

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev64gm002-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-3: CTXTSTAT: CPU W REGISTER CONTEXT STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0			
_	_				CCTXI2	CCTXI1	CCTXI0			
bit 15					•	·	bit 8			
U-0	U-0	U-0	U-0	U-0	R-0	R/W-0	R/W-0			
—	—	—	—	—	MCTXI2	MCTXI1	MCTXI0			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0' '0' = Bit is cleared x = Bit is unknown text Identifier bits						
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	<pre>< = Bit is unknown</pre>			
bit 10-8	<pre>111 = Reserved</pre>									
bit 2-0	Unimplemented: Read as '0' MCTXI<2:0>: Manual (W Register) Context Identifier bits 111 = Reserved • • • • • • • • • • • • •									

4.3 Special Function Register Maps

TABLE 4-1: CPU CORE REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset s
W0	0000		W0 (WREG) 0000															
W1	0002								W									0000
W2	0004								W2	2								0000
W3	0006								W	3								0000
W4	0008								W4	ŀ								0000
W5	000A								W	5								0000
W6	000C								We	5								0000
W7	000E								W	,								0000
W8	0010								W	3								0000
W9	0012								WS)								0000
W10	0014		W10 0000															
W11	0016		W11 0000															
W12	0018	W12 0000																
W13	001A	W13 0000																
W14	001C	W14 0000																
W15	001E	W15 0800																
SPLIM	0020	SPLIM xxxx																
ACCAL	0022								ACC	AL								xxxx
ACCAH	0024								ACC	٩H								xxxx
ACCAU	0026			Sig	n Extension	of ACCA<39	9>						ACO	CAU				xxxx
ACCBL	0028								ACC	BL								xxxx
ACCBH	002A								ACC	ЗH								xxxx
ACCBU	002C			Sig	n Extension	of ACCB<39	9>						ACO	CBU				xxxx
PCL	002E						Pro	ogram Cour	nter Low Wo	ord Register	-						—	0000
PCH	0030	—	—	—	—	—	—	—	—	—		F	Program Cou	inter High W	ord Register			0000
DSRPAG	0032	—	—	—	—	—	—				Dat	a Space Rea	ad Page Re	gister				0001
DSWPAG	0034	—	—	—	—	—	—	—				Data Space	ce Write Pag	e Register				0001
RCOUNT	0036							repeat Lo	op Counter	Register							0	xxxx
DCOUNT	0038							DC	OUNT<15:1	>							0	xxxx
DOSTARTL	003A							DOS	TARTL<15:	1>							0	xxxx
DOSTARTH	003C	—	—	—	—	—	—	—	—	—	—			DOSTART	⁻ H<5:0>			00xx
DOENDL	003E							DO	ENDL<15:1	>							_	xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

7.3 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EVXXXGM00X/10X family devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

7.4 Interrupt Control and Status Registers

dsPIC33EVXXXGM00X/10X family devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- IFSx
- IECx
- IPCx
- INTTREG

7.4.1 INTCON1 THROUGH INTCON4

Global interrupt control functions are controlled from the INTCON1, INTCON2, INTCON3 and INTCON4 registers.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS), as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior and also contains the Global Interrupt Enable bit (GIE).

INTCON3 contains the status flags for the DMT (Deadman Timer), DMA and ${\tt DO}$ stack overflow status trap sources.

The INTCON4 register contains the ECC Double-Bit Error (ECCDBE) and Software-Generated Hard Trap (SGHT) status bit.

7.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared through software.

7.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into Vector Number (VECNUM<7:0>) and Interrupt Priority Level bit (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

7.4.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers, refer to **"CPU"** (DS70359) in the *"dsPIC33/PIC24 Family Reference Manual"*.

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU Interrupt Priority Level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-3 to Register 7-7.

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Direct Memory Access (DMA)" (DS70348) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The DMA Controller transfers data between Peripheral Data registers and Data Space SRAM. For the simplified DMA block diagram, refer to Figure 8-1.

In addition, DMA can access the entire data memory space. The data memory bus arbiter is utilized when either the CPU or DMA attempts to access SRAM, resulting in potential DMA or CPU stalls.

The DMA Controller supports 4 independent channels. Each channel can be configured for transfers to or from selected peripherals. The peripherals supported by the DMA Controller include:

- CAN
- Analog-to-Digital Converter (ADC)
- Serial Peripheral Interface (SPI)
- UART
- Input Capture
- Output Compare

Refer to Table 8-1 for a complete list of supported peripherals.

FIGURE 8-1: PERIPHERAL TO DMA CONTROLLER

REGISTER 8-7: DMAXPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PAD	<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PAI	0<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared			x = Bit is unkr	nown				

bit 15-0 PAD<15:0>: DMA Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-8: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—			CNT<	:13:8> (2)		
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CNT<7:0> ⁽²⁾									
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 CNT<13:0>: DMA Transfer Count Register bits⁽²⁾

- **Note 1:** If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.
 - **2:** The number of DMA transfers = CNT<13:0> + 1.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	
ROI	DOZE2 ⁽³⁾	DOZE1 ⁽³⁾	DOZE0 ⁽³⁾	DOZEN ^(1,4)	FRCDIV2	FRCDIV1	FRCDIV0	
bit 15							bit 8	
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PLLPOST1	PLLPOST0		PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown	
bit 15	ROI: Recover 1 = Interrupts 0 = Interrupts	on Interrupt b will clear the I have no effect	it OOZEN bit t on the DOZE	N bit				
UIL 14-12	111 = FCY div 110 = FCY div 101 = FCY div 100 = FCY div 011 = FCY div 010 = FCY div 001 = FCY div 001 = FCY div 000 = FCY div	vided by 128 vided by 64 vided by 32 vided by 16 vided by 8 vided by 4 vided by 2 vided by 1 (def	ault)					
bit 11 DOZEN: Doze Mode Enable bit ^(1,4) 1 = DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks 0 = Processor clock and peripheral clock ratio are forced to 1:1								
bit 10-8 FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits 111 = FRC divided by 256 110 = FRC divided by 64 101 = FRC divided by 32 100 = FRC divided by 16 011 = FRC divided by 8 010 = FRC divided by 4 001 = FRC divided by 2 (default) 000 = FRC divided by 1								
bit 7-6 bit 5	PLLPOST<1: 11 = Output of 10 = Reserve 01 = Output of 00 = Output of Unimplemen	10>: PLL VCO livided by 8 d livided by 4 livided by 2 ted: Read as ⁴	Output Divide	r Select bits (al	so denoted as	'N2', PLL posts	caler)	
Note 1: Th 2: Th 3: D(D(his bit is cleared v his register resets DZE<2:0> bits ca DZE<2:0> are ig	when the ROI I s only on a Pov an only be writt nored.	bit is set and a wer-on Reset en to when th	an interrupt occ (POR). e DOZEN bit is	urs. clear. If DOZE	N = 1, any wri	tes to	

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾

4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

11.5.5.1 Mapping Limitations

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn pins is possible. This includes both many-to-one, and one-to-many mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

Function	RPnR<5:0>	Output Name
Default Port	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U2TX	000011	RPn tied to UART2 Transmit
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Slave Select
C1TX	001110	RPn tied to CAN1 Transmit
OC1	010000	RPn tied to Output Compare 1 Output
OC2	010001	RPn tied to Output Compare 2 Output
OC3	010010	RPn tied to Output Compare 3 Output
OC4	010011	RPn tied to Output Compare 4 Output
C1OUT	011000	RPn tied to Comparator Output 1
C2OUT	011001	RPn tied to Comparator Output 2
C3OUT	011010	RPn tied to Comparator Output 3
SYNCO1	101101	RPn tied to PWM Primary Time Base Sync Output
REFCLKO	110001	RPn tied to Reference Clock Output
C4OUT	110010	RPn tied to Comparator Output 4
C5OUT	110011	RPn tied to Comparator Output 5
SENT1	111001	RPn tied to SENT Out 1
SENT2	111010	RPn tied to SENT Out 2

· · ·	TABLE 11-3:	OUTPUT SELECTION FOR REMAPPABLE PINS (RP	'n)
-------	-------------	---	-----

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0

REGISTER 11-18: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP35R<5:0>: Peripheral Output Function is Assigned to RP35 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP20R<5:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-19: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 7

bit 13-8 **RP37R<5:0>:** Peripheral Output Function is Assigned to RP37 Output Pin bits (see Table 11-3 for peripheral function numbers)

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP36R<5:0>:** Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 0

13.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

These modules are 32-bit timers, which can also be configured as four independent, 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3 and Timer4/5 operate in the following three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare Modules
- ADC1 Event Trigger (Timer2/3 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1. The T3CON and T5CON registers are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw). Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, the T3CON and T5CON control bits are ignored. Only the T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

Block diagrams for the Type B and Type C timers are shown in Figure 13-1 and Figure 13-2, respectively.

A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 13-3.

Note: Only Timer2, Timer3, Timer4 and Timer5 can trigger a DMA data transfer.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	_	_	_	_		_	_	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STEP	2<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1'		'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown	
bit 15-8	Unimplemen	ted: Read as	0'					
bit 7-0	STEP2<7:0>	: DMT Clear Ti	mer bits					

REGISTER 14-3: DMTCLR: DEADMAN TIMER CLEAR REGISTER

00001000 = Clears STEP1<7:0>, STEP2<7:0> and the Deadman Timer if preceded by the correct loading of the STEP1<7:0> bits in the correct sequence. The write to these bits may be verified by reading the DMTCNTL/H register and observing the counter being reset.

All Other

Write Patterns = Sets the BAD2 bit; the value of STEP1<7:0> will remain unchanged and the new value being written to STEP2<7:0> will be captured. These bits are cleared when a DMT Reset event occurs.

REGISTER 14-9: DMTPSINTVL: DMT POST CONFIGURE INTERVAL STATUS REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSIN	FV<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSIN	TV<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable I	bit	U = Unimplei	mented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0 **PSINTV<15:0>:** Lower DMT Window Interval Configuration Status bits This is always the value of the FDMTINTVL Configuration register.

REGISTER 14-10: DMTPSINTVH: DMT POST CONFIGURE INTERVAL STATUS REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSINT	V<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSINT	V<23:16>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimpler	nented bit, read	i as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0 **PSINTV<31:16>:** Higher DMT Window Interval Configuration Status bits This is always the value of the FDMTINTVH Configuration register.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL ⁽²⁾	CLMOD
bit 15					•	·	bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL ⁽²⁾	FLTMOD1	FLTMOD0
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	oit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	Unimplement	ted: Read as '0)'				
bit 14-10	CLSRC<4:0>	: Current-Limit	Control Signa	I Source Selec	t for PWM Gene	erator x bits	
	11111 = Faul	t 32					
	11110 = Rese	erved					
	•						
	•						
	01100 = Op A	Amp/Comparate	or 5				
	01011 = Com	iparator 4	or 3				
	01000 = Op A	Amp/Comparate	or 2				
	01000 = Op A	Amp/Comparate	or 1				
	00111 = Faul	t 8					
	00110 = Faul	t / t 6					
	00100 = Faul	t 5					
	00011 = Fau l	t 4					
	00010 = Faul	t 3					
	00001 = Faul	t 2 t 1 (default)					
hit Q		ent-Limit Polari	ty for PWM G	enerator v hit(2)		
bit 5	1 = The select	ted current-limi	t source is act	tive-low			
	0 = The selec	ted current-limi	t source is act	tive-high			
bit 8	CLMOD: Curr	ent-Limit Mode	Enable for P	WM Generator	x bit		
	1 = Current-Li	imit mode is en	abled				
	0 = Current-Li	imit mode is dis	abled				
Note 1: I	f the PWMLOCK (he unlock sequend	Configuration bi ce has been ex	t (FDEVOPT< ecuted.	:0>) is a '1', the	e FCLCONx reg	ister can only b	e written after

REGISTER 17-15: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER⁽¹⁾

2: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-7	Unimplemen	ted: Read as '0)'	0			
bit 6	PCIE: Stop C	ondition Interru	pt Enable bit (I ² C Slave mode	e only).		
	1 = Enables ii	nterrupt on dete	ection of Stop (are disabled	condition			
hit 5	SCIE: Start C	ondition Interru	nt Enable hit (1 ² C Slave mode	a only)		
bit 5	1 = Enables in	nterrupt on dete	ection of Start	or Restart cond	itions		
	0 = Start dete	ction interrupts	are disabled				
bit 4	BOEN: Buffer	r Overwrite Ena	ible bit (I ² C Sla	ave mode only)			
	1 = The I2Cx	RCV register b	it is updated a	and an ACK is g	generated for a	received addr	ess/data byte,
	ignoring t 0 = The I2Cx	the state of the RCV register b	I2COV bit only it is only updat	/ if the RBF bit ed when I2CO	= 0 V is clear		
bit 3	SDAHT: SDA	x Hold Time Se	election bit				
	1 = Minimum	of 300 ns hold	time on SDAx	after the falling	edge of SCLx		
	0 = Minimum	of 100 ns hold	time on SDAx	after the falling	edge of SCLx		
bit 2	SBCDE: Slav	e Mode Bus Co	ollision Detect	Enable bit (I ² C	Slave mode or	ıly)	
	If, on the risin	ig edge of SCL	x, SDAx is sa	mpled low whe	n the module is	s outputting a l	high state, the
	Sequences.	and the bus go	bes idie. This i	Detection mode	e is only valid d	uning data and	ACK transmit
	1 = Slave bus	collision interr	upts are enabl	ed			
	0 = Slave bus	collision interr	upts are disabl	ed			
bit 1	AHEN: Addre	ess Hold Enable	e bit (I ² C Slave	mode only)			
	1 = Following	the 8 th falling	edge of SCL	x for a matching	ng received ad	dress byte; th	e SCLREL bit
	0 = Address	holding is disab	led				
bit 0	DHEN: Data I	Hold Enable bit	(I ² C Slave mo	de only)			
	1 = Following	the 8 th falling e	edge of SCLx f	or a received d	ata byte; slave l	hardware clear	s the SCLREL
	bit (I2CxC	CON1<12>) and	d the SCLx is I	neld low			
	0 = Data holo	ding is disabled					

REGISTER 19-2: I2CxCON2: I2Cx CONTROL REGISTER 2

20.3 Receive Mode

The module can be configured for receive operation by setting the RCVEN (SENTxCON1<11>) bit. The time between each falling edge is compared to SYNCMIN<15:0> (SENTxCON3<15:0>) and SYNCMAX<15:0> (SENTxCON2<15:0>), and if the measured time lies between the minimum and maximum limits, the module begins to receive data. The validated Sync time is captured in the SENTxSYNC register and the tick time is calculated. Subsequent falling edges are verified to be within the valid data width and the data is stored in the SENTxDATH/L register. An interrupt event is generated at the completion of the message and the user software should read the SENTx Data register before the reception of the next nibble. The equation for SYNCMIN<15:0> and SYNCMAX<15:0> is shown in Equation 20-3.

EQUATION 20-3: SYNCMIN<15:0> AND SYNCMAX<15:0> CALCULATIONS

 $TTICK = TCLK \bullet (TICKTIME < 15:0 > + 1)$

FRAMETIME<15:0> = TTICK/TFRAME

SyncCount = 8 x FRCV x TTICK

SYNCMIN<15:0> = 0.8 x SyncCount

SYNCMAX<15:0> = 1.2 x SyncCount

 $FRAMETIME < 15:0 \ge 122 + 27N$

 $FRAMETIME < 15:0 \ge 848 + 12N$

Where:

 T_{FRAME} = Total time of the message from ms N = The number of data nibbles in message, 1-6 F_{RCV} = FCY x prescaler T_{CLK} = FCY/Prescaler

For TTICK = 3.0 μ s and FCLK = 4 MHz, SYNCMIN<15:0> = 76.

Note:	To ensure a Sync period can be identified,
	the value written to SYNCMIN<15:0>
	must be less than the value written to SYNCMAX<15:0>.

20.3.1 RECEIVE MODE CONFIGURATION

20.3.1.1 Initializing the SENTx Module:

Perform the following steps to initialize the module:

- 1. Write RCVEN (SENTxCON1<11>) = 1 for Receive mode.
- 2. Write NIBCNT<2:0> (SENTxCON1<2:0>) for the desired data frame length.
- 3. Write CRCEN (SENTxCON1<8>) for hardware or software CRC validation.
- 4. Write PPP (SENTxCON1<7>) = 1 if pause pulse is present.
- 5. Write SENTxCON2 with the value of SYNCMAXx (Nominal Sync Period + 20%).
- 6. Write SENTxCON3 with the value of SYNCMINx (Nominal Sync Period 20%).
- 7. Enable interrupts and set interrupt priority.
- 8. Set the SNTEN (SENTxCON1<15>) bit to enable the module.

The data should be read from the SENTxDATH/L register after the completion of the CRC and before the next message frame's status nibble. The recommended method is to use the message frame completion interrupt trigger. Figure 25-2, shows the user-programmable blanking function block diagram.

FIGURE 25-2: USER-PROGRAMMABLE BLANKING FUNCTION BLOCK DIAGRAM

Figure 25-3, shows the digital filter interconnect block diagram.

FIGURE 25-3: DIGITAL FILTER INTERCONNECT BLOCK DIAGRAM

27.5 Watchdog Timer (WDT)

For dsPIC33EVXXXGM00X/10X family devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

27.5.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a WDT Time-out Period (TWDT), as shown in Parameter SY12 in Table 30-22.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

FIGURE 27-2: WDT BLOCK DIAGRAM

27.5.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bit (RCON<3:2>) needs to be cleared in software after the device wakes up.

27.5.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN<1:0> Configuration bits in the FWDT Configuration register. When the FWDTEN<1:0> Configuration bits are set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTENx Configuration bits have been programmed to '00'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

27.5.4 WDT WINDOW

The Watchdog Timer has an optional Windowed mode enabled by programming the WINDIS bit in the WDT Configuration register (FWDT<7>). In the Windowed mode (WINDIS = 0), the WDT should be cleared based on the settings in the programmable Watchdog Timer Window (WDTWIN<1:0>) select bits.

Field	Description
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions \in {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 Working registers ∈ {W0W15}
Wnd	One of 16 Destination Working registers ∈ {W0W15}
Wns	One of 16 Source Working registers ∈ {W0W15}
WREG	W0 (Working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X Data Space Prefetch Destination register for DSP instructions \in {W4W7}
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}

TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

9 587.0 587.0 87.0 97.0 <th< th=""><th>Base Instr #</th><th>Assembly Mnemonic</th><th></th><th>Assembly Syntax</th><th>Description</th><th># of Words</th><th># of Cycles</th><th>Status Flags Affected</th></th<>	Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
Image: Bar, 2 w, wb Web 2 bit 0 wo/wb/m 1 1 None 973 2703 1, wb14 Bit Toggle 1 1 1 None 10 2705 1, wb14 Bit Toggle N 1 1 1 None 11 2705 1, wb14 Bit Toggle N 1	8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
Prime Prim Prime Prime <th< td=""><td></td><td></td><td>BSW.Z</td><td>Ws,Wb</td><td>Write Z bit to Ws<wb></wb></td><td>1</td><td>1</td><td>None</td></th<>			BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
indindindNone10FirstFirstf, bit 4Bit Test Ns, fp if Gear11None11FirstFirstf, bit 4Bit Test Ns, Skp if Gear111011FirstFirstf, bit 4Bit Test Ns, Skp if Gear1110011FirstFirstf, bit 4Bit Test Ns, Skp if Set1110012FirstFirstf, bit 4Bit Test Ns to 51112012FirstFirstf, bit 4Bit Test Ns to 51112013FirstFirstf, bit 4Bit Test Ns to 51112014FirstFirstf, bit 4Bit Test Ns to 51112015FirstK, bit 4Bit Test Ns to 51112000	9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
Presc Presc Field Isingle in the set of the se			BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
Image: state State Bit Test Ws, Skip if Gear 1 <th1< th=""> 1 1 1</th1<>	10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
11 prss prss c, nbit4 Bit Test f, Skip if Set 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>			BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
Image: bit state Bit Test Ws, Skip if Set 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 FTST Ks, Bit 14 Bit Test Ws 10 C 11 1 1 C C 13 FTST Ks, Bit 14 Bit Test Ws 10 C 1 1 1 C 14 FTST Ks, Bit 14 Bit Test Ws Vol 0 C 1 1 1 C 15 FTST Ks, Bit 14 Bit Test Ms Vol 0, Chen Set 1 1 1 C 16 FTSTS Ks, Bit 14 Bit Test Ms 10, Zhen Set 1 1 1 C 17 MTSTS Ks, Bit 14 Bit Test Ms 10, Zhen Set 1 <t< td=""><td>11</td><td>BTSS</td><td>BTSS</td><td>f,#bit4</td><td>Bit Test f, Skip if Set</td><td>1</td><td>1 (2 or 3)</td><td>None</td></t<>	11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
12 Fight Matrix (March Matrix March Ma			BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
карт.с. кв.,но.14 Птак их во.С. 1 1 С. H357.C. Ns., но.14 Bit Test Ws to C. 1 1 Z. H375.C. Ns., ho.14 Bit Test Ws-Wob to C. 1 1 Z. H375.C. Ns., ho.14 Bit Test Ws-Wob to Z. 1 1 Z. H375.C. Ns., ho.14 Bit Test Ws to Z, then Set f. 1 1 Z. H375.C. Ns., ho.14 Bit Test Ws to Z, then Set f. 1 1 Z. CALL Ns., ho.14 Bit Test Ws to Z, then Set f. 1 1 Z. CALL Ns., ho.14 Bit Test Ws to Z, then Set f. 1 1 Z. CALL Ws. Call indirect subroutine (long address) 1 1 None CALL Ws. Call indirect subroutine (long address) 1 1 None CLR K. K. NS Call indirect subroutine (long address) 1 None CLR Ws. NS Call indirect subroutine (long address)<	12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
Product Problem Product Product Problem Product Product Problem Product Product Problem Product Prod			BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
Product Produc			BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
			BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
13 BRTSTS f. Buit4 BRT bet 4 BRT bet 4/m BRT bet 4/m 1 1 1 2 11 BRTSTS.C Wa, Bbit4 BRT bet Ws to 2, then Set 1 1 1 2 12 CALL Int 23 Call subroutine 2 4 SFA 14 CALL Wn Call indirect subroutine (long address) 1 4 SFA 15 CLR CLR F.C. Call indirect subroutine (long address) 1 4 SFA 15 CLR WREG Call indirect subroutine (long address) 1 4 SFA 15 CLR WREG Call indirect subroutine (long address) 1 4 SFA 16 CLR WREG WREG WREG 1 1 None 17 CM CA Acc./WX./WX./WY./WY.ANB Clear Watchdog Timer 1 1 NZ 18 CLR CA F.F Call watchdog Timer 1 1 NZ </td <td></td> <td></td> <td>BTST.Z</td> <td>Ws,Wb</td> <td>Bit Test Ws<wb> to Z</wb></td> <td>1</td> <td>1</td> <td>Z</td>			BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
Image: bit is a start of the star	13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
			BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
14 CALL 11 t 23 Call subroutine 2 4 SFA CALL Wn Call indirect subroutine 1 4 SFA CALL Wn Call indirect subroutine (long address) 1 4 SFA 15 CLR Wa f 1 0.000 1 1 None 16 CLR WREG WREG WREG 0.0000 1 1 1 None 17 CLR WREG WREG WREG 1 1 None 16 CLRWDT CLRWDT Clear Watchdog Timer 1 1 NZ 17 CM f.WREG MREG WREG 1 1 NZ 18 CP f.WREG COM f.WREG Compare Watchdog Timer 1 1 NZ 11 MR f.WREG COM KREG COM NZ NZ 12 COM f.WREG COM Wd W			BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
Image: brack brake brak brak brack brack brack brack brack brack brack brack b	14	CALL	CALL	lit23	Call subroutine	2	4	SFA
Image: Call is the set of the s			CALL	Wn	Call indirect subroutine	1	4	SFA
15 CLR f f 0000 1 1 None 10 CLR WREG WREG WREG 0.0000 1 1 None 11 CLR Wa Wa 0.0000 1 1 None 11 CLR Wa Clan Wa 0.0000 1 1 None 11 CLR Accomunitation Clan Accomunitation 1 1 None 11 CLR CLRWDT CLRWDT Clan Wax, Wxd, Wy, Wyd, AWB Clear Accumulator 1 1 No. 11 CLRWDT CLRWDT CLRWDT fit fit No. No. 11 Max fit fit fit Clan Max No. No. No. 11 Max MREG Compare fwith WREG 1 1 CDC.NO.VZ No. No. CDC.NO.VZ No. Compare fwith WREG. 1 1 CDC.NO.VZ CD			CALL.L	Wn	Call indirect subroutine (long address)	1	4	SFA
Image: basis	15	CLR	CLR	f	f = 0x0000	1	1	None
LR Ws Ws Ws Ws 0000 1 1 None CLR Acc, Wx, Wxd, Wy, Wyd, AWB Clear Accumulator 1 1 0, AO, B, S, N, S,			CLR	WREG	WREG = 0x0000	1	1	None
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			CLR	Ws	Ws = 0x0000	1	1	None
16 CLRWDT CLRWDT CLRWDT Clear Watchdog Timer 1 1 WDTO, Sleep 17 COM f			CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA, SB
11 COM f f f f f f f N.Z 11 f, NREG WREG WREG 1 1 N.Z N.Z 12 COM #s, Nd Wd = Ws 1 1 N.Z N.Z 13 CP f Com Ws, Nd Wd = Ws 1 1 N.Z 14 P CP f Compare f with WREG 1 1 C.DC, N.O.Z 15 CP f Compare f with WREG 1 1 C.DC, N.O.Z 16 P Wb, Ms Compare f with WREG, with Bornow 1 1 C.DC, N.O.Z 17 CP F Compare f with WREG, with Bornow 1 1 C.DC, N.O.Z 18 CP f Compare f with WREG, with Bornow 1 1 C.DC, N.O.Z 19 CPB f Compare Ms with Wn, with Bornow 1 1 C.DC, N.O.Z 10 Mb, Wn Kang	16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
vm	17	COM	COM	f	$f = \overline{f}$	1	1	N,Z
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			COM	f,WREG	WREG = f	1	1	N,Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
$ \frac{\begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
$ \begin{array}{ c c c c } \hline \end{picture} \hline picture$			CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \end{tabular} \hline \end{tabular}$	19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
$\frac{\text{CPB} \text{Wb}, \#1it8}{\text{CPB} \text{Wb}, \#1it8} \\ \frac{\text{CPB} \text{Wb}, \#1it8}{\text{CPB} \text{Wb}, Ws} \\ \frac{\text{CPB} \text{Wb}, Ws}{\text{CPB} \text{Wb}, Ws} \\ \frac{\text{CPB} \text{Wb}, Ws}{\text{CPB} \text{Wb}, Ws} \\ \frac{\text{CPB} \text{Wb}, Ws}{\text{CPB} \text{Wb}, Ws} \\ \frac{\text{CPSEQ} \text{CPSEQ} \text{Wb}, Wn}{\text{Compare Wb}, Wn, skip if = 11} \\ \frac{1}{(2 \text{ or } 3)} \\ \frac{1}{(2$	20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
CPBWb, WsCompare Wb with Ws, with Borrow (Wb - Ws - C)11C,DC,N,OV,Z21CPSEQCPSEQWb, WnCompare Wb with Wn, skip if =111None21CPBEQCPBEQWb, Wn, ExprCompare Wb with Wn, skip if =111None22CPSGTCPBGTWb, Wn, ExprCompare Wb with Wn, branch if =111None23CPSGTCPBGTWb, Wn, ExprCompare Wb with Wn, skip if >111None23CPSLTCPBLTWb, Wn, ExprCompare Wb with Wn, skip if <			CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			CPB	Wb,Ws	Compare Wb <u>w</u> ith Ws, with Borrow (Wb – Ws – C)	1	1	C,DC,N,OV,Z
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \end{tabular} \hline tabu$	21	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
CPBGT CPBGT Wb, Wn, Expr Compare Wb with Wn, branch if > 1 1 (5) None 23 CPSLT CPSLT Wb, Wn, Expr Compare Wb with Wn, skip if <	22	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
23 CPSLT CPSLT Wb, Wn Compare Wb with Wn, skip if <		CPBGT	CPBGT	Wb, Wn, Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
CPBLT CPBLT Wb, Wn, Expr Compare Wb with Wn, branch if < 1 1 (5) None 24 CPSNE CPSNE Wb, Wn Compare Wb with Wn, skip if ≠ 1 1 (2 or 3) None CPBNE CPBNE Wb, Wn, Expr Compare Wb with Wn, branch if ≠ 1 1 (5) None	23	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
24 CPSNE CPSNE Wb, Wn Compare Wb with Wn, skip if ≠ 1 1 1 None CPBNE CPBNE CPBNE Wb, Wn, Expr Compare Wb with Wn, branch if ≠ 1 1 (5) None		CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
CPBNE CPBNE Wb , Wn , Expr Compare Wb with Wn, branch if ≠ 1 1 (5) None	24	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
	L	CPBNE	CPBNE	Wb, Wn, Expr	Compare Wb with Wn, branch if \neq	1	1 (5)	None

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
25	CTXTSWP	CTXTSWP	#lit3	Switch CPU register context to context defined by lit3	1	2	None
		CTXTSWP	Wn	Switch CPU register context to context defined by Wn	1	2	None
26	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
27	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws – 1	1	1	C,DC,N,OV,Z
28	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
29	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None
30	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
31	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
32	DO	DO	#lit15,Expr	Do code to PC + Expr, lit15 + 1 times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
33	ED	ED	Wm*Wm, Acc, Wx, Wy, Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
34	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
35	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
36	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
37	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
38	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
39	GOTO	GOTO	Expr	Go to address	2	4	None
		GOTO	Wn	Go to indirect	1	4	None
		GOTO.L	Wn	Go to indirect (long address)	1	4	None
40	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
41	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
42	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
43	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
44	LNK	LNK	#lit14	Link Frame Pointer	1	1	SFA
45	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

30.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EVXXXGM00X/10X family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33EVXXXGM00X/10X family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +6.0V
Voltage on VCAP with respect to Vss	1.62V to 1.98V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	
Maximum current sunk by any I/O pin	20 mA
Maximum current sourced by I/O pin	
Maximum current sourced/sunk by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).