

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 36x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev32gm106-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Timers/Output Compare/Input Capture

- Nine General Purpose Timers:
 - Five 16-bit and up to two 32-bit timers/counters; Timer3 can provide ADC trigger
- Four Output Compare modules Configurable as Timers/Counters
- Four Input Capture modules

Communication Interfaces

- Two Enhanced Addressable Universal Asynchronous Receiver/Transmitter (UART) modules (6.25 Mbps):
 - With support for LIN/J2602 bus and IrDA®
 - High and low speed (SCI)
- Two SPI modules (15 Mbps):
 - 25 Mbps data rate without using PPS
- One I²C module (up to 1 Mbaud) with SMBus Support
- Two SENT J2716 (Single-Edge Nibble Transmission-Transmit/Receive) module for Automotive Applications
- One CAN module:
 - 32 buffers, 16 filters and three masks

Direct Memory Access (DMA)

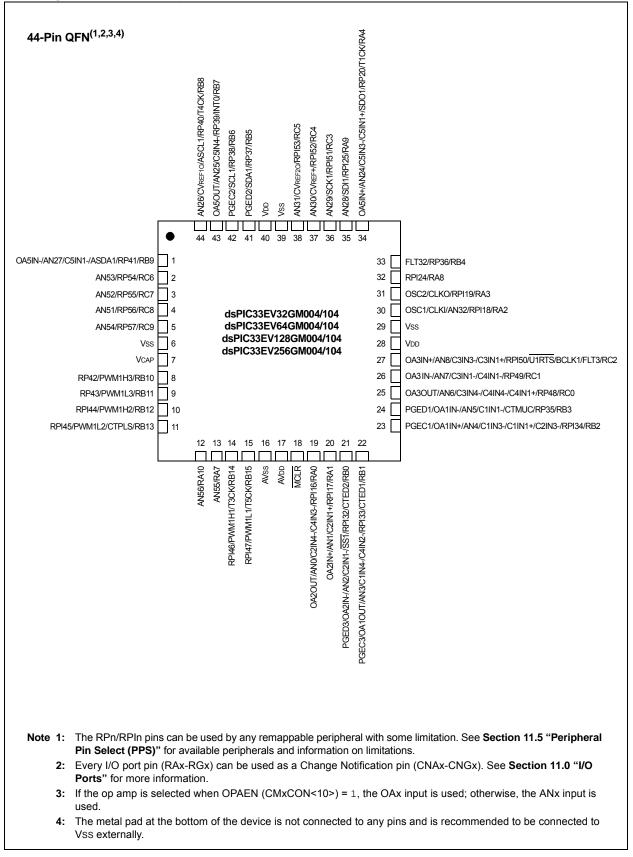
- 4-Channel DMA with User-Selectable Priority Arbitration
- UART, Serial Peripheral Interface (SPI), ADC, Input Capture, Output Compare and Controller Area Network (CAN)

Input/Output

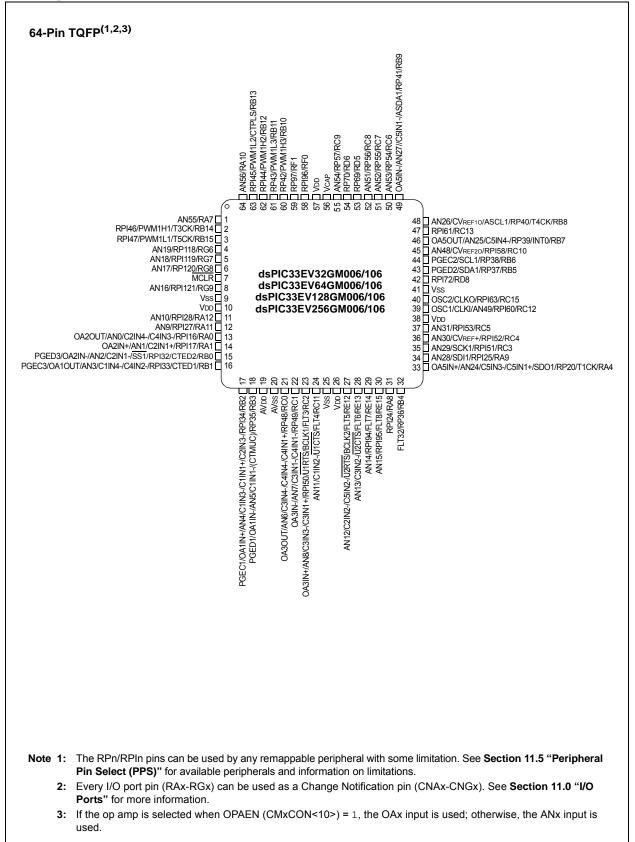
- GPIO Registers to Support Selectable Slew Rate I/Os
- Peripheral Pin Select (PPS) to allow Function Remap
- Sink/Source: 8 mA or 12 mA, Pin-Specific for Standard VOH/VOL
- · Selectable Open-Drain, Pull-ups and Pull-Downs
- Change Notice Interrupts on All I/O Pins

Qualification and Class B Support

- AEC-Q100 REVG (Grade 1: -40°C to +125°C) Compliant
- AEC-Q100 REVG (Grade 0: -40°C to +150°C) Compliant
- Class B Safety Library, IEC 60730


Class B Fault Handling Support

- Backup FRC
- · Windowed WDT uses LPRC
- Windowed Deadman Timer (DMT) uses System Clock (System Windowed Watchdog Timer)
- H/W Clock Monitor Circuit
- Oscillator Frequency Monitoring through CTMU (OSCI, SYSCLK, FRC, BFRC, LPRC)
- Dedicated PWM Fault Pin
- Lockable Clock Configuration


Debugger Development Support

- In-Circuit and In-Application Programming
- Three Complex and Five Simple Breakpoints
- Trace and Run-Time Watch

Pin Diagrams (Continued)

Pin Diagrams (Continued)

TABLE 1-1: PINO		D DESC	RIPTI	ONS (CONTINUED)
Pin Name	Pin Type	Buffer Type	PPS	Description
SCK2	I/O	ST	Yes	Synchronous serial clock input/output for SPI2.
SDI2	I	ST	Yes	SPI2 data in.
SDO2	0	—	Yes	SPI2 data out.
SS2	I/O	ST	Yes	SPI2 slave synchronization or frame pulse I/O.
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.
C1RX	I	ST	Yes	CAN1 bus receive pin.
C1TX	0	—	Yes	CAN1 bus transmit pin.
SENT1TX	0	—	Yes	SENT1 transmit pin.
SENT1RX	1	—	Yes	SENT1 receive pin.
SENT2TX	0	—	Yes	SENT2 transmit pin.
SENT2RX	I.	—	Yes	SENT2 receive pin.
CVREF	0	Analog	No	Comparator Voltage Reference output.
C1IN1+, C1IN2-, C1IN1-, C1IN3-	I	Analog	No	Comparator 1 inputs.
C1OUT	0	_	Yes	Comparator 1 output.
C2IN1+, C2IN2-, C2IN1-, C2IN3-	I	Analog	No	Comparator 2 inputs.
C2OUT	0	—	Yes	Comparator 2 output.
C3IN1+, C3IN2-, C2IN1-, C3IN3-	I	Analog	No	Comparator 3 inputs.
C3OUT	0		Yes	Comparator 3 output.
C4IN1+, C4IN2-, C4IN1-, C4IN3-	Ι	Analog	No	Comparator 4 inputs.
C4OUT	0	—	Yes	Comparator 4 output.
C5IN1+, C5IN2-, C5IN1-, C5IN3-	I	Analog	No	Comparator 5 inputs.
C5OUT	0	—	Yes	Comparator 5 output.
FLT1-FLT2	1	ST	Yes	PWM Fault Inputs 1 and 2.
FLT3-FLT8	1	ST	NO	PWM Fault Inputs 3 to 8.
FLT32	1	ST	NO	PWM Fault Input 32.
DTCMP1-DTCMP3	1	ST	Yes	PWM Dead-Time Compensation Inputs 1 to 3.
PWM1L-PWM3L	0	_	No	PWM Low Outputs 1 to 3.
PWM1H-PWM3H	0	—	No	PWM High Outputs 1 to 3.
SYNCI1	1	ST	Yes	PWM Synchronization Input 1.
SYNCO1	0	—	Yes	PWM Synchronization Output 1.
PGED1	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 1.
PGEC1	1	ST	No	Clock input pin for Programming/Debugging Communication Channel 1
PGED2	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 2.
PGEC2	1	ST	No	Clock input pin for Programming/Debugging Communication Channel 2
PGED3	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 3.
PGEC3	I	ST	No	Clock input pin for Programming/Debugging Communication Channel
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.
Legend: CMOS = C				or output Analog = Analog input P = Power
ST = Schm	itt Triaa	er input w	/ith CN	IOS levels O = Output I = Input

TABLE 1-1:	PINOUT I/O DESCRIPTIONS	(CONTINUED))
			1

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select Analog = Analog inputP = PoweO = OutputI = InputTTL = TTL input buffer

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2)
	<pre>111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)</pre>
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop is in progress 0 = REPEAT loop is not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = Overflow has not occurred for signed arithmetic
bit 1	Z: MCU ALU Zero bit
	 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	 1 = A carry-out from the Most Significant bit (MSb) of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1.	The IPI <2:0> hits are concatenated with the IPI 3 hit (CORCON<3>) to form the CPU Interrupt Priority

- **Note 1:** The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL3 = 1. User interrupts are disabled when IPL3 = 1.
 - 2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
 - **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using the bit operations.

IABLE	TABLE 4-16: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EVXXXGM006/106 DEVICES																	
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0670	_	_	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	—	—	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0	0000
RPOR1	0672	_	_	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0	_	_	RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0	0000
RPOR2	0674	_	_	RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0	_	_	RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0	0000
RPOR3	0676	_	_	RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0	_	_	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0	0000
RPOR4	0678	—	_	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0	_		RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0	0000
RPOR5	067A	—	_	RP49R5	RP49R4	RP49R3	RP49R2	RP49R1	RP49R0	_		RP48R5	RP48R4	RP48R3	RP48R2	RP48R1	RP48R0	0000
RPOR6	067C	—	_	RP55R5	RP55R4	RP55R3	RP55R2	RP55R1	RP55R0	_		RP54R5	RP54R4	RP54R3	RP54R2	RP54R1	RP54R0	0000
RPOR7	067E	—	_	RP57R5	RP57R4	RP57R3	RP57R2	RP57R1	RP57R0	_		RP56R5	RP56R4	RP56R3	RP56R2	RP56R1	RP56R0	0000
RPOR8	0680	—	_	RP70R5	RP70R4	RP70R3	RP70R2	RP70R1	RP70R0	_		RP69R5	RP69R4	RP69R3	RP69R2	RP69R1	RP69R0	0000
RPOR9	0682	—	_	RP118R5	RP118R4	RP118R3	RP118R2	RP118R1	RP118R0	_		RP97R5	RP97R4	RP97R3	RP97R2	RP97R1	RP97R0	0000
RPOR10	0684	—	_	RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0	_		RP120R5	RP120R4	RP120R3	RP120R2	RP120R1	RP120R0	0000
RPOR11	0686	_	_	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0	_		RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0	0000
RPOR12	0688	—	_	RP180R5	RP180R4	RP180R3	RP180R2	RP180R1	RP180R0	—		RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0	0000
RPOR13	068A	—	_	_	—	_	—	_	_	—				RP181	R<5:0>			0000

TABLE 4-16: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EVXXXGM006/106 DEVICES

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 5-2: NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—	_	—	—		—
bit 15		· · ·					bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMADF	RU<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit	ł	W = Writable bit		U = Unimplem	ented bit, read	as '0'	

	VV VVIItable bit		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADRU<23:16>:** NVM Memory Upper Write Address bits Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

REGISTER 5-3: NVMADR: NONVOLATILE MEMORY LOWER ADDRESS REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
		NVMAD	R<15:8>			
						bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
		NVMAD)R<7:0>			
						bit 0
			NVMAD R/W-x R/W-x R/W-x	NVMADR<15:8>	NVMADR<15:8> R/W-x R/W-x R/W-x R/W-x	NVMADR<15:8> R/W-x R/W-x R/W-x R/W-x R/W-x

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 NVMADR<15:0>: NVM Memory Lower Write Address bits

Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

x = Bit is unknown

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—		_	—
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSADR	<23:16>			
bit 7							bit 0
Legend:							
R = Readable bi	it	W = Writable bit		U = Unimpler	nented bit, read	as '0'	

'0' = Bit is cleared

REGISTER 8-9: DSADRH: DMA MOST RECENT RAM HIGH ADDRESS REGISTER

bit 15-8 **Unimplemented:** Read as '0'

-n = Value at POR

bit 7-0 DSADR<23:16>: Most Recent DMA Address Accessed by DMA bits

'1' = Bit is set

REGISTER 8-10: DSADRL: DMA MOST RECENT RAM LOW ADDRESS REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
			DSAI	DR<15:8>					
bit 15							bit 8		
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
			DSA	DR<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at POR	2	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					

bit 15-0 DSADR<15:0>: Most Recent DMA Address Accessed by DMA bits

- 6. The PPS pin mapping rules are as follows:
 - Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input provided there is no external analog input, such as for a built-in self-test.

- Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".
- The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRISx setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRISx settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned
- All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin is disabled. Only the Analog Pin Select registers control the digital input buffer, not the TRISx register. The user must disable the analog function on a pin using the Analog Pin Select registers in order to use any "digital input(s)" on a corresponding pin; no exceptions.

21.2 UART Control Registers

REGISTER 21-1: UxMODE: UARTx MODE REGISTER

REGISTER	21-1: UxMO	DE: UARTx N		TER							
R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0				
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD		UEN1	UEN0				
bit 15				·			bit 8				
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL				
bit 7		101100	Orodity	ыкоп	TDOLLI	TDOLLO	bit (
Legend:		HC = Hardwar	e Clearable bit	t							
R = Readable	e bit	W = Writable I	oit	U = Unimple	mented bit, rea	ad as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown				
bit 15	1 = UARTx is	ARTx Enable bit s enabled; all U s disabled; all U	ARTx pins are								
	is minima										
bit 14	•	ted: Read as '0									
bit 13		Tx Stop in Idle N									
		nues module op es module opera			s Idle mode						
bit 12	IREN: IrDA [®]	IREN: IrDA [®] Encoder and Decoder Enable bit ⁽²⁾									
		oder and decod									
bit 11		le Selection for									
	1 = UxRTS p	oin is in Simplex oin is in Flow Co	mode								
bit 10		ited: Read as '0									
bit 9-8	-	IARTx Pin Enab									
	11 = UxTX, U 10 = UxTX, U 01 = UxTX, U	JxRX and BCLK JxRX, UxCTS a JxRX and UxRT nd UxRX pins a	x p <u>ins are</u> enal nd UxRTS pins S pins are enal	are enabled a bled and used;	nd used ⁽⁴⁾ UxCTS pin is o	controlled by P	ORT latches ⁽⁴				
bit 7	WAKE: UAR	Tx Wake-up on	Start bit Detect	During Sleep	Mode Enable I	oit					
	in hardwa	ontinues to sam are on the follow is not enabled			generated on	the falling edge	, bit is cleare				
bit 6	-	RTx Loopback	Mode Select b	it							
		k mode is enab									
		k mode is disab									
"d: tra	efer to " Univers sPIC33/PIC24 F insmit operation	amily Referenc	e <i>Manual"</i> for i	nformation on e	enabling the U						
	is feature is only	-)).						
3: Th	is feature is only	y available on 4	4-pin and 64-p	in devices.							

4: This feature is only available on 64-pin devices.

REGISTER 22-8: CxEC: CANx TRANSMIT/RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TERR	CNT<7:0>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RERR	CNT<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bi	it	U = Unimplemen	ted bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared	d	x = Bit is unkr	nown

bit 15-8 TERRCNT<7:0>: Transmit Error Count bits

bit 7-0 **RERRCNT<7:0>:** Receive Error Count bits

REGISTER 22-9: CxCFG1: CANx BAUD RATE CONFIGURATION REGISTER 1

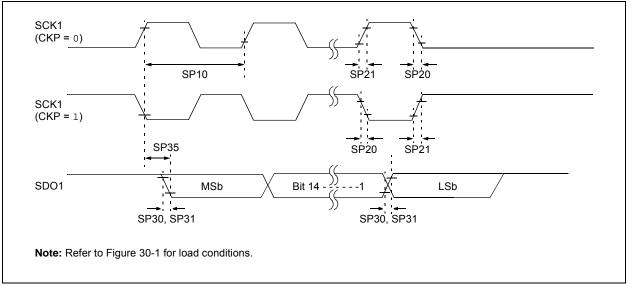
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
0-0	0-0	0-0	0-0		0-0	0-0	0-0		
			_	_					
bit 15							bit		
	5444.6	5.4.4.6			54446		5444.6		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0		
bit 7							bit		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'			
-n = Value at I	POR	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				
	••••	1 Dit 10 001	•						
			·						
bit 15-8		ted: Read as '							
bit 15-8 bit 7-6	Unimplemen		0'	bits			-		
	Unimplemen SJW<1:0>: S 11 = Length i	ted: Read as ' ynchronization s 4 x Tq	0'	oits			-		
	Unimplemen SJW<1:0>: S 11 = Length i 10 = Length i	ted: Read as ' ynchronization s 4 x TQ s 3 x TQ	0'	pits					
	Unimplemen SJW<1:0>: S 11 = Length i 10 = Length i 01 = Length i	ted: Read as ' ynchronization s 4 x To s 3 x To s 2 x To	0'	bits			-		
bit 7-6	Unimplemen SJW<1:0>: S 11 = Length i 10 = Length i 01 = Length i 00 = Length i	ted: Read as ⁴ synchronization s 4 x TQ s 3 x TQ s 2 x TQ s 2 x TQ s 1 x TQ	0' I Jump Width I	pits			-		
	Unimplemen SJW<1:0>: S 11 = Length i 10 = Length i 01 = Length i 00 = Length i BRP<5:0>: B	ted: Read as ' ynchronization s 4 x TQ s 3 x TQ s 2 x TQ s 1 x TQ aud Rate Pres	^{0'} I Jump Width I caler bits	pits			-		
bit 7-6	Unimplemen SJW<1:0>: S 11 = Length i 10 = Length i 01 = Length i 00 = Length i BRP<5:0>: B	ted: Read as ⁴ synchronization s 4 x TQ s 3 x TQ s 2 x TQ s 2 x TQ s 1 x TQ	^{0'} I Jump Width I caler bits	bits			-		
bit 7-6	Unimplemen SJW<1:0>: S 11 = Length i 10 = Length i 01 = Length i 00 = Length i BRP<5:0>: B	ted: Read as ' ynchronization s 4 x TQ s 3 x TQ s 2 x TQ s 1 x TQ aud Rate Pres	^{0'} I Jump Width I caler bits	pits			-		
bit 7-6	Unimplemen SJW<1:0>: S 11 = Length i 10 = Length i 01 = Length i 00 = Length i BRP<5:0>: B	ted: Read as ' ynchronization s 4 x TQ s 3 x TQ s 2 x TQ s 1 x TQ aud Rate Pres	^{0'} I Jump Width I caler bits	pits			-		
bit 7-6	Unimplemen SJW<1:0>: S 11 = Length i 10 = Length i 01 = Length i 00 = Length i BRP<5:0>: B 11 1111 = T •	ted: Read as ' synchronization s 4 x TQ s 3 x TQ s 2 x TQ s 1 x TQ aud Rate Pres Q = 2 x 64 x 1/	^{0'} I Jump Width I caler bits FCAN	bits			-		
bit 7-6	Unimplemen SJW<1:0>: S 11 = Length i 10 = Length i 00 = Length i BRP<5:0>: B 11 1111 = T • • 00 0010 = T	ted: Read as ' ynchronization s 4 x TQ s 3 x TQ s 2 x TQ s 1 x TQ aud Rate Pres	^{0'} I Jump Width I caler bits FCAN	bits					

24.2 ADC Helpful Tips

- 1. The SMPIx control bits in the ADxCON2 registers:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated, if enabled.
 - b) When the CSCNA bit in the ADxCON2 register is set to '1', this determines when the ADC analog scan channel list, defined in the ADxCSSL/ADxCSSH registers, starts over from the beginning.
 - c) When the DMA peripheral is not used (ADDMAEN = 0), this determines when the ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0.
 - d) When the DMA peripheral is used (ADDMAEN = 1), this determines when the DMA Address Pointer is incremented after a sample/conversion operation. ADC1BUF0 is the only ADC buffer used in this mode. The ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0. The DMA address is incremented after completion of every 32nd sample/conversion operation. Conversion results are stored in the ADC1BUF0 register for transfer to RAM using the DMA peripheral.
- 2. When the DMA module is disabled (ADDMAEN = 0), the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF, regardless of which analog inputs are being used subject to the SMPIx bits and the condition described in 1.c) above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.

- When the DMA module is enabled (ADDMAEN = 1), the ADC module has only 1 ADC result buffer (i.e., ADCxBUF0) per ADC peripheral and the ADC conversion result must be read, either by the CPU or DMA Controller, before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (ADxCON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely, even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in Manual Sample mode, particularly where the user's code is setting the SAMP bit (ADxCON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.
- 5. Enabling op amps, comparator inputs and external voltage references can limit the availability of analog inputs (ANx pins). For example, when Op Amp 2 is enabled, the pins for ANO, AN1 and AN2 are used by the op amp's inputs and output. This negates the usefulness of Alternate Input mode since the MUX A selections use ANO-AN2. Carefully study the ADC block diagram to determine the configuration that will best suit your application. For configuration examples, refer to "Analog-to-Digital Converter (ADC)" (DS70621) in the "dsPIC33/PIC24 Family Reference Manual".

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
HLMS	0-0	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN			
		OCEN	OCINEIN	OBEN	OBINEIN	UAEN				
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN			
bit 7							bit			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unk	nown			
bit 15	1 = The mask	ing (blanking)		event any asse	erted ('0') compa erted ('1') compa					
bit 14	Unimplemen	ted: Read as	·0'	-		-				
bit 13	OCEN: OR G	ate C Input E	nable bit							
		nnected to OF	0							
bit 12			Inverted Enable	e bit						
	1 = Inverted I	MCI is connec	ted to OR gate							
			nected to OR g	jate						
bit 11		ate B Input E								
		nnected to OF t connected to								
bit 10	OBNEN: OR	Gate B Input	Inverted Enable	e bit						
			ted to OR gate nected to OR g	ate						
bit 9		ate A Input Ei	•							
		nnected to OF	•							
		t connected to	-							
bit 8		•	Inverted Enable	e bit						
			ted to OR gate nected to OR g	ate						
bit 7	NAGS: AND	Gate Output I	nverted Enable	bit						
			cted to OR gate nnected to OR							
bit 6	 Inverted ANDI is not connected to OR gate PAGS: AND Gate Output Enable bit 									
	1 = ANDI is c	onnected to C ot connected	R gate							
bit 5		Gate C Input I	-							
	1 = MCI is co	nnected to AN	ID gate							
		t connected to	•							
bit 4		-	t Inverted Enab							
			ted to AND gat nected to AND							


R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0
CVREN	CVROE ⁽¹⁾	_	_	CVRSS	VREFSEL	_	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	CVR6	CVR5	CVR4	CVR3	CVR2	CVR1	CVR0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	1 = Comparat 0 = Comparat	parator Voltag or voltage refe or voltage refe	rence circuit i rence circuit i	s powered on s powered dov		(1)	
bit 14	1 = Voltage le	parator Voltag vel is output or vel is disconne	n the CVREF2	o pin	(CVREF20 Pin)	bit ⁽¹⁾	
bit 13-12	•	ted: Read as '					
bit 11	=	parator Voltag		Source Selection	on bit		
		or reference so or reference so					
bit 10	VREFSEL: Vo	oltage Referen	ce Select bit				
	(CVR1CC	ON<10>) = 0			es inverting inp	-	
		tor Reference DN<10>) = 0	Source 1 (CVR1) provide	es inverting inp	ut voltage wh	en VREFSEL
bit 9-7	Unimplemen	ted: Read as '	0'				
bit 6-0		omparator Volt 27/128 x VREF	-	e Value Select	tion bits		
	• 0000000 = 0 .	0 volts					
Note 1: CV	ROE (CVR2CO		available on t	he 28-pin devi	ces.		

REGISTER 26-2: CVR2CON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER 2

TABLE 30-38: SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARACTERISTICS			Standard Operating (unless otherwise Operating temperation	stated) ure -40°C ≤ [°]	: 4.5V to 5.5V TA ≤ +85°C for TA ≤ +125°C fo	
Maximum Data RateMaster Transmit Only (Half-Duplex)Master Transmit/Receive (Full-Duplex)		Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
25 MHz	Table 30-39	_	_	0,1	0,1	0,1
25 MHz	—	Table 30-40	—	1	0,1	1
25 MHz	—	Table 30-41	—	0	0,1	1
25 MHz	—	—	Table 30-42	1	0	0
25 MHz	_	_	Table 30-43	1	1	0
25 MHz	_	—	Table 30-44	0	1	0
25 MHz	—	—	Table 30-45	0	0	0

FIGURE 30-20: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

DC CHA	RACTER	ISTICS		• •			to 5.5V (unless otherwise stated) ⊦150°C for High Temperature
Param No. Symbol Characteristic			Min. ⁽¹⁾	Тур.	Max.	Units	Conditions
HDO16	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾			0.4	V	Iol = 8.8 mA, VDD = 5.0V
HDO10	Vol	Output Low Voltage 8x Sink Driver Pins ⁽³⁾	_		0.4	V	IOL = 10.8 mA, VDD = 5.0V
HDO26	Vон	Output High Voltage 4x Sink Driver Pins ⁽²⁾	Vdd - 0.6		_	V	Іон = -8.3 mA, Vdd = 5.0V
HDO20	Vон	Output High Voltage 8x Sink Driver Pins	Vdd - 0.6	_	_	V	Іон = -12.3 mA, Vdd = 5.0V

TABLE 31-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized but not tested.

2: Includes all I/O pins that are not 8x sink driver pins (see below).

3: Includes the pins, such as RA3, RA4 and RB<15:10> for 28-pin devices, RA3, RA4, RA9 and RB<15:10> for 44-pin devices, and RA4, RA7, RA9, RB<15:10> and RC15 for 64-pin devices.

TABLE 31-10: ELECTRICAL CHARACTERISTICS: BOR

DC CHA	CHARACTERISTICS			-	-		4.5V to 5.5V (unless otherwise stated) TA \leq +150°C for High Temperature
Param No.	Symbol	Characteristic	Min. ⁽¹⁾ Typ. Max. Units Conditions			Conditions	
HBO10	VBOR	BOR Event on VDD Transition High-to-Low	4.15 4.285 4.4 V VDD (see Note 2, Note 3 and		VDD (see Note 2, Note 3 and Note 4)		

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

- **2:** The VBOR specification is relative to the VDD.
- **3:** The device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, op amp/comparator and comparator voltage reference will have degraded performance. Device functionality is tested but is not characterized.
- 4: The start-up VDD must rise above 4.6V.

TABLE 31-11: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHA	RACTERI	STICS					to 5.5V (unless otherwise stated) +150°C for High Temperature
Param No. Symbol Characteristic ⁽¹⁾			Min.	Тур.	Max.	Units	Conditions
		Program Flash Memory					
HD130	Eр	Cell Endurance	10,000	—	—	E/W	-40°C to +150°C ⁽²⁾
HD134	Tretd	Characteristic Retention	20 — — Year			1000 E/W cycles or less and no other specifications are violated	

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is allowed up to +150°C.

32.12 VBOR

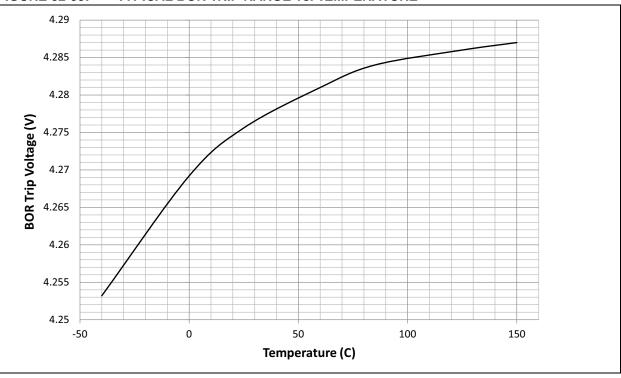


FIGURE 32-35: TYPICAL BOR TRIP RANGE vs. TEMPERATURE

32.13 RAM Retention

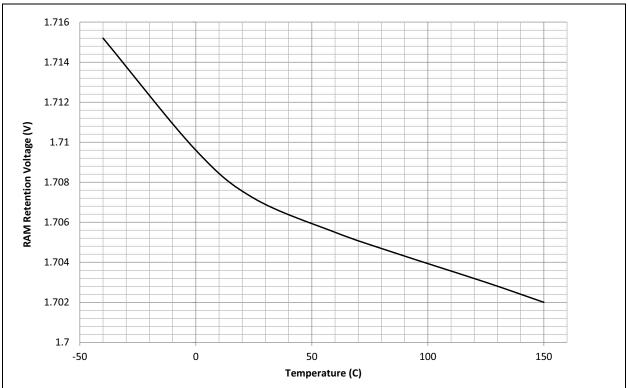
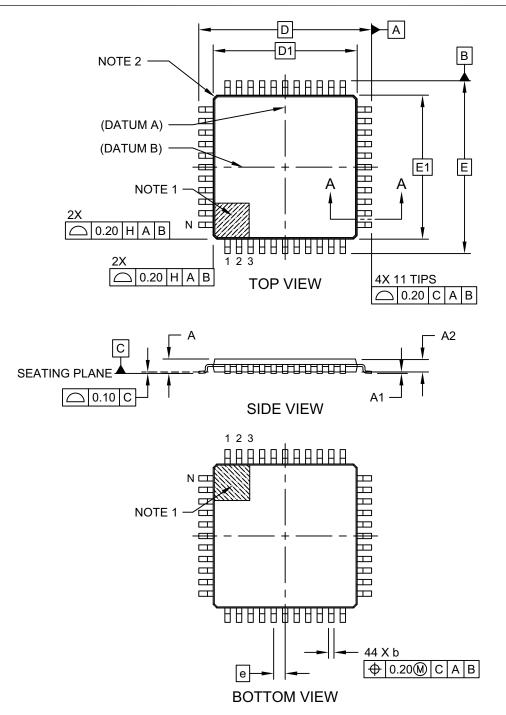
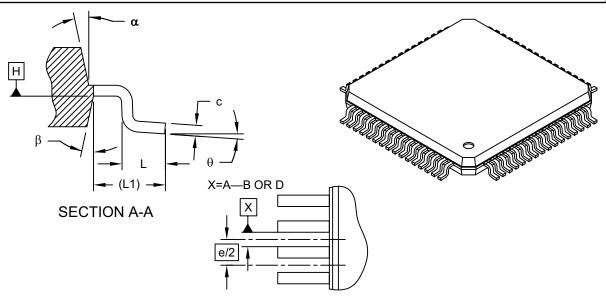



FIGURE 32-36: TYPICAL RAM RETENTION VOLTAGE vs. TEMPERATURE

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-076C Sheet 1 of 2

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL 1

	Ν	1ILLIMETER:	S	
Dimension	MIN	NOM	MAX	
Number of Leads	Ν		64	
Lead Pitch	е		0.50 BSC	
Overall Height	A	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Foot Angle	¢	0°	3.5°	7°
Overall Width	Е		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1		10.00 BSC	
Lead Thickness	С	0.09 - 0.20		
Lead Width	b	0.17 0.22 0.27		
Mold Draft Angle Top	α	11° 12° 13°		
Mold Draft Angle Bottom	β	11°	12°	13°

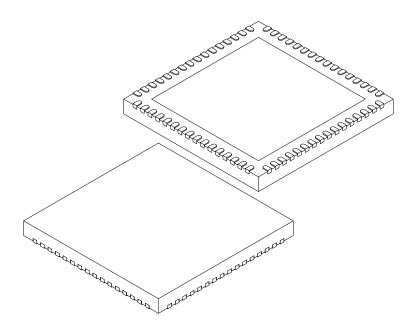
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

64-Lead Very Thin Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [VQFN] With 7.15 x 7.15 Exposed Pad [Also called QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Ν	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N		64			
Pitch	е		0.50 BSC			
Overall Height	Α	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	E		9.00 BSC			
Exposed Pad Width	E2	7.05	7.15	7.25		
Overall Length	D		9.00 BSC			
Exposed Pad Length	D2	7.05	7.15	7.25		
Contact Width	b	0.18	0.25	0.30		
Contact Length	L	0.30 0.40 0.50				
Contact-to-Exposed Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149D [MR] Sheet 2 of 2