

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Betuils	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev32gm104-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 1-1: PINO		D DESC	RIPTI	ONS (CONTINUED)				
Pin Name	Pin Type	Buffer Type	PPS	Description				
SCK2	I/O	ST	Yes	Synchronous serial clock input/output for SPI2.				
SDI2	I	ST	Yes	SPI2 data in.				
SDO2	0	—	Yes	SPI2 data out.				
SS2	I/O	ST	Yes	SPI2 slave synchronization or frame pulse I/O.				
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.				
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.				
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.				
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.				
C1RX	I	ST	Yes	CAN1 bus receive pin.				
C1TX	0	—	Yes	CAN1 bus transmit pin.				
SENT1TX	0	—	Yes	SENT1 transmit pin.				
SENT1RX	1	—	Yes	SENT1 receive pin.				
SENT2TX	0	—	Yes	SENT2 transmit pin.				
SENT2RX	I.	—	Yes	SENT2 receive pin.				
CVREF	0	Analog	No	Comparator Voltage Reference output.				
C1IN1+, C1IN2-, C1IN1-, C1IN3-	I	Analog	No	Comparator 1 inputs.				
C1OUT	0	_	Yes	Comparator 1 output.				
C2IN1+, C2IN2-, C2IN1-, C2IN3-	I	Analog	No	Comparator 2 inputs.				
C2OUT	0	—	Yes	Comparator 2 output.				
C3IN1+, C3IN2-, C2IN1-, C3IN3-	I	Analog	No	Comparator 3 inputs.				
C3OUT	0		Yes	Comparator 3 output.				
C4IN1+, C4IN2-, C4IN1-, C4IN3-	Ι	Analog	No	Comparator 4 inputs.				
C4OUT	0	—	Yes	Comparator 4 output.				
C5IN1+, C5IN2-, C5IN1-, C5IN3-	I	Analog	No	Comparator 5 inputs.				
C5OUT	0	—	Yes	Comparator 5 output.				
FLT1-FLT2	1	ST	Yes	PWM Fault Inputs 1 and 2.				
FLT3-FLT8	1	ST	NO	PWM Fault Inputs 3 to 8.				
FLT32	1	ST	NO					
DTCMP1-DTCMP3	1	ST	Yes	PWM Dead-Time Compensation Inputs 1 to 3.				
PWM1L-PWM3L	0	_	No	PWM Low Outputs 1 to 3.				
PWM1H-PWM3H	0	—	No	PWM High Outputs 1 to 3.				
SYNCI1	1	ST	Yes					
SYNCO1	0	—	Yes	PWM Synchronization Output 1.				
PGED1	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 1.				
PGEC1	1	ST	No	Clock input pin for Programming/Debugging Communication Channel 1				
PGED2	I/O	ST	No					
PGEC2	1	ST	No					
PGED3	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 3.				
PGEC3	I	ST	No	Clock input pin for Programming/Debugging Communication Channel				
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.				
Legend: CMOS = C				or output Analog = Analog input P = Power				
ST = Schm	itt Triaa	er input w	/ith CN	IOS levels O = Output I = Input				

TABLE 1-1:	PINOUT I/O DESCRIPTIONS	(CONTINUED))
			/

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select Analog = Analog inputP = PoweO = OutputI = InputTTL = TTL input buffer

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (DS70000600) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EVXXXGM00X/10X family interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33EVXXXGM00X/10X CPU. The Interrupt Vector Table (IVT) provides 246 interrupt sources (unused sources are reserved for future use) that can be programmed with different priority levels.

The interrupt controller has the following features:

- · Interrupt Vector Table with up to 246 Vectors
- Alternate Interrupt Vector Table (AIVT)
- Up to Eight Processor Exceptions and Software Traps
- Seven User-Selectable Priority Levels
- Interrupt Vector Table (IVT) with a Unique Vector for Each Interrupt or Exception Source
- Fixed Priority within a Specified User Priority Level
- · Fixed Interrupt Entry and Return Latencies
- Software can Generate any Peripheral Interrupt
- Alternate Interrupt Vector Table (AIVT) is available if Boot Security is Enabled and AIVTEN = 1

7.1 Interrupt Vector Table

The dsPIC33EVXXXGM00X/10X family IVT, shown in Figure 7-2, resides in program memory, starting at location, 00004h. The IVT contains seven nonmaskable trap vectors and up to 187 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

7.2 Alternate Interrupt Vector Table

The Alternate Interrupt Vector Table (AIVT), shown in Figure 7-1, is available if the Boot Segment (BS) is defined, the AIVTEN bit is set in the INTCON2 register and if the AIVTDIS Configuration bit is set to '1'. The AIVT begins at the start of the last page of the Boot Segment.

REGISTER 8-5: DMAxSTBH: DMA CHANNEL x START ADDRESS REGISTER B (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15					•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB<2	23:16>			
bit 7							bit 0
l egend.							

Legenu.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STB<23:16>: DMA Secondary Start Address bits (source or destination)

REGISTER 8-6: DMAxSTBL: DMA CHANNEL x START ADDRESS REGISTER B (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	3<7:0>			
bit 7	7						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unkno		nown	

bit 15-0 STB<15:0>: DMA Secondary Start Address bits (source or destination)

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ROON		ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
		_	—	—	—	—	—				
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown				
bit 15		rence Oscillato	•								
				on the REFCL	-K pin ⁽²⁾						
		e oscillator out	1	1							
bit 14	-	ted: Read as '									
bit 13		eference Oscilla		•							
				to run in Sleep d in Sleep mode							
bit 12		erence Oscillato		•							
	1 = Oscillator	crystal is used	as the refere	nce clock							
	-	lock is used as									
bit 11-8	RODIV<3:0>	: Reference Os	cillator Divide	er bits ⁽¹⁾							
		rence clock divi									
		rence clock divi rence clock divi									
		rence clock divi	-								
	1011 = Refe r	1011 = Reference clock divided by 2,048									
		1010 = Reference clock divided by 1,024									
1001 = Reference clock divided by 512 1000 = Reference clock divided by 256 0111 = Reference clock divided by 128											
	0110 = Reference clock divided by 64										
	0101 = Reference clock divided by 32 0100 = Reference clock divided by 16										
		rence clock divi									
		rence clock divi	•								
	0001 = Refer										
	0000 = Refer										

REGISTER 9-5: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 11.5 "Peripheral Pin Select (PPS)" for more information.

11.5.5.1 Mapping Limitations

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn pins is possible. This includes both many-to-one, and one-to-many mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

Function	RPnR<5:0>	Output Name
Default Port	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U2TX	000011	RPn tied to UART2 Transmit
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Slave Select
C1TX	001110	RPn tied to CAN1 Transmit
OC1	010000	RPn tied to Output Compare 1 Output
OC2	010001	RPn tied to Output Compare 2 Output
OC3	010010	RPn tied to Output Compare 3 Output
OC4	010011	RPn tied to Output Compare 4 Output
C10UT	011000	RPn tied to Comparator Output 1
C2OUT	011001	RPn tied to Comparator Output 2
C3OUT	011010	RPn tied to Comparator Output 3
SYNCO1	101101	RPn tied to PWM Primary Time Base Sync Output
REFCLKO	110001	RPn tied to Reference Clock Output
C4OUT	110010	RPn tied to Comparator Output 4
C5OUT	110011	RPn tied to Comparator Output 5
SENT1	111001	RPn tied to SENT Out 1
SENT2	111010	RPn tied to SENT Out 2

|--|

REGISTER 11-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

bit 15							bit 8
—	—	—	—	—	—	—	—
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
OCFAR<7:0>									
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 OCFAR<7:0>: Assign Output Compare Fault A (OCFA) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 •

> 00000001 = Input tied to CMP1 00000000 = Input tied to Vss

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	PENH: PWM	xH Output Pin	Ownership bit				
		odule controls					
		dule controls th	•	ו			
bit 14		L Output Pin	•				
		odule controls dule controls th					
bit 13		xH Output Pin	•	I			
DIL 13		bin is active-low	•				
		pin is active-hig					
bit 12		<l f<="" output="" pin="" td=""><td></td><td></td><td></td><td></td><td></td></l>					
		in is active-low					
	0 = PWMxL p	in is active-hig	h				
bit 11-10	PMOD<1:0>:	PWMx I/O Pin	Mode bits ⁽¹⁾				
	11 = Reserve						
		/O pin pair is ir /O pin pair is ir					
		O pin pair is in O pin pair is ir		•			
bit 9		verride Enable	•				
	1 = OVRDAT	1 controls the o	output on the I	PWMxH pin			
		enerator contro					
bit 8	OVRENL: Ov	erride Enable	for PWMxL Pi	n bit			
		0 controls the o	•				
	•	nerator contro		•			
bit 7-6					ide is Enabled b	its	
		•			d by OVRDAT1. by OVRDAT0.		
bit 5-4				•	TMOD is Enable	d hits	
		ve, PWMxH is					
		ve, PWMxL is					
bit 3-2				•	/IOD is Enabled	bits	
	If current limit	is active, PW	MxH is driven	to the state sp	ecified by CLDA	T1.	
	If current limit	is active, PWI	MxL is driven t	o the state spe	ecified by CLDA	ГО.	
Note 1: The	ese bits should	not be change	d after the PW	/Mx module is	enabled (PTEN	= 1).	
					· -··	,	

REGISTER 17-13: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾

Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1). **2:** If the PWMI OCK Configuration bit (EDEVOPT<0>) is a '1' the IOCONy register can only be

2: If the PWMLOCK Configuration bit (FDEVOPT<0>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

REGISTER 17-13: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾ (CONTINUED)

- bit 1
 SWAP: SWAP PWMxH and PWMxL Pins bit

 1 = PWMxH output signal is connected to the PWMxL pin; PWMxL output signal is connected to the PWMxH pin

 0 = PWMxH and PWMxL pins are mapped to their respective pins

 bit 0
 OSYNC: Output Override Synchronization bit

 1 = Output overrides through the OVRDAT<1:0> bits are synchronized to the PWMx time base

 0 = Output overrides through the OVRDAT<1:0> bits occur on the next CPU clock boundary
- Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1).
 - 2: If the PWMLOCK Configuration bit (FDEVOPT<0>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

REGISTER 17-14: TRIGx: PWMx PRIMARY TRIGGER COMPARE VALUE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGCI	MP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	MP<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit	t	U = Unimpler	mented bit, read	i as '0'	

bit 15-0 **TRGCMP<15:0>:** Trigger Control Value bits

'1' = Bit is set

When the primary PWMx functions in the local time base, this register contains the compare values that can trigger the ADC module.

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL
bit 7							bit (
Legend:							
R = Readable t	ait	W = Writable	hit	II – Unimpler	nented bit, read	ae '0'	
-n = Value at P		'1' = Bit is set	JIL	'0' = Bit is cle		x = Bit is unkr	
					aicu		
bit 15	PHR: PWMxH	Rising Edge	Frigger Enabl	e bit			
					Blanking count	er	
	0 = Leading-E	dge Blanking i	gnores the ris	sing edge of PV	VMxH		
bit 14		I Falling Edge					
	•	0	00	0 0	e Blanking coun	ter	
hit 12	-		-	Iling edge of P			
bit 13		Rising Edge T			Blanking count	٥r	
				sing edge of PV			
bit 12	PLF: PWMxL	Falling Edge T	rigger Enable	e bit			
					Blanking count	er	
	•	•	•	lling edge of P			
bit 11				anking Enable I			
				he selected Fail to the selected			
bit 10	•	•		dge Blanking E	•		
			-	he selected cur			
					current-limit in	out	
bit 9-6	Unimplement	ted: Read as 'o)'				
bit 5				al High Enable			
					als) when seled	ted blanking s	ignal is high
L:4 4		•		ng signal is hig			
bit 4		•	•••	al Low Enable b	DIC		
		king (of curren	t_limit_and/or	Equit input sign		tod blanking e	ianal is low
					als) when seled	ted blanking s	ignal is low
bit 3	0 = No blankir	ng when the se	lected blanki	ng signal is low	als) when seled	ted blanking s	ignal is low
bit 3	0 = No blankir BPHH: Blanki	ng when the se ng in PWMxH	lected blanki High Enable	ng signal is low bit	als) when seled	_	-
bit 3	0 = No blankir BPHH: Blanki 1 = State blan	ng when the se ng in PWMxH	lected blanki High Enable t-limit and/or	ng signal is low bit Fault input sigr	nals) when seled	_	-
bit 3 bit 2	0 = No blankir BPHH: Blanki 1 = State blan 0 = No blankir BPHL: Blanki	ng when the se ng in PWMxH king (of curren ng when the P\ ng in PWMxH I	lected blanki High Enable t-limit and/or WMxH output ∟ow Enable b	ng signal is low bit Fault input sign is high it	nals) when selec , nals) when the F	WMxH output	is high
	0 = No blankir BPHH: Blanki 1 = State blan 0 = No blankir BPHL: Blankir 1 = State blan	ng when the se ng in PWMxH king (of curren ng when the P\ ng in PWMxH I king (of curren	lected blanki High Enable t-limit and/or WMxH output _ow Enable b t-limit and/or	ng signal is low bit Fault input sigr is high it Fault input sigr	nals) when seled	WMxH output	is high
bit 2	0 = No blankir BPHH: Blanki 1 = State blan 0 = No blankir BPHL: Blankir 1 = State blan 0 = No blankir	ng when the se ng in PWMxH king (of curren ng when the P\ ng in PWMxH king (of curren ng when the P\	lected blanki High Enable t-limit and/or WMxH output _ow Enable t t-limit and/or WMxH output	ng signal is low bit Fault input sigr is high bit Fault input sigr is low	nals) when selec , nals) when the F	WMxH output	is high
	0 = No blankir BPHH: Blanki 1 = State blan 0 = No blankir BPHL: Blankir 0 = No blankir BPLH: Blanki	ng when the se ng in PWMxH king (of curren ng when the P\ ng in PWMxH king (of curren ng when the P\ ng in PWMxL H	lected blanki High Enable t-limit and/or WMxH output _ow Enable b t-limit and/or WMxH output High Enable b	ng signal is low bit Fault input sign is high bit Fault input sign is low bit	nals) when selec nals) when the F nals) when the F	PWMxH output PWMxH output	is high is low
bit 2	0 = No blankir BPHH: Blanki 1 = State blan 0 = No blankir BPHL: Blankir 1 = State blan 0 = No blankir BPLH: Blankir 1 = State blan	ng when the se ng in PWMxH king (of curren ng when the PV ng in PWMxH king (of curren ng when the PV ng in PWMxL H	lected blanki High Enable t-limit and/or WMxH output _ow Enable b t-limit and/or WMxH output tigh Enable b t-limit and/or	ng signal is low bit Fault input sign is high bit Fault input sign bit Fault input sign	nals) when selec , nals) when the F	PWMxH output PWMxH output	is high is low
bit 2	0 = No blankir BPHH: Blanki 1 = State blan 0 = No blankir BPHL: Blankir 1 = State blan 0 = No blankir 1 = State blan 0 = No blankir	ng when the se ng in PWMxH king (of curren ng when the P\ ng in PWMxH king (of curren ng when the P\ ng in PWMxL H king (of curren	lected blanki High Enable t-limit and/or WMxH output Low Enable t t-limit and/or WMxH output High Enable t t-limit and/or WMxL output	ng signal is low bit Fault input sign is high Fault input sign is low bit Fault input sign is high	nals) when selec nals) when the F nals) when the F	PWMxH output PWMxH output	is high is low
bit 2 bit 1	0 = No blankir BPHH: Blanki 1 = State blan 0 = No blankir BPHL: Blankir 1 = State blan 0 = No blankir BPLH: Blankir 1 = State blan 0 = No blankir BPLL: Blankir 1 = State blan	ng when the se ng in PWMxH king (of curren ng when the P\ ng in PWMxH I king (of curren ng when the P\ hg in PWMxL I ng in PWMxL L	lected blanki High Enable t-limit and/or WMxH output Low Enable to t-limit and/or WMxH output High Enable to t-limit and/or WMxL output .ow Enable b t-limit and/or	ng signal is low bit Fault input sign is high fault input sign is low bit Fault input sign is high it Fault input sign	nals) when selec nals) when the F nals) when the F	PWMxH output PWMxH output PWMxL output	is high is low is high

Note 1: The blanking signal is selected through the BLANKSEL<3:0> bits in the AUXCONx register.

REGISTER 22-22: CxRXFUL1: CANx RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	L<15:8>			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFL	JL<7:0>			
bit 7							bit 0
Legend:		C = Writable b	oit, but only '()' can be written	to clear the b	it	
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown	

bit 15-0 RXFUL<15:0>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 22-23: CxRXFUL2: CANx RECEIVE BUFFER FULL REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	_<31:24>			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	_<23:16>			
bit 7							bit 0
Legend:		C = Writable b	it, but only '()' can be written	to clear the b	bit	
R = Readable	bit	W = Writable b	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown	

bit 15-0 RXFUL<31:16>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

TABLE 30-34:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Op (unless othe Operating te	erwise st	a ted) e -40°	C ≤ TA ≤	iV to 5.5V +85°C for Industrial +125°C for Extended
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK2 Input Frequency	—	—	15	MHz	See Note 3
SP72	TscF	SCK2 Input Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP73	TscR	SCK2 Input Rise Time	—	_	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDO2 Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDO2 Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	SS2 ↓ to SCK2 ↑ or SCK2 ↓ Input	120	-	—	ns	
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 Tcy + 40	—	_	ns	See Note 4
SP60	TssL2doV	SDO2 Data Output Valid after	—	_	50	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

TABLE 30-43:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

			Standard Op (unless othe Operating ter	erwise st	a ted) e -40°	C ≤ TA ≤	iV to 5.5V +85°C for Industrial +125°C for Extended
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	—		25	MHz	See Note 3
SP72	TscF	SCK1 Input Fall Time	—	_	_	ns	See Parameter DO32 and Note 4
SP73	TscR	SCK1 Input Rise Time	—	_	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDO1 Data Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	—	_	ns	
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	—	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	See Note 4
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 TCY + 40	—	_	ns	See Note 4
SP60	TssL2doV	SDO1 Data Output Valid after SS1 Edge	—	—	50	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 40 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

TABLE 30-44:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

			Standard Op (unless othe Operating ter	erwise st	t ated) e -40°	C ≤ Ta ≤	W to 5.5V +85°C for Industrial +125°C for Extended
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency		_	25	MHz	See Note 3
SP72	TscF	SCK1 Input Fall Time	—			ns	See Parameter DO32 and Note 4
SP73	TscR	SCK1 Input Rise Time	_			ns	See Parameter DO31 and Note 4
SP30	TdoF	SDO1 Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDO1 Data Output Rise Time	—			ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20			ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15		_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS1} \downarrow$ to SCK1 \uparrow or SCK1 \downarrow Input	120	—	_	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	_	50	ns	See Note 4
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	_		ns	See Note 4

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 40 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

DC CH	ARACTE	RISTICS	Standard Op (unless othe Operating ten	erwise sta	ated)		to 5.5V 50°C for High Temperature
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
	VIL	Input Low Voltage					
DI10		Any I/O Pins	Vss	—	0.2 Vdd	V	
	Vih	Input High Voltage					
DI20		I/O Pins	0.75 VDD	—	5.5	V	
DI30	ICNPU	Change Notification Pull-up Current	200	375	600	μA	VDD = 5.0V, VPIN = VSS
DI31	ICNPD	Change Notification Pull-Down Current ⁽⁷⁾	175	400	625	μΑ	VDD = 5.0V, VPIN = VDD
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O Pins	-200	_	200	nA	$\label{eq:VSS} \begin{split} VSS \leq V PIN \leq V DD, \\ \text{pin at high-impedance} \end{split}$
DI55		MCLR	-1.5	_	1.5	μA	$VSS \leq VPIN \leq VDD$
DI56		OSC1	-300	—	300	nA	$\label{eq:VSS} \begin{split} &VSS \leq VPIN \leq VDD, \\ &XT \text{ and } HS \text{ modes} \end{split}$
Dl60a	licl	Input Low Injection Current	0	—	_5 ^(4,6)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP and RB7
DI60b	Іісн	Input High Injection Current	0	_	+5(5,6)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB7 and all 5V tolerant pins ⁽⁵⁾
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	₋₂₀ (7)	_	+20 ⁽⁷⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT

TABLE 31-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.
- **3:** Negative current is defined as current sourced by the pin.
- 4: VIL source < (VSS 0.3). Characterized but not tested.
- 5: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 6: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.

7: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

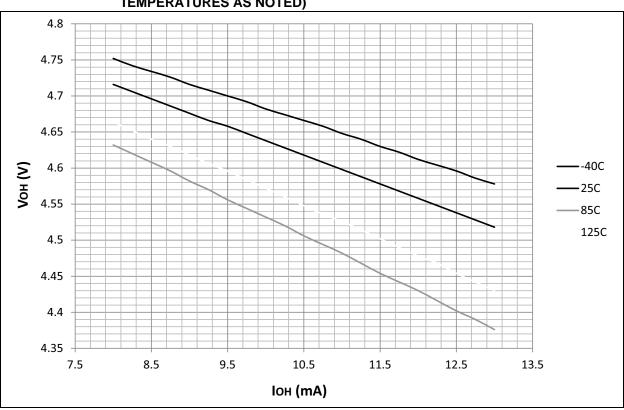
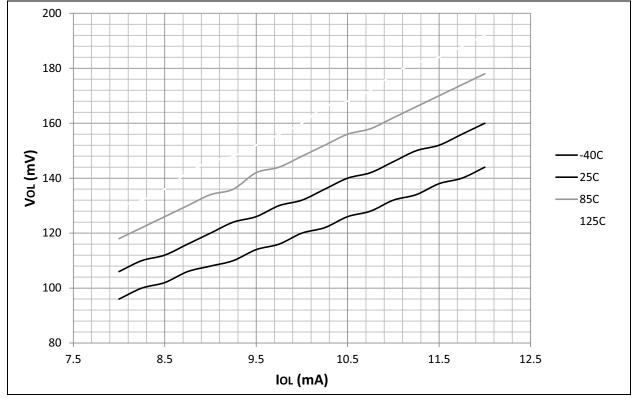
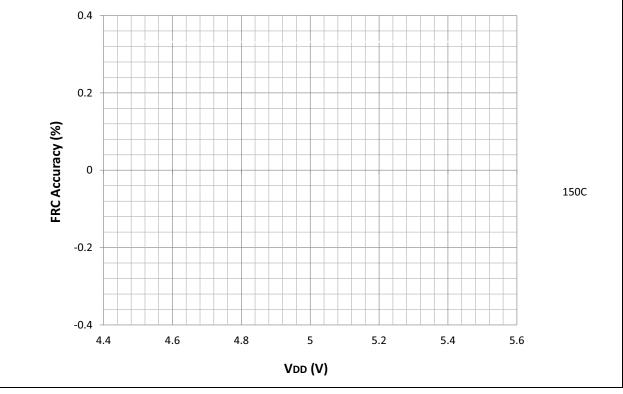



FIGURE 32-31: TYPICAL VOH 4x DRIVER PINS vs. IOH (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

FIGURE 32-32: TYPICAL Vol 8x DRIVER PINS vs. Iol (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)



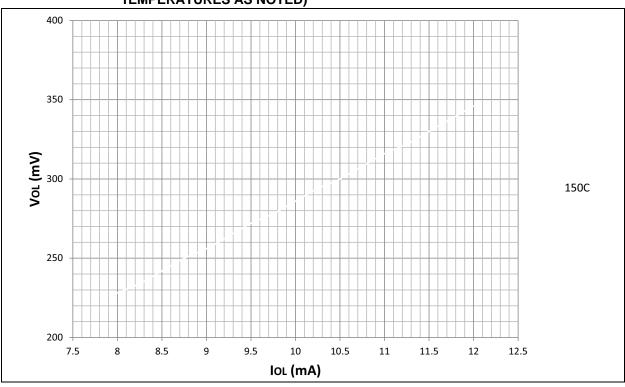

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 33-15: **TYPICAL/MAXIMUM** ∆IwDT vs. **TEMPERATURE** 12 10 8 IPD (NA) 6 5.5V Max - 5.5V Typ 4 2 0 -50 0 50 100 150 **Temperature (C)**

33.5 FRC

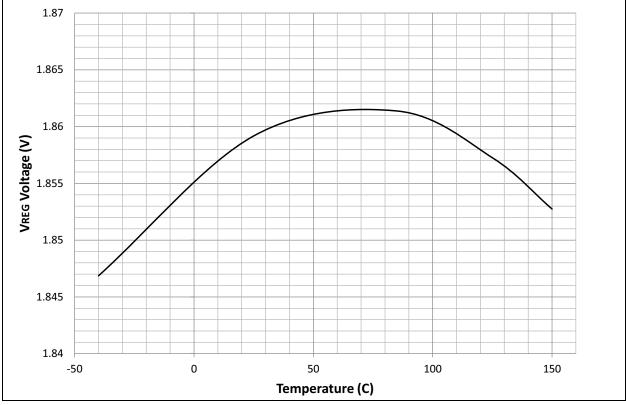
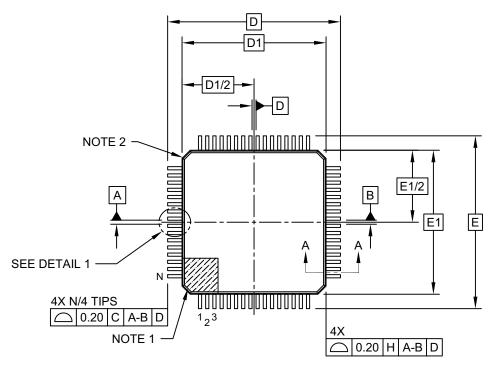
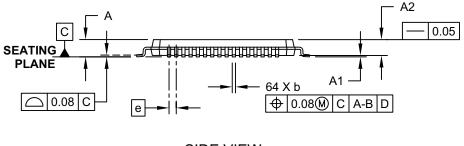


FIGURE 33-29: TYPICAL Vol 4x DRIVER PINS vs. Iol (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)


33.11 VREG



64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

SIDE VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2013-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0975-5