

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·>>F

Betuils	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-UFQFN Exposed Pad
Supplier Device Package	36-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev32gm103-i-m5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not exceeding 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3 or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site (www.microchip.com).

- "Using MPLAB[®] ICD 3" (poster) (DS51765)
- *"MPLAB[®] ICD 3 Design Advisory"* (DS51764)
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" (DS51616)
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) (DS51749)

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. For more information, see **Section 9.0 "Oscillator Configuration"**.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed as shown in Figure 2-3.

FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 5 MHz < FIN < 13.6 MHz to comply with device PLL start-up conditions. This intends that, if the external oscillator frequency is outside this range, the application must start up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLFBD, to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source.

Note: Clock switching must be enabled in the device Configuration Word.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

	••		•															
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Tim	ner1 Registe	r							0000
PR1	0102								Peri	od Register	1							FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	—	0000
TMR2	0106								Tim	ner2 Registe	r							0000
TMR3HLD	0108						Time	er3 Holdin	ig Register	· (For 32-bit	timer operat	tions only)						0000
TMR3	010A								Tim	ner3 Registe	r							0000
PR2	010C								Peri	od Register	2							FFFF
PR3	010E								Peri	od Register	3							FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	—	0000
T3CON	0112	TON	_	TSIDL	_	_	_	_	—	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000
TMR4	0114								Tim	ner4 Registe	r							0000
TMR5HLD	0116						Т	imer5 Hol	ding Regis	ster (For 32-	bit operation	ns only)						0000
TMR5	0118								Tim	ner5 Registe	r							0000
PR4	011A								Peri	od Register	4							FFFF
PR5	011C								Peri	od Register	5							FFFF
T4CON	011E	TON	_	TSIDL	—	—	—	—	—	—	TGATE	TCKPS1	TCKPS0	T32	—	TCS	—	0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000
Lonondi			1 1-															

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits	
External Interrupt 1	INT1	RPINR0	INT1R<7:0>	
External Interrupt 2	INT2	RPINR1	INT2R<7:0>	
Timer2 External Clock	T2CK	RPINR3	T2CKR<7:0>	
Input Capture 1	IC1	RPINR7	IC1R<7:0>	
Input Capture 2	IC2	RPINR7	IC2R<7:0>	
Input Capture 3	IC3	RPINR8	IC3R<7:0>	
Input Capture 4	IC4	RPINR8	IC4R<7:0>	
Output Compare Fault A	OCFA	RPINR11	OCFAR<7:0>	
PWM Fault 1	FLT1	RPINR12	FLT1R<7:0>	
PWM Fault 2	FLT2	RPINR12	FLT2R<7:0>	
UART1 Receive	U1RX	RPINR18	U1RXR<7:0>	
UART2 Receive	U2RX	RPINR19	U2RXR<7:0>	
SPI2 Data Input	SDI2	RPINR22	SDI2R<7:0>	
SPI2 Clock Input	SCK2	RPINR22	SCK2R<7:0>	
SPI2 Slave Select	SS2	RPINR23	SS2R<7:0>	
CAN1 Receive	C1RX	RPINR26	C1RXR<7:0>	
PWM Sync Input 1	SYNCI1	RPINR37	SYNCI1R<7:0>	
PWM Dead-Time Compensation 1	DTCMP1	RPINR38	DTCMP1R<7:0>	
PWM Dead-Time Compensation 2	DTCMP2	RPINR39	DTCMP2R<7:0>	
PWM Dead-Time Compensation 3	DTCMP3	RPINR39	DTCMP3R<7:0>	
SENT1 Input	SENT1R	RPINR44	SENT1R<7:0>	
SENT2 Input	SENT2R	RPINR45	SENT2R<7:0>	

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

11.6 High-Voltage Detect (HVD)

dsPIC33EVXXXGM00X/10X devices contain High-Voltage Detection (HVD) which monitors the VCAP voltage. The HVD is used to monitor the VCAP supply voltage to ensure that an external connection does not raise the value above a safe level (~2.4V). If high core voltage is detected, all I/Os are disabled and put in a tristate condition. The device remains in this I/O tri-state condition as long as the high-voltage condition is present.

11.7 I/O Helpful Tips

- 1. In some cases, certain pins, as defined in Table 30-10 under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes that the resulting current being injected into the device, that is clamped internally by the VDD and VSS power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins by default after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Pin Configuration registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.

- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name, from left-to-right. The left most function name takes precedence over any function to its right in the naming convention; for example, AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD – 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specifications. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH, and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of this data sheet. For example:

VOH = 4.4V at IOH = -8 mA and VDD = 5V

The maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current, <12 mA, is technically permitted. For more information, refer to the VOH/ IOH specifications in **Section 30.0 "Electrical Characteristics"**.

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
IC2R7	IC2R6	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0	
oit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
IC1R7	IC1R6	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	
it 7				-			bit 0	
.egend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'		
n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
	10110101 -							
	• •	 Input tied to RI Input tied to CI 						
	• • 000000001 = 00000000 =	 Input tied to Cl Input tied to Vs 	MP1 SS					
bit 7-0	• • 00000001 = 00000000 = IC1R<7:0>:	 Input tied to Cl Input tied to Vs Assign Input Ca 	MP1 SS apture 1 (IC1)		onding RPn Pir	n bits		
iit 7-0	• • 000000001 = 00000000 = IC1R<7:0>: (see Table 1	 Input tied to Cl Input tied to Vs 	MP1 SS apture 1 (IC1) selection nur		onding RPn Pir	n bits		
iit 7-0	• • 000000001 = 00000000 = IC1R<7:0>: (see Table 1	Input tied to Cl Input tied to Vs Assign Input Ca 1-2 for input pin	MP1 SS apture 1 (IC1) selection nur		onding RPn Pir	n bits		
vit 7-0	• • 000000001 = 00000000 = IC1R<7:0>: (see Table 1	Input tied to Cl Input tied to Vs Assign Input Ca 1-2 for input pin	MP1 SS apture 1 (IC1) selection nur		onding RPn Pir	n bits		

REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

REGISTER 11-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

bit 15							bit 8
—	—	—	—	—	—	—	—
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
OCFAR<7:0>									
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 OCFAR<7:0>: Assign Output Compare Fault A (OCFA) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 •

> 00000001 = Input tied to CMP1 00000000 = Input tied to Vss

R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
SNTEN	—	SNTSIDL	—	RCVEN	TXM ⁽¹⁾	TXPOL ⁽¹⁾	CRCEN				
bit 15							bit				
R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
PPP	SPCEN ⁽²⁾		PS	_	NIBCNT2	NIBCNT1	NIBCNT0				
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15	SNTEN: SEM	NTx Enable bit									
	1 = SENTx is										
	0 = SENTx is										
bit 14	-	nted: Read as									
bit 13		ENTx Stop in lo									
		nues module op es module opera			ers Idle mode						
bit 12	Unimplemer	nted: Read as	ʻ0'								
bit 11	RCVEN: SEI	NTx Receive E	nable bit								
		perates as a re									
		perates as a tr		nsor)							
bit 10		TXM: SENTx Transmit Mode bit ⁽¹⁾ 1 = SENTx transmits data frame only when triggered using the SYNCTXEN status bit									
		ransmits data fi ransmits data fi				KEN status bit					
bit 9		NTx Transmit P									
bit 5		lata output pin i	-	lle state							
		lata output pin i									
bit 8	CRCEN: CR	C Enable bit									
	1 = SENTx p		verification on		using the prefer	red J2716 meth	od				
		loes not perforr ansmit Mode (F		ation on receiv							
				using the pref	erred J2716 me	thod					
		loes not calcula		0 1							
bit 7	PPP: Pause	Pulse Present	bit								
					sages with paus sages without pa						
bit 6	SPCEN: Sho	ort PWM Code	Enable bit ⁽²⁾								
		trol from exterr trol from exterr									
bit 5	Unimplemer	nted: Read as	ʻ0'								
bit 4	PS: SENTX I	Module Clock F	Prescaler (divi	der) bits							
	1 = Divide-by										
	0 = Divide-by	/-1									
Note 1: Th	iis bit has no fur	nction in Receiv	ve mode (RC\	/EN = 1).							
2 • Th	us bit has no fur	nction in Transr	nit mode (RC)	VEN = 0							

REGISTER 20-1: SENTxCON1: SENTx CONTROL REGISTER 1

2: This bit has no function in Transmit mode (RCVEN = 0).

NOTES:

REGISTER 22-22: CxRXFUL1: CANx RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	L<15:8>			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFL	JL<7:0>			
bit 7							bit 0
Legend:		C = Writable b	oit, but only '()' can be written	to clear the b	it	
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at F	n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown

bit 15-0 RXFUL<15:0>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

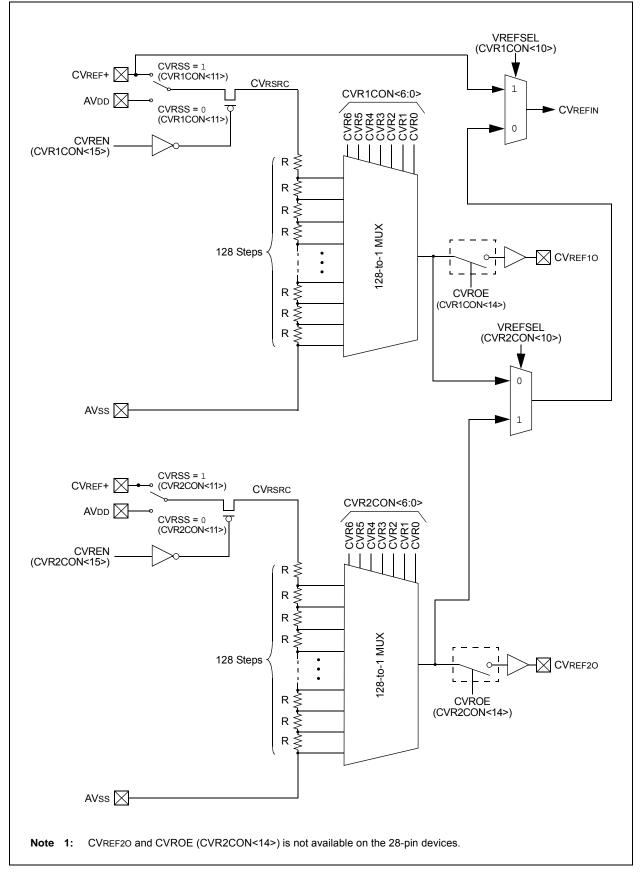
0 = Buffer is empty (cleared by user software)

REGISTER 22-23: CxRXFUL2: CANx RECEIVE BUFFER FULL REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	_<31:24>			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	_<23:16>			
bit 7							bit 0
Legend:		C = Writable b	it, but only '()' can be written	to clear the b	bit	
R = Readable	bit	W = Writable b	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown	

bit 15-0 RXFUL<31:16>: Receive Buffer n Full bits

1 = Buffer is full (set by module)


0 = Buffer is empty (cleared by user software)

EVPOL1 ⁽²⁾ EV bit 7 Event Legend: R = Readable bit -n = Value at POR 1 bit 15 CO bit 15 CO bit 15 CO bit 14 CO bit 13 CP bit 13 CP bit 14 CO 1 = 0 = bit 13 CP bit 14 CO 1 = 0 = bit 13 CP 1 = 0 = bit 13 CP 0 = 0 = bit 12-10 Uni bit 9 CE	Comparat Comparat E: Compa Comparat Comparat		4 Enable bit Enable bit esent on the C	'0' = Bit is cle	U-0 — nented bit, rea ared	R/W-0 CCH1 ⁽¹⁾ d as '0' x = Bit is unkn	COUT bit (R/W-0 CCH0 ⁽¹⁾ bit (
R/W-0 EVPOL1 ⁽²⁾ EV bit 7 Legend: R = Readable bit -n = Value at POR bit 15 CO bit 15 CO bit 14 CO bit 13 CP0 bit 13 CP0 bit 12-10 Uni bit 19 CEV	/POL0 ⁽²⁾ N: Op Am Comparat Comparat Comparat Comparat Comparat	W = Writable '1' = Bit is set p/Comparator 4 tor is enabled tor is disabled rator 4 Output tor output is pre-	CREF ⁽¹⁾ bit 4 Enable bit Enable bit esent on the C	U = Unimpler '0' = Bit is cle		CCH1 ⁽¹⁾	R/W-0 CCH0 ⁽¹⁾ bit (
EVPOL1 ⁽²⁾ EV bit 7 Event Legend: R = Readable bit -n = Value at POR 1 bit 15 CO bit 14 CO 1 = 0 = bit 13 CP 1 = 0 = bit 13 CP 1 = 0 = bit 12-10 Uni bit 9 CE	/POL0 ⁽²⁾ N: Op Am Comparat Comparat Comparat Comparat Comparat	W = Writable '1' = Bit is set p/Comparator 4 tor is enabled tor is disabled rator 4 Output tor output is pre-	CREF ⁽¹⁾ bit 4 Enable bit Enable bit esent on the C	U = Unimpler '0' = Bit is cle		CCH1 ⁽¹⁾	CCH0 ⁽¹⁾ bit (
bit 7 Legend: R = Readable bit -n = Value at POR bit 15 CO 1 = 0 = bit 14 CO 1 = 0 = bit 13 CP(1 = 0 = bit 15 CO 1 = 0 = bit 14 CO 1 = 0 = bit 13 CP(1 = 0 = 0 = bit 13 CP(1 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	N: Op Am Comparat Comparat E: Compa Comparat Comparat	'1' = Bit is set p/Comparator 4 tor is enabled tor is disabled rator 4 Output tor output is pre	bit 4 Enable bit Enable bit esent on the C	'0' = Bit is cle		d as '0'	bit (
1 = 0	Comparat Comparat E: Compa Comparat Comparat	'1' = Bit is set p/Comparator 4 tor is enabled tor is disabled rator 4 Output tor output is pre	4 Enable bit Enable bit esent on the C	'0' = Bit is cle						
R = Readable bit -n = Value at POR bit 15 CO 1 = 0 = bit 14 CO 1 = 0 = bit 13 CPO 1 = 0 = bit 13 CPO 1 = 0 = bit 13 CPO 1 = 0 = 0 = bit 13 CPO 1 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	Comparat Comparat E: Compa Comparat Comparat	'1' = Bit is set p/Comparator 4 tor is enabled tor is disabled rator 4 Output tor output is pre	4 Enable bit Enable bit esent on the C	'0' = Bit is cle			iown			
R = Readable bit -n = Value at POR bit 15 CO 1 = 0 = bit 14 CO 1 = 0 = bit 13 CPO 1 = 0 = bit 13 CPO 1 = 0 = bit 13 CPO 1 = 0 = bit 13 CPO 1 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	Comparat Comparat E: Compa Comparat Comparat	'1' = Bit is set p/Comparator 4 tor is enabled tor is disabled rator 4 Output tor output is pre	4 Enable bit Enable bit esent on the C	'0' = Bit is cle			iown			
bit 15 CO 1 = 0 = bit 14 CO 1 = 0 = bit 13 CP4 1 = 0 = bit 12-10 Uni bit 9 CE	Comparat Comparat E: Compa Comparat Comparat	'1' = Bit is set p/Comparator 4 tor is enabled tor is disabled rator 4 Output tor output is pre	4 Enable bit Enable bit esent on the C	'0' = Bit is cle			iown			
1 = 0	Comparat Comparat E: Compa Comparat Comparat	tor is enabled tor is disabled rator 4 Output tor output is pre	Enable bit esent on the C	C4OUT pin						
1 = 0	Comparat Comparat E: Compa Comparat Comparat	tor is enabled tor is disabled rator 4 Output tor output is pre	Enable bit esent on the C	C4OUT pin						
0 = bit 14 CO 1 = 0 = bit 13 CP4 1 = 0 = bit 12-10 Uni bit 9 CE	Comparat E: Compa Comparat Comparat	tor is disabled rator 4 Output tor output is pre	esent on the C	C4OUT pin						
bit 14 CO 1 = 0 = bit 13 CP 1 = 0 = bit 12-10 Uni bit 9 CE	E: Compa Comparat Comparat	rator 4 Output tor output is pre	esent on the C	C4OUT pin						
1 = 0 = bit 13 CP0 1 = 0 = bit 12-10 Uni bit 9 CEV	Comparat Comparat	tor output is pre	esent on the C	C4OUT pin						
0 = bit 13 CP 1 = 0 = bit 12-10 Uni bit 9 CE	Comparat			C4OUT pin						
1 = 0 = bit 12-10 Uni bit 9 CEV	OL: Comp		 1 = Comparator output is present on the C4OUT pin 0 = Comparator output is internal only 							
0 = bit 12-10 Uni bit 9 CE	CPOL: Comparator 4 Output Polarity Select bit									
bit 12-10 Uni bit 9 CE	1 = Comparator output is inverted									
bit 9 CE		tor output is no								
	Unimplemented: Read as '0'									
1 =	CEVT: Comparator 4 Event bit 1 = Comparator event, according to EVPOL<1:0> settings, occurred; disables future triggers an									
	interrupts	tor event, acc s until the bit is tor event did n	cleared	POL<1:0> sett	ings, occurred	; disables future	e triggers an			
	COUT: Comparator 4 Output bit When CPOL = 0 (non-inverted polarity):									
	$\frac{\text{Vnen CPOL} = 0}{1 = \text{Vin} + \text{Vin}}$									
—	$0 = V_{IN+} < V_{IN-}$									
Wh	When CPOL = 1 (inverted polarity):									
	1 = VIN + < VIN-									
0 =	VIN+ > VII	N-								

REGISTER 25-3: CM4CON: COMPARATOR 4 CONTROL REGISTER

2: After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the comparator Event bit, CEVT (CMxCON<9>), and the Comparator Combined Interrupt Flag, CMPIF (IFS1<2>), must be cleared before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 26-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

TABLE 30-34:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK2 Input Frequency	—	—	15	MHz	See Note 3	
SP72	TscF	SCK2 Input Fall Time	—	—	_	ns	See Parameter DO32 and Note 4	
SP73	TscR	SCK2 Input Rise Time	—	_	_	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDO2 Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDO2 Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns		
SP50	TssL2scH, TssL2scL	SS2 ↓ to SCK2 ↑ or SCK2 ↓ Input	120	-	—	ns		
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	See Note 4	
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 Tcy + 40	—	_	ns	See Note 4	
SP60	TssL2doV	SDO2 Data Output Valid after SS2 Edge	—	_	50	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

AC CH/	ARACTER	RISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
Device Supply									
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or VBOR	_	Lesser of: VDD + 0.3 or 5.5	V			
AD02	AVss	Module Vss Supply	Vss – 0.3	_	Vss + 0.3	V			
	Reference Inputs								
AD05	Vrefh	Reference Voltage High	4.5	_	5.5	V	VREFH = AVDD, VREFL = AVSS = 0		
AD06	VREFL	Reference Voltage Low	AVss		AVDD - VBORMIN	V	See Note 1		
AD06a			0	_	0	V	VREFH = AVDD, VREFL = AVSS = 0		
AD07	Vref	Absolute Reference Voltage	4.5	_	5.5	V	Vref = Vrefh – Vrefl		
AD08	IREF	Current Drain	—		10 600	μA μA	ADC off ADC on		
AD09	lad	Operating Current	_	5 2		mA mA	ADC operating in 10-bit mode (see Note 1) ADC operating in 12-bit mode (see Note 1)		
		•	Anal	og Input					
AD12	VINH	Input Voltage Range Vinн	VINL		VREFH	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input		
AD13	VINL	Input Voltage Range Vın∟	VREFL	_	AVss + 1V	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), negative input		
AD17	Rin	Recommended Impedance of Analog Voltage Source	_		200	Ω	Impedance to achieve maximum performance of ADC		

TABLE 30-54: ADC MODULE SPECIFICATIONS

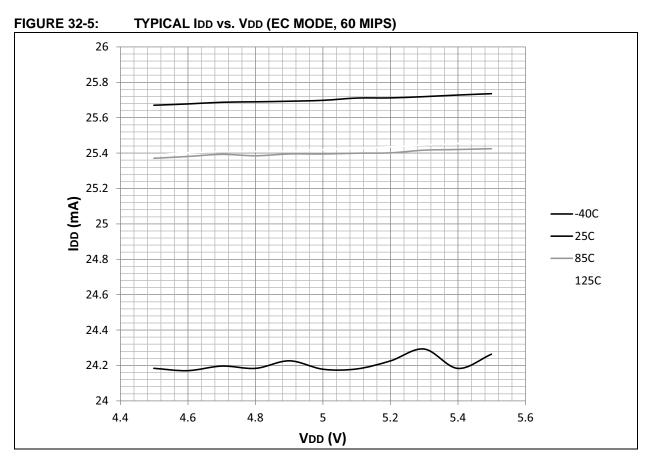
Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

31.0 HIGH-TEMPERATURE ELECTRICAL CHARACTERISTICS

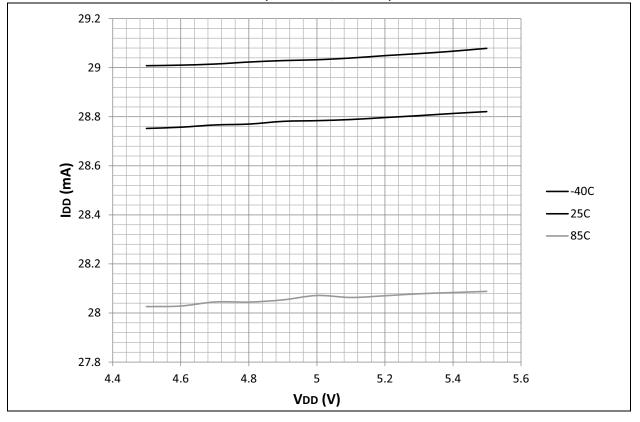
This section provides an overview of the dsPIC33EVXXXGM00X/10X family electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

The specifications between -40° C to $+150^{\circ}$ C are identical to those shown in **Section 30.0** "**Electrical Characteristics**" for operation between -40° C to $+125^{\circ}$ C, with the exception of the parameters listed in this section.

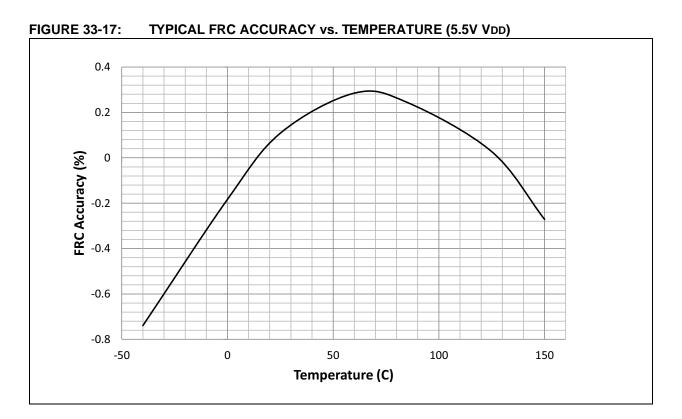
Parameters in this section begin with an H, which denotes High temperature. For example, Parameter DC10 in **Section 30.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.

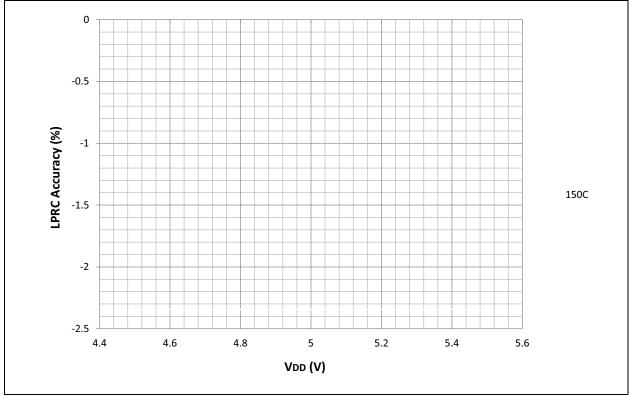

Absolute maximum ratings for the dsPIC33EVXXXGM00X/10X family high-temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings⁽¹⁾

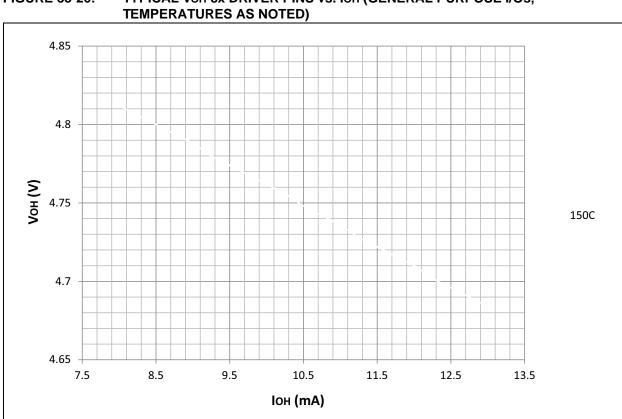

Ambient temperature under bias ⁽²⁾	40°C to +150°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	0.3V to +6.0V
Maximum current out of Vss pin	350 mA
Maximum current into Vod pin ⁽³⁾	350 mA
Maximum junction temperature	
Maximum current sunk by any I/O pin	20 mA
Maximum current sourced by I/O pin	18 mA
Maximum current sunk by all ports combined	200 mA
Maximum current sourced by all ports combined ⁽³⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: AEC-Q100 reliability testing for devices intended to operate at +150°C is 1,000 hours. Any design in which the total operating time from +125°C to +150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - 3: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).


dsPIC33EVXXXGM00X/10X FAMILY



© 2013-2016 Microchip Technology Inc.



33.10 Voltage Output Low (VOL) – Voltage Output High (VOH)

FIGURE 33-26: TYPICAL VOH 8x DRIVER PINS vs. IOH (GENERAL PURPOSE I/Os,

NOTES:

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

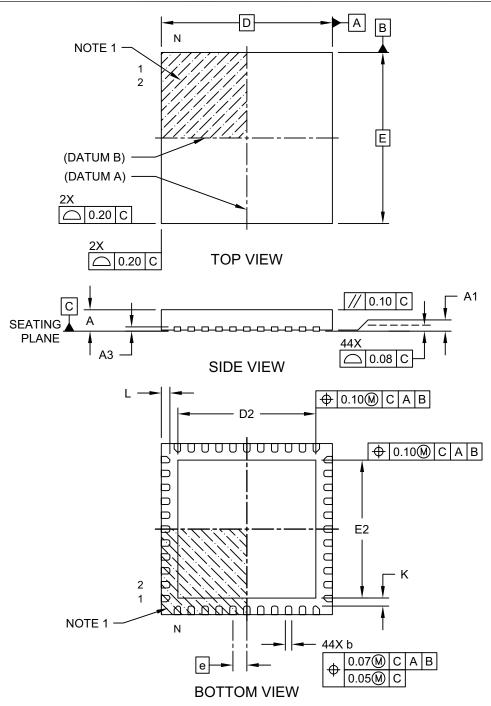
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS							
Dimension	MIN	NOM	MAX					
Number of Leads	Ν		44					
Lead Pitch e 0.80 BS			0.80 BSC					
Overall Height	Α	-	-	1.20				
Standoff	A1	0.05	-	0.15				
Molded Package Thickness	A2	0.95	1.00	1.05				
Overall Width	Е	12.00 BSC						
Molded Package Width	E1		10.00 BSC					
Overall Length	D		12.00 BSC					
Molded Package Length D1 10.			10.00 BSC	10.00 BSC				
Lead Width	b	0.30	0.37	0.45				
Lead Thickness	С	0.09	-	0.20				
Lead Length	L	0.45	0.60	0.75				
Footprint	L1 1.00 REF							
Foot Angle	θ	0°	3.5°	7°				

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.


3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

