

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

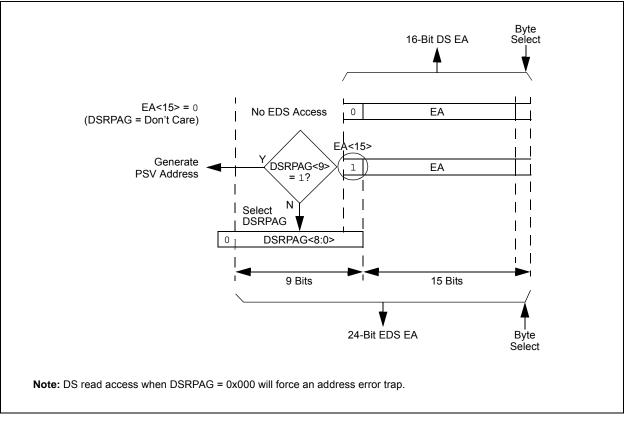
-·XE

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 36x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev32gm106t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents


1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Digital Signal Controllers	17
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	83
6.0	Resets	
7.0	Interrupt Controller	
8.0	Direct Memory Access (DMA)	109
9.0	Oscillator Configuration	123
10.0	Power-Saving Features	133
11.0	I/O Ports	143
12.0	Timer1	173
13.0	Timer2/3 and Timer4/5	175
14.0	Deadman Timer (DMT)	181
15.0	Input Capture	189
16.0	Output Compare	193
17.0	High-Speed PWM Module	199
18.0		221
19.0		
20.0	Single-Edge Nibble Transmission (SENT)	237
21.0	Universal Asynchronous Receiver Transmitter (UART)	
22.0	Controller Area Network (CAN) Module (dsPIC33EVXXXGM10X Devices Only)	253
23.0	Charge Time Measurement Unit (CTMU)	279
24.0	10-Bit/12-Bit Analog-to-Digital Converter (ADC)	
25.0	Op Amp/Comparator Module	301
26.0	Comparator Voltage Reference	313
	Special Features	
28.0	Instruction Set Summary	327
29.0		
	High-Temperature Electrical Characteristics	
	Characteristics for Industrial/Extended Temperature Devices (-40°C to +125°C)	
33.0	Characteristics for High-Temperature Devices (+150°C)	439
	Packaging Information	
	endix A: Revision History	
	Χ	
	Microchip Web Site	
	omer Change Notification Service	
	omer Support	
Produ	luct Identification System	497

4.3.1 PAGED MEMORY SCHEME

The dsPIC33EVXXXGM00X/10X family architecture extends the available DS through a paging scheme, which allows the available DS to be accessed using MOV instructions in a linear fashion for pre- and post-modified Effective Addresses (EAs). The upper half of the Base Data Space address is used in conjunction with the Data Space Page registers, the 10-bit Data Space Read Page register (DSRPAG) or the 9-bit Data Space Write Page register (DSWPAG), to form an EDS address, or Program Space Visibility (PSV) address.

The Data Space Page registers are located in the SFR space. Construction of the EDS address is shown in Figure 4-9 and Figure 4-10. When DSRPAG<9> = 0 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS read address. Similarly, when the base address bit, EA<15> = 1, the DSWPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS read address. Similarly, when the base address bit, EA<15> = 1, the DSWPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS write address.

FIGURE 4-9: EXTENDED DATA SPACE (EDS) READ ADDRESS GENERATION

4.3.2 EXTENDED X DATA SPACE

The lower portion of the base address space range, between 0x0000 and 0x2FFF, is always accessible regardless of the contents of the Data Space Page registers; it is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x002FFF with the base address bit, EA<15> = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of Base Data Space, in combination with DSRPAG = 0x000 or DSWPAG = 0x000. Consequently, the DSRPAG and DSWPAG registers are initialized to 0x001 at Reset.

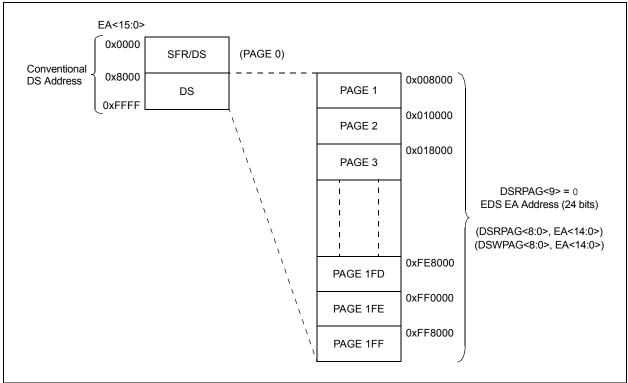

- Note 1: DSxPAG should not be used to access Page 0. An EDS access with DSxPAG set to 0x000 will generate an address error trap.
 - 2: Clearing the DSxPAG in software has no effect.

FIGURE 4-12: EDS MEMORY MAP

The remaining pages, including both EDS and PSV pages, are only accessible using the DSRPAG or DSWPAG registers in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where the base address bit, EA<15> = 1.

For example, when DSRPAG = 0x001 or DSWPAG = 0x001, accesses to the upper 32 Kbytes, 0x8000 to 0xFFFF of the Data Space, will map to the EDS address range of 0x008000 to 0x00FFFF. When DSRPAG = 0x002 or DSWPAG = 0x002, accesses to the upper 32 Kbytes of the Data Space will map to the EDS address range of 0x010000 to 0x017FFF and so on, as shown in the EDS memory map in Figure 4-12.

For more information on the PSV page access using Data Space Page registers, refer to **Section 5.0 "Program Space Visibility from Data Space"** in **"dsPIC33E/PIC24E Program Memory"** (DS70000613) of the *"dsPIC33/PIC24 Family Reference Manual"*.

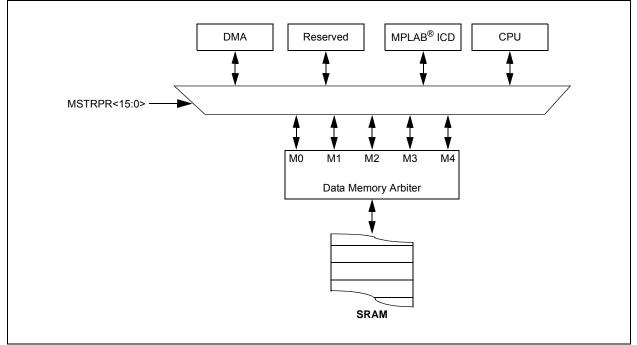
4.3.3 DATA MEMORY ARBITRATION AND BUS MASTER PRIORITY

EDS accesses from bus masters in the system are arbitrated.

The arbiter for data memory (including EDS) arbitrates between the CPU, the DMA and the MPLAB[®] ICD module. In the event of coincidental access to a bus by the bus masters, the arbiter determines which bus master access has the highest priority. The other bus masters are suspended and processed after the access of the bus by the bus master with the highest priority.

By default, the CPU is Bus Master 0 (M0) with the highest priority and the MPLAB ICD is Bus Master 4 (M4) with the lowest priority. The remaining bus master (DMA Controller) is allocated to M3 (M1 and M2 are reserved and cannot be used). The user application may raise or lower the priority of the DMA Controller to be above that of the CPU by setting the appropriate bits in the EDS Bus Master Priority Control (MSTRPR) register. All bus masters with raised priorities will maintain the same priority relationship relative to each other (i.e., M1 being highest and M3 being lowest, with M2 in between). Also, all the bus masters with priorities

below that of the CPU maintain the same priority relationship relative to each other. The priority schemes for bus masters with different MSTRPR values are listed in Table 4-44.


Figure 4-13 shows the arbiter architecture.

The bus master priority control allows the user application to manipulate the real-time response of the system, either statically during initialization or dynamically in response to real-time events.

TABLE 4-44:DATA MEMORY BUS
ARBITER PRIORITY

Driarity	MSTRPR<15:0> Bit Setting ⁽¹⁾					
Priority	0x0000	0x0020				
M0 (highest)	CPU	DMA				
M1	Reserved	CPU				
M2	Reserved	Reserved				
M3	DMA	Reserved				
M4 (lowest)	MPLAB [®] ICD	MPLAB ICD				

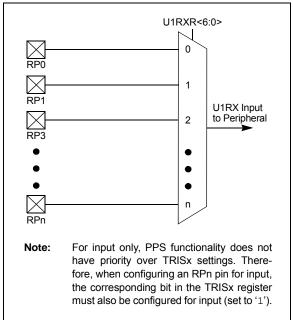
Note 1: All other values of MSTRPR<15:0> are reserved.

9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Oscillator" (DS70580) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

OSCILLATOR SYSTEM DIAGRAM

FIGURE 9-1:


The dsPIC33EVXXXGM00X/10X family oscillator system provides:

- On-Chip Phase-Locked Loop (PLL) to Boost Internal Operating Frequency on Select Internal and External Oscillator Sources
- On-the-Fly Clock Switching between Various Clock Sources
- · Doze mode for System Power Savings
- Fail-Safe Clock Monitor (FSCM) that Detects Clock Failure and Permits Safe Application Recovery or Shutdown.
- Backup FRC (BFRC) Function that Provides a System Clock when there is a Failure in the FRC Clock
- Configuration bits for Clock Source Selection
- A simplified diagram of the oscillator system is shown in Figure 9-1.

For example, Figure 11-2 shows the remappable pin selection for the U1RX input.

FIGURE 11-2: REMAPPABLE INPUT FOR U1RX

11.5.4.1 Virtual Connections

dsPIC33EVXXXGM00X/10X family devices support virtual (internal) connections to the output of the op amp/comparator module (see Figure 25-1 in Section 25.0 "Op Amp/Comparator Module").

These devices provide six virtual output pins (RPV0-RPV5) that correspond to the outputs of six peripheral pin output remapper blocks (RP176-RP181). The six virtual remapper outputs (RP176-RP181) are not connected to actual pins. The six virtual pins may be read by any of the input remappers as inputs, RP176-RP181. These virtual pins can be used to connect the internal peripherals, whose signals are of significant use to the other peripherals, but these output signals are not present on the device pin.

Virtual connections provide a simple way of interperipheral connection without utilizing a physical pin. For example, by setting the FLT1R<7:0> bits of the RPINR12 register to the value of 'b0000001', the output of the analog comparator, C1OUT, will be connected to the PWM Fault 1 input, which allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0
bit 7							bit 0

REGISTER 11-22: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP43R<5:0>: Peripheral Output Function is Assigned to RP43 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP42R<5:0>: Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-23: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP49R5	RP49R4	RP49R3	RP49R2	RP49R1	RP49R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP48R5	RP48R4	RP48R3	RP48R2	RP48R1	RP48R0
bit 7							bit 0

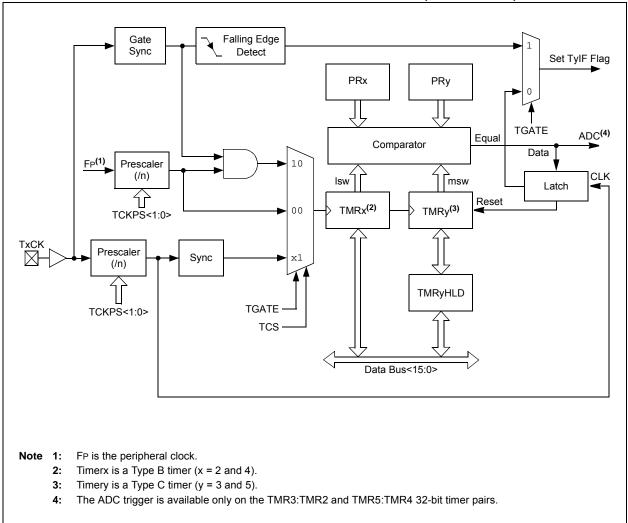
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8**RP49R<5:0>:** Peripheral Output Function is Assigned to RP49 Output Pin bits
(see Table 11-3 for peripheral function numbers)bit 7-6**Unimplemented:** Read as '0'

bit 5-0 **RP48R<5:0>:** Peripheral Output Function is Assigned to RP48 Output Pin bits

(see Table 11-3 for peripheral function numbers)


Note 1: This register is present in dsPIC33EVXXXGM004/104/006/106 devices only.

12.1 Timer1 Control Register

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	—	TSIDL	—	—	_	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
	TGATE	TCKPS1	TCKPS0	—	TSYNC ⁽¹⁾	TCS ⁽¹⁾	—
bit 7							bit 0
Legend:							
R = Readable		W = Writable		-	mented bit, read		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
		o					
bit 15	TON: Timer1						
	1 = Starts 16- 0 = Stops 16-						
bit 14	•	ted: Read as '	י)				
bit 13	-	1 Stop in Idle N					
2.1.10		ues module op		he device ente	ers Idle mode		
	0 = Continues	s module opera	tion in Idle mo	ode			
bit 12-7	Unimplemented: Read as '0'						
bit 6	TGATE: Time	r1 Gated Time	Accumulation	Enable bit			
	When TCS = This bit is igno						
	When TCS =						
		e accumulation					
bit 5-4		e accumulation		a Salaat hita			
DIL 3-4	11 = 1:256	: Timer1 Input					
	10 = 1:64						
	01 = 1:8						
	00 = 1:1						
bit 3	-	ted: Read as '			(1)		
bit 2		er1 External Clo	ock Input Synd	chronization Se	elect bit ⁽¹⁾		
	<u>When TCS =</u> 1 = External c		nchronized				
	 External clock input is synchronized External clock input is not synchronized 						
	When TCS =	=	,				
	This bit is igno						
bit 1		Clock Source S					
	1 = External clock is from pin, T1CK (on the rising edge) 0 = Internal clock (FP)						
bit 0	Unimplemen	ted: Read as '	כי				
	en Timer1 is en mpts by user se				ode (TCS = 1, T nored.	SYNC = 1, TO	N = 1), any

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STEP	2<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown
<u> </u>							
bit 15-8	Unimplemen	ted: Read as '	0'				
bit 7-0 STEP2<7:0>: DMT Clear Timer bits							

REGISTER 14-3: DMTCLR: DEADMAN TIMER CLEAR REGISTER

00001000 = Clears STEP1<7:0>, STEP2<7:0> and the Deadman Timer if preceded by the correct loading of the STEP1<7:0> bits in the correct sequence. The write to these bits may be verified by reading the DMTCNTL/H register and observing the counter being reset.

All Other

Write Patterns = Sets the BAD2 bit; the value of STEP1<7:0> will remain unchanged and the new value being written to STEP2<7:0> will be captured. These bits are cleared when a DMT Reset event occurs.

REGISTER 15-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—	—	—	—	—	IC32 ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0, HS	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG ⁽²⁾	TRIGSTAT ⁽³⁾	_	SYNCSEL4(4)	SYNCSEL3(4)	SYNCSEL2(4)	SYNCSEL1(4)	SYNCSEL0(4)
bit 7							bit 0

Legend:	HS = Hardware Settable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-9	Unimplemented: Read as '0'
bit 8	IC32: Input Capture x 32-Bit Timer Mode Select bit (Cascade mode) ⁽¹⁾
	 1 = Odd ICx and even ICx form a single 32-bit input capture module 0 = Cascade module operation is disabled
bit 7	ICTRIG: Input Capture x Trigger Operation Select bit ⁽²⁾
	 1 = Input source is used to trigger the input capture timer (Trigger mode) 0 = Input source is used to synchronize the input capture timer to the timer of another module (Synchronization mode)
bit 6	TRIGSTAT: Timer Trigger Status bit ⁽³⁾
	 1 = ICxTMR has been triggered and is running 0 = ICxTMR has not been triggered and is being held clear
bit 5	Unimplemented: Read as '0'
Note di	The IC22 hit is both the odd and over ICy must be eat to enable Caseada mode

- **Note 1:** The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by the SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own sync or trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - 6: When the source ICx timer rolls over, then in the next clock cycle, trigger or synchronization occurs.

R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 R/W-0 **FLTMD FLTOUT FLTTRIEN** OCINV ____ ____ OC32 ____ bit 15 bit 8 R/W-0 R/W-0, HS R/W-0 R/W-0 R/W-1 R/W-1 R/W-0 R/W-0 OCTRIG OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 TRIGSTAT SYNCSEL1 SYNCSEL0 bit 7 bit 0 Legend: HS = Hardware Settable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 FLTMD: Fault Mode Select bit 1 = Fault mode is maintained until the Fault source is removed; the OCFLTA bit is cleared in software and a new PWM period starts 0 = Fault mode is maintained until the Fault source is removed and a new PWM period starts bit 14 FLTOUT: Fault Out bit 1 = PWM output is driven high on a Fault 0 = PWM output is driven low on a Fault bit 13 FLTTRIEN: Fault Output State Select bit 1 = OCx pin is tri-stated on a Fault condition 0 = OCx pin I/O state is defined by the FLTOUT bit on a Fault condition bit 12 **OCINV:** Output Compare x Invert bit 1 = OCx output is inverted 0 = OCx output is not inverted bit 11-9 Unimplemented: Read as '0' bit 8 OC32: Cascade Two OCx Modules Enable bit (32-bit operation) 1 = Cascade module operation is enabled 0 = Cascade module operation is disabled bit 7 OCTRIG: Output Compare x Trigger/Sync Select bit 1 = Triggers OCx from the source designated by the SYNCSELx bits 0 = Synchronizes OCx with the source designated by the SYNCSELx bits bit 6 TRIGSTAT: Timer Trigger Status bit 1 = Timer source has been triggered and is running 0 = Timer source has not been triggered and is being held clear bit 5 OCTRIS: Output Compare x Output Pin Direction Select bit 1 = Output Compare x is tri-stated 0 = Output Compare x module drives the OCx pin

REGISTER 16-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

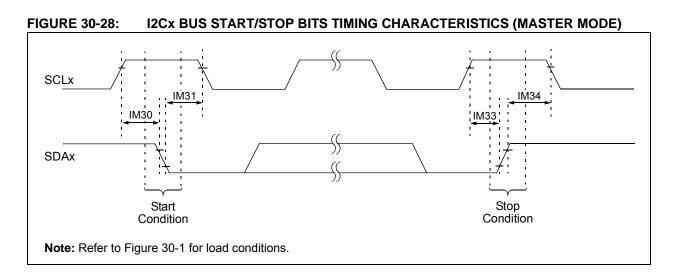
Note 1: Do not use the OCx module as its own synchronization or trigger source.

2: When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.

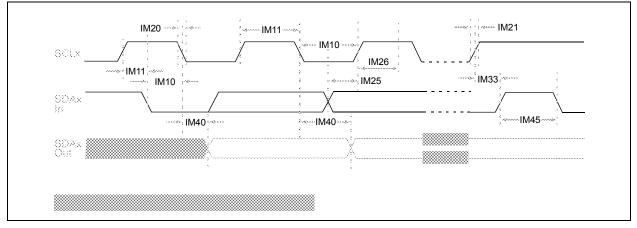
R	R	R		R 23:16> ⁽¹⁾	R	R	R
			DEVID	23.10/			
bit 23							bit 16
R	R	R	R	R	R	R	R
			DEVID<	<15:8> (1)			
bit 15							bit 8
R	R	R	R	R	R	R	R
			DEVID	<7:0> ⁽¹⁾			
bit 7							bit 0
Legend:	R = Read-Only bit			U = Unimplem	ented bit		

REGISTER 27-1: DEVID: DEVICE ID REGISTER

bit 23-0 **DEVID<23:0>:** Device Identifier bits⁽¹⁾


Note 1: Refer to "*dsPIC33EVXXXGM00X/10X Families Flash Programming Specification*" (DS70005137) for the list of Device ID values.

REGISTER 27-2: DEVREV: DEVICE REVISION REGISTER


Legend:	R = Read-only bit	Read-only bit U = Unimplemented bit						
bit 7							bit 0	
			DEVRE	/<7:0> ⁽¹⁾				
R	R	R	R	R	R	R	R	
bit 15							bit 8	
			DEVREV	<15:8> ⁽¹⁾				
R	R	R	R	R	R	R	R	
bit 23							bit 16	
			DEVREV<	<23:16> ⁽¹⁾				
R	R	R	R	R	R	R	R	

bit 23-0 **DEVREV<23:0>:** Device Revision bits⁽¹⁾

Note 1: Refer to "*dsPIC33EVXXXGM00X/10X Families Flash Programming Specification*" (DS70005137) for the list of device revision values.

TABLE 31-4:	DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)
-------------	--

DC CHARACT	ERISTICS			Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature				
Parameter No.	Typical	Мах	Units	Conditions				
Power-Down (Current (IPD)							
HDC60e	1300	2500	μA	+150°C	5V	Base Power-Down Current		
HDC61c	10	50	μA	+150°C 5V Watchdog Timer Current: ∆IwDT				

TABLE 31-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARACTERISTICS				•		(unless otherwise stated) for High Temperature	
Parameter No.	Typical	Max	Units	Conditions			
HDC40e	2.6	5.0	mA	+150°C	5V	10 MIPS	
HDC42e	3.6	7.0	mA	+150°C 5V 20 MIPS			

TABLE 31-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS				•		V (unless otherwise stated) C for High Temperature	
Parameter No.	Typical	Max	Units	Conditions			
HDC20e	5.9	8.0	mA	+150°C	5V	10 MIPS	
HDC22e	10.3	15.0	mA	+150°C	5V	20 MIPS	
HDC23e	19.0	25.0	mA	+150°C 5V 40 MIPS			

TABLE 31-7: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARAG	CTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Parameter No.	Typical	Мах	Doze Ratio	Units	Conditions			
HDC73a	18.5	22.0	1:2	mA	+150°C	5V	40 MIPS	
HDC73g	8.35	12.0	1:128	mA	+150 C	50	40 101195	

32.12 VBOR

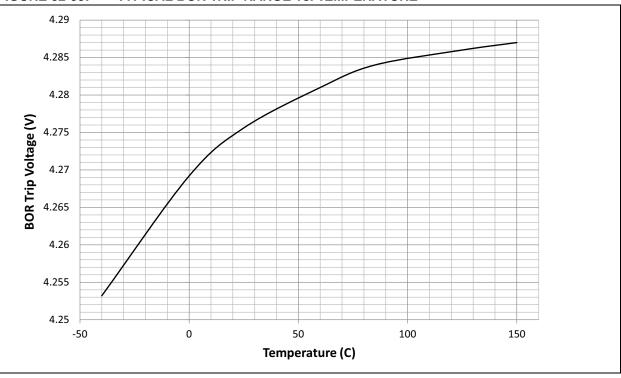


FIGURE 32-35: TYPICAL BOR TRIP RANGE vs. TEMPERATURE

32.13 RAM Retention

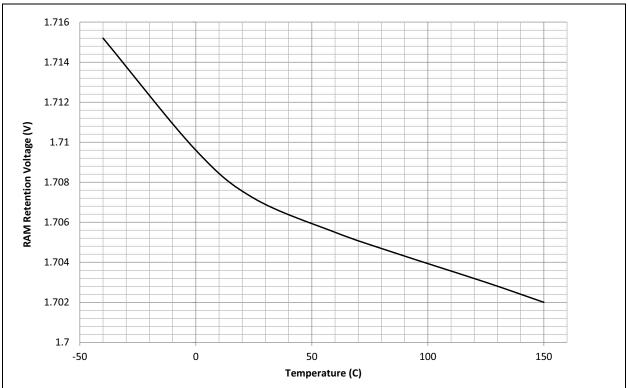
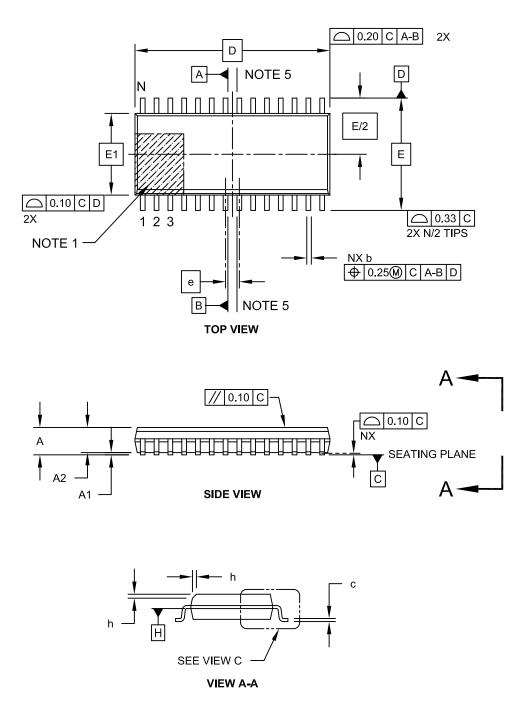
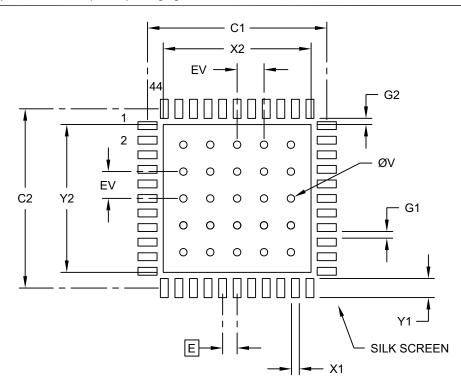



FIGURE 32-36: TYPICAL RAM RETENTION VOLTAGE vs. TEMPERATURE

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

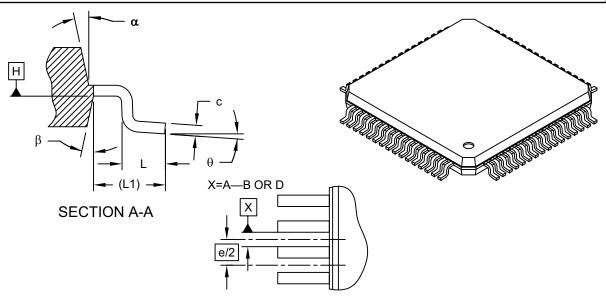
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	X2			6.60
Optional Center Pad Length	Y2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Contact Pad to Contact Pad (X40)	G1	0.30		
Contact Pad to Center Pad (X44)	G2	0.28		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2103C

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL 1

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Leads	Ν		64		
Lead Pitch	е		0.50 BSC		
Overall Height	A	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	¢	0°	3.5°	7°	
Overall Width	Е		12.00 BSC		
Overall Length	D		12.00 BSC		
Molded Package Width	E1		10.00 BSC		
Molded Package Length	D1		10.00 BSC		
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11° 12° 13°			
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

APPENDIX A: REVISION HISTORY

Revision A (December 2013)

This is the initial version of this document.

Revision B (June 2014)

This revision incorporates the following updates:

- · Sections:
 - Added Section 31.0 "High-Temperature Electrical Characteristics"
 - Updated the "Power Management" section, the "Input/Output" section, Section 3.3
 "Data Space Addressing", Section 4.2
 "Data Address Space", Section 4.3.2
 "Extended X Data Space", Section 4.6.1
 "Bit-Reversed Addressing Implementation", Section 7.4.1 "INTCON1 through INTCON4", Section 11.7 "I/O Helpful Tips"
 - Updated note in Section 17.0 "High-Speed PWM Module", Section 18.0 "Serial Peripheral Interface (SPI)", Section 27.8 "Code Protection and CodeGuard™ Security"
 - Updated title of Section 20.0 "Single-Edge Nibble Transmission (SENT)"
 - Updated Section 34.0 "Packaging Information". Deleted e3, Pb-free and Industrial (I) temperature range indication throughout the section, and updated the packaging diagrams
 - Updated the "Product Identification System" section
- Registers:
 - Updated Register 3-2, Register 7-2, Register 7-6, Register 9-2, Register 11-3, Register 14-1, Register 14-3, Register 14-11, Register 15-1, Register 22-4
- Figures:
 - Added Figure 4-6, Figure 4-8, Figure 4-14, Figure 4-15, Figure 14-1, Figure 16-1, Figure 17-2, Figure 23-1, Figure 24-1
- Tables:
 - Updated Table 1, Table 27-1, Table 27-2, Table 30-6, Table 30-7, Table 30-8, Table 30-9, Table 30-10, Table 30-11, Table 30-12, Table 30-38, Table 30-50, Table 30-53 and added Table 31-11,
- Changes to text and formatting were incorporated throughout the document

Revision C (November 2014)

This revision incorporates the following updates:

- · Sections:
 - Added note in Section 5.2 "RTSP Operation"
 - Updated "Section 5.4 "Error Correcting Code (ECC)"
 - Deleted 44-Terminal Very Thin Leadless Array Package (TL) - 6x6x0.9 mm Body With Exposed Pad (VTLA).
- Registers
 - Updated Register 7-6
- Figures:
 - Updated Figure 4-1, Figure 4-3, Figure 4-4
- · Tables:
 - Updated Table 27-2, Table 31-13, Table 31-14, Table 31-15
 - Added Table 31-16, Table 31-17

Revision D (April 2015)

This revision incorporates the following updates:

- Sections:
 - Updated the Clock Management, Timers/ Output Compare/Input Capture, Communication Interfaces and Input/Output sections at the beginning of the data sheet (Page 1 and Page 2).
 - Updated all pin diagrams at the beginning of the data sheet (Page 4 through Page 9).
 - Added Section 11.6 "High-Voltage Detect (HVD)"
 - Updated Section 13.0 "Timer2/3 and Timer4/5"
 - Corrects all Buffer heading numbers in Section 22.4 "CAN Message Buffers"
- Registers
 - Updated Register 3-2, Register 25-2, Register 26-2
- Figures
 - Updated Figure 26-1, Figure 30-5, Figure 30-32
- Tables
 - Updated Table 1, Table 4-25, Table 30-10, Table 30-22, Table 30-53 and Table 31-8
- Changes to text and formatting were incorporated throughout the document