

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 36x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev32gm106-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "dsPIC33E/PIC24E Program Memory" (DS70000613) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EVXXXGM00X/10X family architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the Data Space (DS) during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33EVXXXGM00X/10X family devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC, during program execution or from table operation, or from DS remapping, as described in Section 4.7 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x02ABFF). The exception is the use of the TBLRD operations, which use TBLPAG<7> to read Device ID sections of the configuration memory space and the TBLWT operations, which are used to set up the write latches located in configuration memory space.

The program memory maps, which are presented by the device family and memory size, are shown in Figure 4-1 through Figure 4-4.

REGISTER 5-2: NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	—	—	—	—
bit 15		· · · ·					bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMADF	RU<23:16>			
bit 7							bit 0
Legend:							
R = Readable h	nit	M = Mritable bit		II = I Inimplem	nented hit read	as 'O'	

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
			40 0

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADRU<23:16>:** NVM Memory Upper Write Address bits Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

REGISTER 5-3: NVMADR: NONVOLATILE MEMORY LOWER ADDRESS REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMAD	R<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMAE)R<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 NVMADR<15:0>: NVM Memory Lower Write Address bits

Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

In addition, DMA transfers can be triggered by timers as well as external interrupts. Each DMA channel is unidirectional. Two DMA channels must be allocated to read and write to a peripheral. If more than one channel receives a request to transfer data, a simple fixed priority scheme, based on channel number, dictates which channel completes the transfer and which channel or channels are left pending. Each DMA channel moves a block of data, after which, it generates an interrupt to the CPU to indicate that the block is available for processing.

The DMA Controller provides these functional capabilities:

- Four DMA Channels
- Register Indirect with Post-Increment Addressing mode
- Register Indirect without Post-Increment Addressing mode

- Peripheral Indirect Addressing mode (peripheral generates destination address)
- CPU Interrupt after Half or Full Block Transfer Complete
- Byte or Word Transfers
- Fixed Priority Channel Arbitration
- Manual (software) or Automatic (peripheral DMA requests) Transfer Initiation
- One-Shot or Auto-Repeat Block Transfer modes
- Ping-Pong mode (automatic switch between two SRAM start addresses after each block transfer complete)
- DMA Request for Each Channel can be Selected from any Supported Interrupt Source
- Debug Support Features

The peripherals that can utilize DMA are listed in Table 8-1.

Peripheral to DMA Association	DMAxREQ Register IRQSEL<7:0> Bits	DMAxPAD Register (Values to Read from Peripheral)	DMAxPAD Register (Values to Write to Peripheral)
External Interrupt 0 (INT0)	0000000	_	_
Input Capture 1 (IC1)	0000001	0x0144 (IC1BUF)	_
Input Capture 2 (IC2)	00000101	0x014C (IC2BUF)	_
Input Capture 3 (IC3)	00100101	0x0154 (IC3BUF)	_
Input Capture 4 (IC4)	00100110	0x015C (IC4BUF)	_
Output Compare 1 (OC1)	0000010	_	0x0906 (OC1R) 0x0904 (OC1RS)
Output Compare 2 (OC2)	00000110	_	0x0910 (OC2R) 0x090E (OC2RS)
Output Compare 3 (OC3)	00011001	_	0x091A (OC3R) 0x0918 (OC3RS)
Output Compare 4 (OC4)	00011010	_	0x0924 (OC4R) 0x0922 (OC4RS)
Timer2 (TMR2)	00000111	—	—
Timer3 (TMR3)	00001000	-	—
Timer4 (TMR4)	00011011	-	—
Timer5 (TMR5)	00011100	—	—
SPI1 Transfer Done	00001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)
SPI2 Transfer Done	00100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)
UART1 Receiver (UART1RX)	00001011	0x0226 (U1RXREG)	—
UART1 Transmitter (UART1TX)	00001100	_	0x0224 (U1TXREG)
UART2 Receiver (UART2RX)	00011110	0x0236 (U2RXREG)	—
UART2 Transmitter (UART2TX)	00011111	—	0x0234 (U2TXREG)
RX Data Ready (CAN1)	00100010	0x0440 (C1RXD)	
TX Data Request (CAN1)	01000110		0x0442 (C1TXD)
ADC1 Convert Done (ADC1)	00001101	0x0300 (ADC1BUF0)	

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	_	—		_	—	—	_	
bit 15		•	•	•		•	bit 8	
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1	
	—	—	_		LSTCH	1<3:0>		
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at	n = Value at POR '1' = Bit is set '0' = Bit is cleared		ared	x = Bit is unkr	nown			
bit 15-4	Unimplemen	ted: Read as '	0'					
bit 3-0	LSTCH<3:0>	: Last DMAC C	hannel Active	e Status bits				
	1111 = No D	MA transfer ha	s occurred sin	ice system Res	set			
	1110 = Rese r	rved						
	•							
	•							
	0100 = Reser	rved						
	0011 = Last c	lata transfer w	as handled by	Channel 3				
	0010 = Last c	lata transfer w	as handled by	Channel 2				
	0001 = Last c	data transfer wa	as handled by	Channel 1				
	0001 = Last data transfer was handled by Channel 0							

For example, Figure 11-2 shows the remappable pin selection for the U1RX input.

FIGURE 11-2: REMAPPABLE INPUT FOR U1RX

11.5.4.1 Virtual Connections

dsPIC33EVXXXGM00X/10X family devices support virtual (internal) connections to the output of the op amp/comparator module (see Figure 25-1 in Section 25.0 "Op Amp/Comparator Module").

These devices provide six virtual output pins (RPV0-RPV5) that correspond to the outputs of six peripheral pin output remapper blocks (RP176-RP181). The six virtual remapper outputs (RP176-RP181) are not connected to actual pins. The six virtual pins may be read by any of the input remappers as inputs, RP176-RP181. These virtual pins can be used to connect the internal peripherals, whose signals are of significant use to the other peripherals, but these output signals are not present on the device pin.

Virtual connections provide a simple way of interperipheral connection without utilizing a physical pin. For example, by setting the FLT1R<7:0> bits of the RPINR12 register to the value of 'b0000001', the output of the analog comparator, C1OUT, will be connected to the PWM Fault 1 input, which allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC2R7	IC2R6	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC1R7	IC1R6	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-8 bit 7-0	IC2R<7:0>: A (see Table 11 10110101 = 00000001 = 00000000 = IC1R<7:0>: A (see Table 11 10110101 = 00000001 = 00000001 =	Assign Input Ca -2 for input pin Input tied to CI Input tied to CI Input tied to Vs Assign Input Ca -2 for input pin Input tied to CI Input tied to CI Input tied to Vs	apture 2 (IC2) selection nur PI181 MP1 SS apture 1 (IC1) selection nur PI181 MP1 SS	to the Corresp mbers) to the Corresp mbers)	onding RPn Piı	n bits	

REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

13.1 Timer2/3 and Timer4/5 Control Registers

REGISTER 13-1: TxCON (T2CON AND T4CON) CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON	_	TSIDL	_	_	—		_			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0			
—	TGATE	TCKPS1	TCKPS0	T32	—	TCS ⁽¹⁾	—			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'				
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own			
bit 15										
bit 14	Unimplemented: Read as '0'									
bit 13	TSIDL: Timer	x Stop in Idle M	lode bit							
	1 = Discontinu 0 = Continues	ues module opera	eration when t tion in Idle mo	the device ente	ers Idle mode					
bit 12-7	Unimplement	ted: Read as ')'							
bit 6	TGATE: Time	rx Gated Time	Accumulation	Enable bit						
	When TCS = This bit is igno When TCS = 1 = Gated tim 0 = Gated tim	<u>1:</u> ored. <u>0:</u> e accumulatior e accumulatior	n is enabled n is disabled							
bit 5-4	TCKPS<1:0>	: Timerx Input (Clock Prescal	e Select bits						
	11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1									
bit 3	T32: 32-Bit Ti	mer Mode Sele	ect bit							
	1 = Timerx an 0 = Timerx an	d Timery form d Timery act as	a single 32-bi s two 16-bit tir	t timer mers						
bit 2	Unimplement	ted: Read as ')'							
bit 1	TCS: Timerx (Clock Source S	Select bit ⁽¹⁾							
	1 = External c 0 = Internal cl	lock is from pir ock (FP)	n, TxCK (on th	ne rising edge)						
bit 0	Unimplement	ted: Read as ')'							

Note 1: The TxCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL		
bit 15						-	bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC		
bit 7							bit 0		
r									
Legend:									
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, reac	l as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	PENH: PWM: 1 = PWMx mo 0 = GPIO mo	xH Output Pin odule controls dule controls th	Ownership bit the PWMxH p าe PWMxH piı	: in n					
bit 14	PENL: PWM> 1 = PWMx mo 0 = GPIO mo	KL Output Pin C odule controls dule controls the the the the the test of te	Dwnership bit the PWMxL pi ne PWMxL pir	in า					
bit 13	POLH: PWMx 1 = PWMxH p 0 = PWMxH p	POLH: PWMxH Output Pin Polarity bit 1 = PWMxH pin is active-low 0 = PW/MxH pin is active-bigh							
bit 12	POLL: PWM>	L Output Pin F	Polarity bit						
	1 = PWMxL p 0 = PWMxL p	in is active-low in is active-hig	/ h						
bit 11-10	PMOD<1:0>:	PWMx I/O Pin	1 Mode bits ⁽¹⁾						
	11 = Reserve 10 = PWMx // 01 = PWMx // 00 = PWMx //	d; do not use /O pin pair is in /O pin pair is in /O pin pair is in	i the Push-Pul i the Redunda i the Complem	Il Output mode Int Output mode nentary Output	e mode				
bit 9	OVRENH: OV	verride Enable	for PWMxH P	in bit					
	1 = OVRDAT 0 = PWMx ge	1 controls the c nerator contro	output on the I Is the PWMxH	PWMxH pin I pin					
bit 8	OVRENL: Ov	erride Enable	for PWMxL Pi	n bit					
	1 = OVRDAT(0 = PWMx ge	0 controls the c nerator contro	output on the I Is the PWMxL	PWMxL pin . pin					
bit 7-6	OVRDAT<1:0 If OVERENH If OVERENL)>: Data for PV = 1, PWMxH is = 1, PWMxL is	VMxH, PWMx s driven to the driven to the	L Pins if Overri state specified state specified	de is Enabled b by OVRDAT1. by OVRDAT0.	vits			
bit 5-4	FLTDAT<1:0:	>: Data for PW	MxH and PW	MxL Pins if FL1	MOD is Enable	ed bits			
	If Fault is acting If Fault is acting	ve, PWMxH is ve, PWMxL is	driven to the s driven to the s	state specified state specified I	by FLTDAT1. by FLTDAT0.				
bit 3-2	CLDAT<1:0> If current limit If current limit	: Data for PWN is active, PWN is active, PWN	/IxH and PWM /IxH is driven /IxL is driven t	1xL Pins if CLN to the state spe to the state spe	IOD is Enabled ecified by CLDA ecified by CLDA	bits \T1. T0.			
Note 1. T	hese hits should	not he change	d after the D\A	/My module is (anabled (PTEN	= 1)			

REGISTER 17-13: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾

Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1). **2:** If the PWMI OCK Configuration bit (EDEVOPT<0>) is a '1' the IOCONy register can only be

2: If the PWMLOCK Configuration bit (FDEVOPT<0>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

20.0 SINGLE-EDGE NIBBLE TRANSMISSION (SENT)

- Note 1: This data sheet summarizes the features of this group of dsPIC33EVXXXGM00X/ 10X family devices. It is not intended to be a comprehensive reference source. For more information on Single-Edge Nibble Transmission, refer to "Single-Edge Nibble Transmission (SENT) Module" (DS70005145) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

20.1 Module Introduction

The Single-Edge Nibble Transmission (SENT) module is based on the SAE J2716, "SENT – Single-Edge Nibble Transmission for Automotive Applications". The SENT protocol is a one-way, single wire time modulated serial communication, based on successive falling edges. It is intended for use in applications where high-resolution sensor data needs to be communicated from a sensor to an Engine Control Unit (ECU).

The SENTx module has the following major features:

- · Selectable Transmit or Receive mode
- Synchronous or Asynchronous Transmit modes
- Automatic Data Rate Synchronization
- Optional Automatic Detection of CRC Errors in Receive mode
- Optional Hardware Calculation of CRC in Transmit mode
- Support for Optional Pause Pulse Period
- Data Buffering for One Message Frame
- Selectable Data Length for Transmit/Receive from 3 to 6 Nibbles
- Automatic Detection of Framing Errors

SENT protocol timing is based on a predetermined time unit, TTICK. Both the transmitter and receiver must be preconfigured for TTICK, which can vary from 3 to 90 μ s. A SENT message frame starts with a Sync pulse. The purpose of the Sync pulse is to allow the receiver to calculate the data rate of the message encoded by the transmitter. The SENT specification allows messages to be validated with up to a 20% variation in TTICK. This allows for the transmitter and receiver to run from different clocks that may be inaccurate, and drift with time and temperature. The data nibbles are 4 bits in length and are encoded as the data value + 12 ticks. This yields a 0 value of 12 ticks and the maximum value, 0xF, of 27 ticks.

A SENT message consists of the following:

- A synchronization/calibration period of 56 tick times
- A status nibble of 12-27 tick times
- Up to six data nibbles of 12-27 tick times
- A CRC nibble of 12-27 tick times
- An optional pause pulse period of 12-768 tick times

Figure 20-1 shows a block diagram of the SENTx module.

Figure 20-2 shows the construction of a typical 6-nibble data frame, with the numbers representing the minimum or maximum number of tick times for each section.

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0
Legend:		C = Clearable	bit	HC = Hardwa	are Clearable bi	t	
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	Iown
bit 15,13	UTXISEL<1:0 11 = Reserve 10 = Interrupt the trans	D>: UARTx Tran ted; do not use t when a chara smit buffer becc	nsmission In cter is transf omes empty	terrupt Mode Seferred to the Tra	election bits ansmit Shift Reg	gister (TSR), ar	nd as a result,
	01 = Interrupt operatio 00 = Interrupt least on	t when the las ns are complet t when a chara e character ope	et character ed cter is transf en in the tran	is shifted out ferred to the Transmit buffer)	of the Transmi	t Shift Registe gister (this impl	r; all transmit lies there is at
DIL 14	$\frac{\text{If IREN = 0:}}{1 = \text{UxTX Idle}}$ $0 = \text{UxTX Idle}$ $\frac{\text{If IREN = 1:}}{1 = \text{IrDA}^{\text{®}} \text{ en } 0$ $0 = \text{IrDA ence}$	e state is '0' e state is '1' coded UxTX Id oded UxTX Idle	le state is '1'	,			
bit 12	Unimplemen	ted: Read as 'd)'				
bit 11	UTXBRK: UA	RTx Transmit I	Break bit				
bit 10	 Sends Sybit; cleared Sync Bre UTXEN: UAR Transmit 	ync Break on n ed by hardware ak transmission Tx Transmit Er is enabled, Ux	ext transmis upon compl n is disabled nable bit ⁽¹⁾ TX pin is cor	sion – Start bit, letion or has complet ntrolled by UAR	followed by two ted Tx	elve '0' bits, foll	owed by Stop
	0 = Transmit controlled	is disabled, ar d by the PORT	ny pending ti	ransmission is	aborted and the	e buffer is rese	t; UxTX pin is
bit 9	UTXBF: UAR 1 = Transmit 0 = Transmit	Tx Transmit Bu buffer is full buffer is not ful	Iffer Full Stat	tus bit (read-onl	y) er can be writte	n	
bit 8	TRMT: Transr 1 = Transmit 0 = Transmit	nit Shift Regist Shift Register is Shift Register i	er (TSR) Em s empty and t s not empty,	pty bit (read-on transmit buffer is a transmission	ily) s empty (the las is in progress c	t transmission h or queued	as completed)
bit 7-6	URXISEL<1:0 11 = Interrupt 10 = Interrupt 0x = Interrupt buffer; re	D>: UARTx Red t is set on UxRS t is set on UxRS t is set when an eceive buffer ha	ceive Interrup SR transfer, r SR transfer, r ny character as one or mo	ot Mode Selecti making the rece making the rece is received and ore characters	on bits eive buffer full (i eive buffer 3/4 fu d transferred fro	.e., has 4 data II (i.e., has 3 da om the UxRSR	characters) Ita characters) to the receive

REGISTER 21-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Note 1: Refer to "**Universal Asynchronous Receiver Transmitter (UART)**" (DS70000582) in the "*dsPIC33/ PIC24 Family Reference Manual*" for information on enabling the UART module for transmit operation.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7MSK1	F7MSK0	F6MSK1	F6MSK0	F5MSK1	F5MSK0	F4MSK1	F4MSK0
bit 15		·					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3MSK1	F3MSK0	F2MSK1	F2MSK0	F1MSK1	F1MSK0	F0MSK1	F0MSK0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-14	F7MSK<1:0>	. Mask Source	for Filter 7 bit	:			
	11 = Reserve	ed					
	10 = Accepta	ince Mask 2 reg	gisters contain	the mask			
	01 = Accepta 00 = Accepta	ince Mask 1 re	gisters contain	the mask			
bit 13-12	F6MSK<1:0>	. Mask Source	for Filter 6 bit	(same values	as bits 15-14)		
bit 11-10	F5MSK<1:0>	. Mask Source	for Filter 5 bit	(same values	as bits 15-14)		
bit 9-8	F4MSK<1:0>	. Mask Source	for Filter 4 bit	(same values	as bits 15-14)		
bit 7-6	F3MSK<1:0>	. Mask Source	for Filter 3 bit	(same values	as bits 15-14)		
bit 5-4	F2MSK<1:0>	. Mask Source	for Filter 2 bit	(same values	as bits 15-14)		
bit 3-2	F1MSK<1:0>	. Mask Source	for Filter 1 bit	(same values	as bits 15-14)		
bit 1-0	F0MSK<1:0>	. Mask Source	for Filter 0 bit	(same values	as bits 15-14)		

REGISTER 22-18: CxFMSKSEL1: CANx FILTERS 7-0 MASK SELECTION REGISTER 1

23.1 CTMU Control Registers

REGISTER 23-1: CTMUCON1: CTMU CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CTMUE	<u>ч </u>	CTMUSIDL	TGEN ⁽²⁾	EDGEN	EDGSEQEN	IDISSEN ⁽¹⁾	CTTRIG				
bit 15						bit 8					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
				_							
bit 7							bit 0				
Legend:											
R = Reada	able bit	W = Writable t	bit	l as '0'							
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown					
bit 1E	CTMUEN.										
DIL 15	1 = Module	- Module is epobled									
	0 = Module	is disabled									
bit 14	Unimpleme	ented: Read as '0	,								
bit 13	CTMUSIDL	: CTMU Stop in Id	lle Mode bit								
	1 = Discon	tinues module ope	eration when t	he device ente	rs Idle mode						
	0 = Continu	les module opera	tion in Idle mo	de							
bit 12	TGEN: Time	e Generation Ena	ble bit ⁽²⁾								
	1 = Edge d 0 = Edge d	elay generation is elay generation is	s enabled s disabled								
bit 11	EDGEN: Ed	lae Enable bit									
	1 = Hardwa	are modules are u	sed to trigger	edges (TMRx,	CTEDx, etc.)						
	0 = Softwa	re is used to trigg	er edges (man	ual set of EDO	SxSTAT)						
bit 10	EDGSEQE	N: Edge Sequenc	e Enable bit								
	1 = Edge 1	event must occu	r before Edge	2 event can oo	cur						
hit Q	0 = 100 eage sequence is needed										
bit 9	1 = Applog current source output is grounded										
	0 = Analog	current source of	utput is not gro	ounded							
bit 8	CTTRIG: A	CTTRIG: ADC Trigger Control bit									
	1 = CTMU	1 = CTMU triggers the ADC start of conversion									
	0 = CTMU	0 = CTMU does not trigger the ADC start of conversion									
bit 7-0	Unimpleme	ented: Read as '0	,								
Note 1:	The ADC modu	le Sample-and-He	old (S&H) cap	acitor is not au	tomatically disc	harged betwee	n sample/				
	ADC capacitor	es. Any software i before conducting	using the ADC	as part of a ca nent. The IDIS	pacitance meas	surement must set to '1', perfo	discharge the				

capacitor array.
If the TGEN bit is set to '1', then the CMP1 module should be selected as the Edge 2 source in the EDG2SELx bits field; otherwise, the module will not function.

tion. The ADC must be sampling while the IDISSEN bit is active to connect the discharge sink to the

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Parameter Typ. ⁽²⁾ Max.			Units	Conditions				
Idle Current (IIDLE) ⁽¹⁾								
DC40d	1.25	2	mA	-40°C				
DC40a	1.25	2	mA	+25°C	5 0)/	10 MIPS		
DC40b	1.5	2.6	mA	+85°C	5.00			
DC40c	1.5	2.6	mA	+125°C				
DC42d	2.3	3	mA	-40°C		20 MIPS		
DC42a	2.3	3	mA	+25°C	5.0\/			
DC42b	2.6	3.45	mA	+85°C	5.00			
DC42c	2.6	3.85	mA	+125°C				
DC44d	6.9	8	mA	-40°C				
DC44a	6.9	8	mA	+25°C	5.0V	70 MIPS		
DC44b	7.25	8.6	mA	+85°C				

TABLE 30-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Base Idle current (IIDLE) is measured as follows:

• CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to standby while the device is in Idle mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- 2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

30.2 AC Characteristics and Timing Parameters

This section defines the dsPIC33EVXXXGM00X/10X family AC characteristics and timing parameters.

TABLE 30-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated)					
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
	Operating voltage VDD range as described in Section 30.1 "DC Characteristics" .					

FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 30-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	—	15	pF	In XT and HS modes, when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	—		400	pF	In I ² C mode

TABLE 30-37:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK2 Input Frequency	—	—	11	MHz	See Note 3	
SP72	TscF	SCK2 Input Fall Time	—	_		ns	See Parameter DO32 and Note 4	
SP73	TscR	SCK2 Input Rise Time	—	_		ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDO2 Data Output Fall Time				ns See Parameter D and Note 4		
SP31	TdoR	SDO2 Data Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—		ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SS2}$ ↓ to SCK2 ↑ or SCK2 ↓ Input	120			ns		
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	See Note 4	
SP52 TscH2ssH SS2 ↑ after SCK2 Edge TscL2ssH SS2 ↑ after SCK2 Edge		1.5 Tcy + 40	—	_	ns	See Note 4		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 91 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

TABLE 30-38: SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARA	CTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP		
25 MHz	Table 30-39	—	—	0,1	0,1	0,1		
25 MHz	_	Table 30-40	—	1	0,1	1		
25 MHz		Table 30-41	_	0	0,1	1		
25 MHz		—	Table 30-42	1	0	0		
25 MHz		—	Table 30-43	1	1	0		
25 MHz	_	_	Table 30-44	0	1	0		
25 MHz		_	Table 30-45	0	0	0		

FIGURE 30-20: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 30-35: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS

FIGURE 30-36: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SSRCG = 0, SAMC<4:0> = 00010)

dsPIC33EVXXXGM00X/10X FAMILY

33.19 ADC Gain Offset Error

64-Lead Very Thin Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [VQFN] With 7.15 x 7.15 Exposed Pad [Also called QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-149D [MR] Sheet 1 of 2