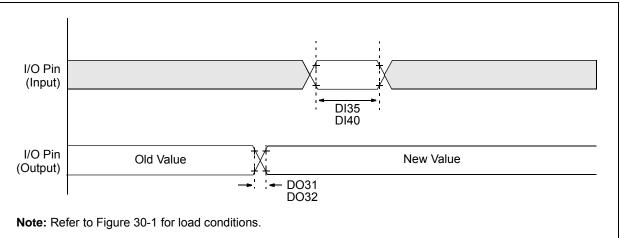
Absolute maximum ratings for the dsPIC33EVXXXGM00X/10X family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +6.0V
Voltage on VCAP with respect to Vss	1.62V to 1.98V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	
Maximum current sunk by any I/O pin	
Maximum current sourced by I/O pin	
Maximum current sourced/sunk by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).

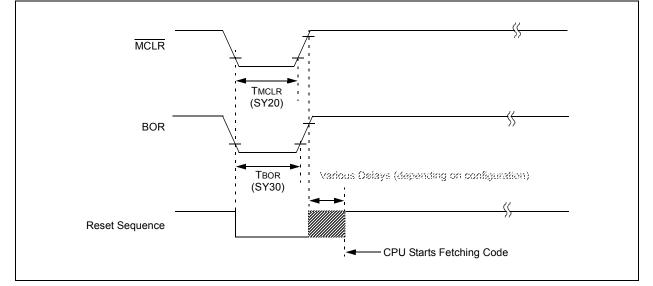
TABLE 30-10:	DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS
--------------	--

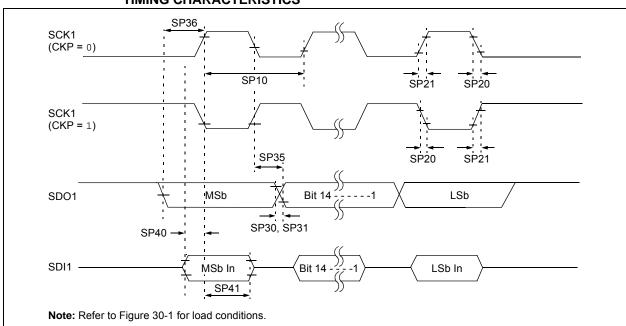

DC CHARACTERISTICS		Standard Operating C (unless otherwise stat Operating temperature		,			
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
	VIL	Input Low Voltage					
DI10		I/O Pins	Vss		0.2 Vdd	V	
	Vih	Input High Voltage					
DI20		I/O Pins	0.75 VDD		5.5	V	
DI30	ICNPU	Change Notification Pull-up Current	200	375	600	μA	VDD = 5.0V, VPIN = VSS
DI31	ICNPD	Change Notification Pull-Down Current ⁽⁷⁾	175	400	625	μA	VDD = 5.0V, VPIN = VDD
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O Pins	-100	-	100	nA	$Vss \le VPIN \le VDD,$ pin at high-impedance
DI55		MCLR	-700		700	nA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSC1	-200	_	200	nA	$\label{eq:VSS} \begin{split} &VSS \leq V PIN \leq V DD, \\ &XT \text{ and } HS \text{ modes} \end{split}$
Dl60a	licl	Input Low Injection Current	0	_	₋₅ (4,6)		All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP and RB7
DI60b	ІІСН	Input High Injection Current	0	—	+5 ^(5,6)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB7 and all 5V tolerant pins ⁽⁵⁾
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	₋₂₀ (7)	_	+20(7)		Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.
- **3:** Negative current is defined as current sourced by the pin.
- 4: VIL source < (VSS 0.3). Characterized but not tested.
- 5: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 6: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.
- 7: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

dsPIC33EVXXXGM00X/10X FAMILY




TABLE 30-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
DO31	TioR	Port Output Rise Time	_	5	10	ns		
DO32	TIOF	Port Output Fall Time	_	5	10	ns		
DI35	TINP	INTx Pin High or Low Time (input)	20	—	_	ns		
DI40	Trbp	CNx High or Low Time (input)	2	—	_	TCY		

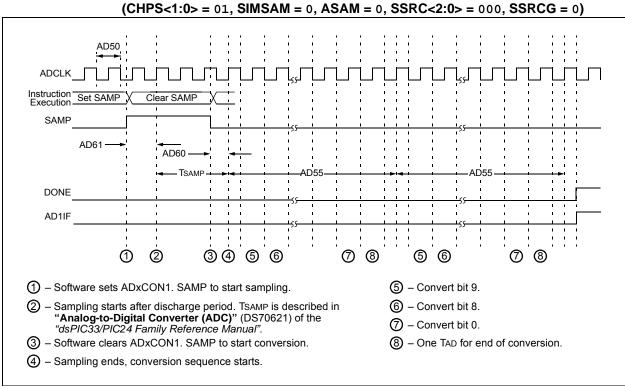
Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

FIGURE 30-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

FIGURE 30-22: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

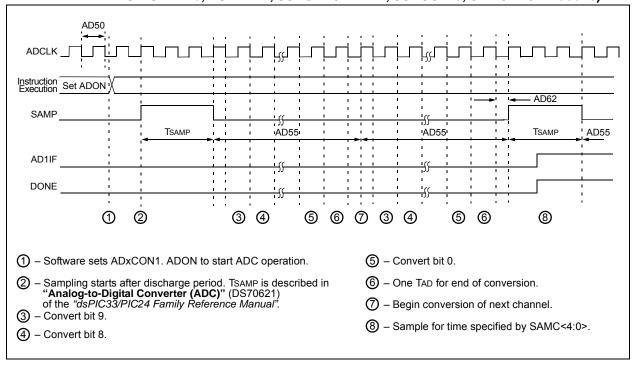
TABLE 30-40:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Param. Symbol Characteristic ⁽¹⁾			Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency	_	_	25	MHz	See Note 3
SP20	TscF	SCK1 Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDO1 Data Output Fall Time	—	—		ns	See Parameter DO32 and Note 4
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2sc, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	—		ns	


Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.


4: Assumes 50 pF load on all SPI1 pins.

dsPIC33EVXXXGM00X/10X FAMILY

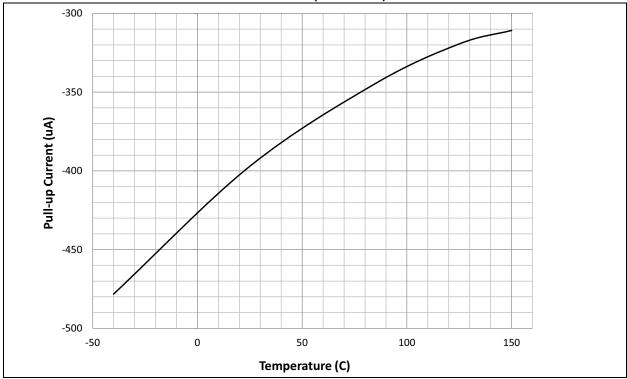
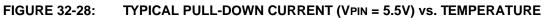
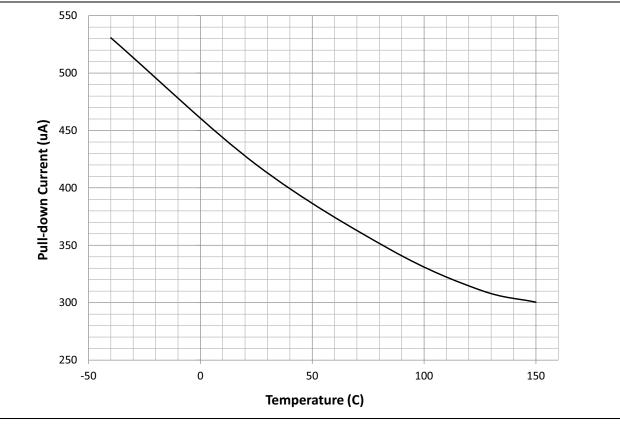
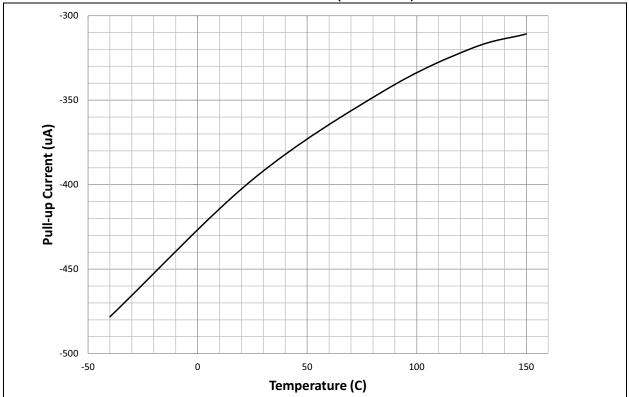


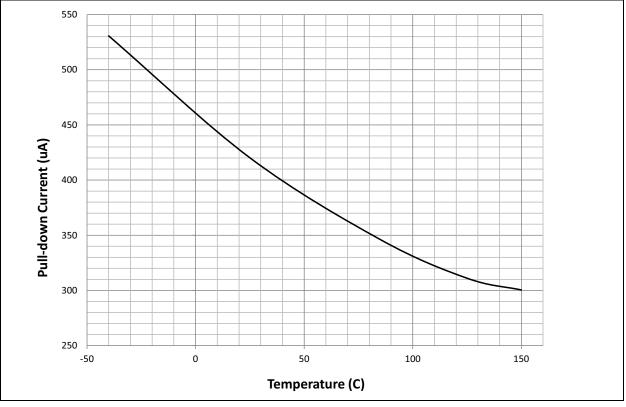
FIGURE 30-35: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS


FIGURE 30-36: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SSRCG = 0, SAMC<4:0> = 00010)

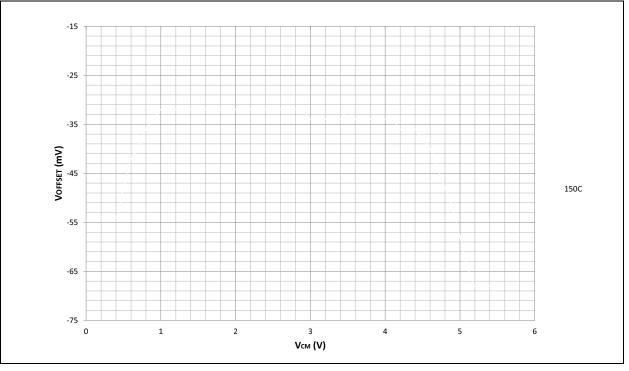


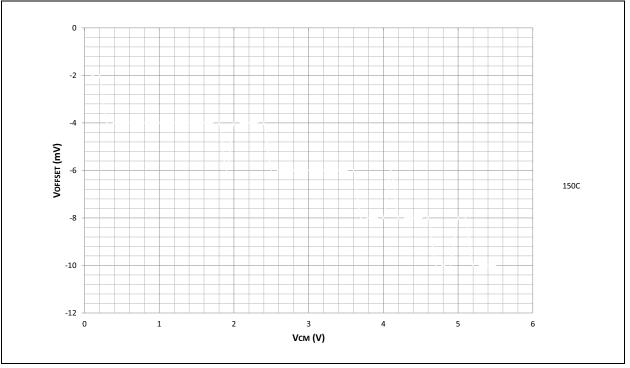
32.8 Pull-up and Pull-Down Current





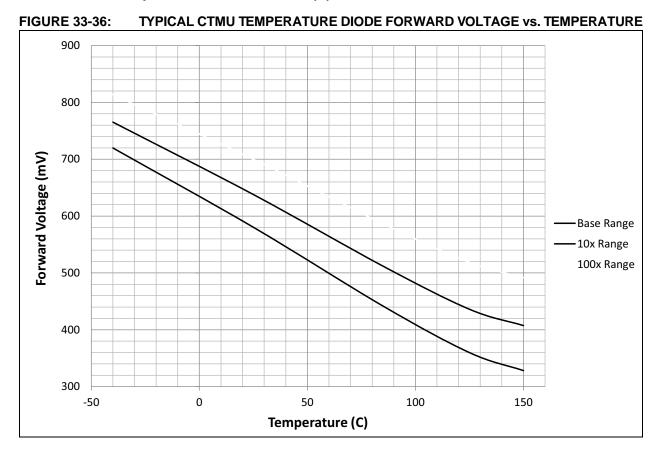
33.8 Pull-up/Pull-Down Current





33.14 Comparator Op Amp Offset

FIGURE 33-33: TYPICAL COMPARATOR OFFSET vs. Vcm



33.15 CTMU Current V/S Temperature

33.16 CTMU Temperature Forward Diode (V)

