

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev64gm002-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT ⁽¹⁾	DL2	DL1	DL0
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0
Legend:		C = Clearable	e bit				
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	VAR: Variable	e Exception Pro	ocessing Later	ncy Control bit			
	1 = Variable e	exception proce	essing latency	is enabled			
	0 = Fixed exc	eption process	sing latency is	enabled			
bit 14	Unimplemen	ted: Read as '	0'				
bit 13-12	US<1:0>: DS	P Multiply Uns	igned/Signed	Control bits			
	11 = Reserve	d		_			
	10 = DSP eng 01 = DSP eng	gine multiplies	are unsigned				
	00 = DSP eng	gine multiplies	are signed				
bit 11	EDT: Early DO	Loop Termina	ation Control b	it(1)			
	1 = Terminate 0 = No effect	s executing th	e ⊃⊙ loop at th	ne end of the c	urrent loop itera	ation	
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status b	its			
	111 = 7 DO lo	ops are active					
	•						
	•						
	001 = 1 DO lo	op is active					
	000 = 0 DO lo	ops are active					
bit 7	SATA: ACCA	Saturation En	able bit				
	1 = Accumula	tor A saturatio	n is enabled				
	0 = Accumula	itor A saturatio	n is disabled				
bit 6	SATB: ACCB	Saturation En	able bit				
	1 = Accumula	itor B saturatio	n is enabled				
bit 5	SATDW: Data	Snace Write	from DSP End	ine Saturation	Enable bit		
DIC O	1 = Data Space	ce write satura	tion is enabled				
	0 = Data Space	ce write satura	tion is disable	d			
bit 4	ACCSAT: Acc	cumulator Satu	ration Mode S	Select bit			
	1 = 9.31 satur	ration (super s	aturation)				
	0 = 1.31 satur	ration (normal	saturation)				
Note 1:	This bit is always r	ead as '0'.					

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

							(•••••							(· /		
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11SID	046C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	EXIDE	—	EID17	EID16	xxxx
C1RXF11EID	046E								E	EID<15:0>								xxxx
C1RXF12SID	0470	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0		EXIDE		EID17	EID16	xxxx
C1RXF12EID	0472					-			E	EID<15:0>								xxxx
C1RXF13SID	0474	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF13EID	0476					-			E	EID<15:0>								xxxx
C1RXF14SID	0478	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF14EID	047A					-			E	EID<15:0>								xxxx
C1RXF15SID	047C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF15EID	047E		•						E	EID<15:0>								xxxx

TABLE 4-11: CAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 FOR dsPIC33EVXXXGM10X DEVICES (CONTINUED)

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: SENT1 RECEIVER REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SENT1CON1	0500	SNTEN	—	SNTSIDL	_	RCVEN	TXM	TXPOL	CRCEN	PPP	SPCEN	_	PS	_	NIBCNT2	NIBCNT1	NIBCNT0	0000
SENT1CON2	0504					TICK	TIME<15:0	> (Transm	it modes)	or SYNCN	IAX<15:0>	(Receive I	mode)					FFFF
SENT1CON3	0508		FRAMETIME<15:0> (Transmit modes) or SYNCMIN<15:0> (Receive mode) FFFF															
SENT1STAT	050C		_	—		_		—	_	PAUSE	NIB2	NIB1	NIB0	CRCERR	FRMERR	RXIDLE	SYNCTXEN	0000
SENT1SYNC	0510						Synchi	ronization	Time Perio	d Registe	r (Transmit	mode)						0000
SENT1DATL	0514		DATA	4<3:0>			DATA5	<3:0>			DATA	6<3:0>			CRO	C<3:0>		0000
SENT1DATH	0516		STAT	<3:0>			DATA1	<3:0>			DATA2	2<3:0>			DATA	43<3:0>		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: SENT2 RECEIVER REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SENT2CON1	0520	SNTEN	—	SNTSIDL	—	RCVEN	TXM	TXPOL	CRCEN	PPP	SPCEN	—	PS	-	NIBCNT2	NIBCNT1	NIBCNT0	0000
SENT2CON2	0524					TICK	TIME<15:0	> (Transm	it modes)	or SYNCM	1AX<15:0>	(Receive I	node)					FFFF
SENT2CON3	0528					FRAM	/IETIME<15	:0> (Trans	mit modes) or SYNC	CMIN<15:0	> (Receive	mode)					FFFF
SENT2STAT	052C	_	_	—	_	_	_	—	_	PAUSE	NIB2	NIB1	NIB0	CRCERR	FRMERR	RXIDLE	SYNCTXEN	0000
SENT2SYNC	0530						Synchi	ronization	Time Perio	d Registe	r (Transmit	mode)		_				0000
SENT2DATL	0534		DATA4<3:0> DATA5<3:0> DATA6<3:0> CRC<3:0> 0000															
SENT2DATH	0536		STAT	<3:0>			DATA1	<3:0>			DATA	2<3:0>			DAT	43<3:0>		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70005144E-page 49

TABLE 4-19: NVM REGISTER MAP

					-			-	-	-	-	-	-	-	-	-	-			
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets		
NVMCON	0728	WR	WREN	WRERR	NVMSIDL	_	_	RPDF	URERR	—	—	—	—	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000		
NVMADR	072A									NVMADR<	:15:0>							0000		
NVMADRU	072C	_	_	_	_	_	_	_	_	- NVMADRU<23:16> 0										
NVMKEY	072E	_	_	_	_	_	_	_	_				NVM	<ey<7:0></ey<7:0>				0000		
NVMSRCADRL	0730								NVMSI	RCADR<15:	1>						0	0000		
NVMSRCADRH	0732	_	_	_	_	_	_	_	_	- NVMSRCADR<23:16> 0										
			1 (-1																	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: SYSTEM CONTROL REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	-	_	VREGSF	—	СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	_	_	OSWEN	Note 2
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	FRCDIV2	FRCDIV1	FRCDIV0	PLLPOST1	PLLPOST0	_	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0	0000
PLLFBD	0746	_	_	_	_	_	_	_				PL	LDIV<8:0>					0000
OSCTUN	0748	—	—		_	_	_	—	TUN<5:0>									0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the Configuration fuses.

TABLE 4-21: REFERENCE CLOCK REGISTER MAP

S Na	FR ame	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
REFC	CON	074E	ROON	_	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	—	_	_	_	_	_	—	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-37: PORTC REGISTER MAP FOR dsPIC33EVXXXGMX06 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E28	TRISC15	—							TRISC<1	3:0>							BFFF
PORTC	0E2A	RC15	_							RC<13:	0>							xxxx
LATC	0E2C	LATC15	_		LATC<13:0> xx											xxxx		
ODCC	0E2E	ODCC15	_		ODCC<13:0> 00										0000			
CNENC	0E30	CNIEC15	_		CNIEC<13:0> 000 000										0000			
CNPUC	0E32	CNPUC15	_							CNPUC<1	3:0>							0000
CNPDC	0E34	CNPDC15	_							CNPDC<1	3:0>							0000
ANSELC	0E36	_	_	_						AN	SC<12:0>							1FFF
SR1C	0E38	_	_	_	_	_	_		SR1C	<9:6>		_	_	SR1C3	_	_	_	0000
SR0C	0E3A	_	_	_	_	_	_		SR0C	<9:6>		_	_	SR0C3	_	_		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-38: PORTC REGISTER MAP FOR dsPIC33EVXXXGMX04 DEVICES

r	1				1		1	1	1			1	1	1		1	1	
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E28	—	—	—	—	_	—					TRIS	C<9:0>					BFFF
PORTC	0E2A	_	_	—	—	—	—					RC<	:9:0>					xxxx
LATC	0E2C	_	_	_	_	_	_	LATC<9:0> xx										xxxx
ODCC	0E2E	_	_	_	_	_	_	ODCC<9:0> 00										0000
CNENC	0E30	_	_	_	_	_	_					CNIE	C<9:0>					0000
CNPUC	0E32	_	_	_	_	_	_					CNPU	C<9:0>					0000
CNPDC	0E34	_	_	_	_	_	_					CNPD	C<9:0>					0000
ANSELC	0E36	_	_	_	_	_	_	ANSC<9:0> 0807										0807
SR1C	0E38	_	_	—	—	—	—	- SR1C<9:6> - SR1C3 000								0000		
SR0C	0E3A	_		_		_			SR0C	<9:6>		—	_	SR0C3	_		_	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

Table 9-1 provides the Configuration bits which allow users to choose between the various clock modes.

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>
Fast RC Oscillator with Divide-by-N (FRCDIVN) ^(1,2)	Internal	xx	111
Fast RC Oscillator with Divide-by-16 (FRCDIV16) ⁽¹⁾	Internal	xx	110
Low-Power RC Oscillator (LPRC) ⁽¹⁾	Internal	xx	101
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011
Primary Oscillator (EC) with PLL (ECPLL) ⁽¹⁾	Primary	00	011
Primary Oscillator (HS)	Primary	10	010
Primary Oscillator (XT)	Primary	01	010
Primary Oscillator (EC) ⁽¹⁾	Primary	00	010
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL) ⁽¹⁾	Internal	XX	001
Fast RC Oscillator (FRC) ⁽¹⁾	Internal	xx	000

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP120R5 ⁽¹⁾	RP120R4 ⁽¹⁾	RP120R3 ⁽¹⁾	RP120R2 ⁽¹⁾	RP120R1 ⁽¹⁾	RP120R0 ⁽¹⁾
bit 7							bit 0

Legend:				
R = Readable bit	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
-----------	----------------------------

bit 13-8	RP176R<5:0>: Peripheral Output Function is Assigned to RP176 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP120R<5:0>: Peripheral Output Function is Assigned to RP120 Output Pin bits ⁽¹⁾

(see Table 11-3 for peripheral function numbers)

REGISTER 11-29: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0
bit 7							bit 0

Legend:				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP178R<5:0>:** Peripheral Output Function is Assigned to RP178 Output Pin bits (see Table 11-3 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP177R<5:0>:** Peripheral Output Function is Assigned to RP177 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: RP120R<5:0> is present in dsPIC33EVXXXGM006/106 devices only.

NOTES:

17.1.2 WRITE-PROTECTED REGISTERS

On dsPIC33EVXXXGM00X/10X family devices, write protection is implemented for the IOCONx and FCLCONx registers. The write protection feature prevents any inadvertent writes to these registers. This protection feature can be controlled by the PWMLOCK Configuration bit (FDEVOPT<0>). The default state of the write protection feature is enabled (PWMLOCK = 1). The write protection feature can be disabled by configuring PWMLOCK = 0. To gain write access to these locked registers, the user application must write two consecutive values (0xABCD and 0x4321) to the PWMKEY register to perform the unlock operation. The write access to the IOCONx or FCLCONx registers must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access. To write to both the IOCONx and FCLCONx registers requires two unlock operations.

The correct unlocking sequence is described in Example 17-1.

EXAMPLE 17-1: PWM1 WRITE-PROTECTED REGISTER UNLOCK SEQUENCE

; FLT32 pin must be p	ulled low externally in order to clear and disable the fault
; Writing to FCLCON1	register requires unlock sequence
<pre>mov #0xabcd, w10 mov #0x4321, w11 mov #0x0000, w0 mov w10, PWMKEY mov w11, PWMKEY mov w0, FCLCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of FCLCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to FCLCON1 register</pre>
; Set PWM ownership a	nd polarity using the IOCON1 register
; Writing to IOCON1 r	egister requires unlock sequence
<pre>mov #0xabcd, w10 mov #0x4321, w11 mov #0xF000, w0 mov w10, PWMKEY mov w11, PWMKEY mov w0, IOCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of IOCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to IOCON1 register</pre>

17.3 PWMx Control Registers

REGISTER 17-1: PTCON: PWMx TIME BASE CONTROL REGISTER

R/W-0	U-0	R/W-0	HS-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	SYNCSRC2 ⁽¹⁾	SYNCSRC1 ⁽¹⁾	SYNCSRC0 ⁽¹⁾	SEVTPS3 ⁽¹⁾	SEVTPS2 ⁽¹⁾	SEVTPS1 ⁽¹⁾	SEVTPS0 ⁽¹⁾
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	PTEN: PWMx Module Enable bit
	1 = PWMx module is enabled
	0 = PWMx module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	PTSIDL: PWMx Time Base Stop in Idle Mode bit
	1 = PWMx time base halts in CPU Idle mode 0 = PWMx time base runs in CPU Idle mode
bit 12	SESTAT: Special Event Interrupt Status bit
	1 = Special event interrupt is pending0 = Special event interrupt is not pending
bit 11	SEIEN: Special Event Interrupt Enable bit
	1 = Special event interrupt is enabled
	0 = Special event interrupt is disabled
bit 10	EIPU: Enable Immediate Period Updates bit ⁽¹⁾
	1 = Active Period register is updated immediately
	0 = Active Period register updates occur on PWMx cycle boundaries
bit 9	SYNCPOL: Synchronize Input and Output Polarity bit ⁽¹⁾
	1 = SYNCI1/SYNCO1 polarity is inverted (active-low)
1.11.0	0 = SYNCIT/SYNCOT is active-nign
bit 8	SYNCOEN: Primary Time Base Sync Enable bit
	1 = SYNCO1 output is enabled 0 = SYNCO1 output is disabled
bit 7	SYNCEN: External Time Base Synchronization Enable hit ⁽¹⁾
	1 - External experienciation of primary time base is enabled
	$\Gamma = External synchronization of primary time base is enabled \Omega = External synchronization of primary time base is disabled$
Note 1	: These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the us

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

dsPIC33EVXXXGM00X/10X FAMILY

REGISTER 17-18: AUXCONx: PWMx AUXILIARY CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	—	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN
bit 7							bit 0

Legend:				
R = Readab	le bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-12	Unimpleme	ented: Read as '0'		
bit 11-8	BLANKSEL	-<3:0>: PWMx State Blan	k Source Select bits	
	The selectent the BCH an 1001 = Res	d state blank signal will bl d BCL bits in the LEBCO erved	ock the current-limit and/or Fa Nx register).	ult input signals (if enabled through
	•			
	•			
	0100 = Res 0011 = PW 0010 = PW 0001 = PW 0000 = Nos	erved M3H is selected as the st M2H is selected as the st M1H is selected as the st state blanking	ate blank source ate blank source ate blank source	
bit 7-6	Unimpleme	ented: Read as '0'		
bit 5-2	CHOPSEL<	3:0>: PWMx Chop Clock	Source Select bits	
	The selecte	d signal will enable and d erved	isable (Chop) the selected PW	/Mx outputs.
	•			
	•			
	0100 = Res	erved		
	0011 = PW 0010 = PW	M3H is selected as the cr M2H is selected as the cr	top clock source	
	0001 = PW	M1H is selected as the cl	nop clock source	
	0000 = Chc	p clock generator is sele	cted as the chop clock source	
bit 1	CHOPHEN:	PWMxH Output Choppin	ng Enable bit	
	1 = PWMxH 0 = PWMxH	I chopping function is ena I chopping function is disa	abled abled	
bit 0	CHOPLEN:	PWMxL Output Choppin	g Enable bit	
	1 = PWMxL 0 = PWMxL	chopping function is ena chopping function is disa	bled abled	

REGISTER 20-3:	SENTXDATL: SENTX RECEIVE DATA REGISTER LOW ⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	DATA4	<3:0>		DATA5<3:0>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

10100	10000	10000	10000	10000	1010 0	10000	10000
	DATA6	<3:0>		CRC<3:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	DATA4<3:0>: Data Nibble 4 Data bits
bit 11-8	DATA5<3:0>: Data Nibble 5 Data bits
bit 7-4	DATA6<3:0>: Data Nibble 6 Data bits
bit 3-0	CRC<3:0>: CRC Nibble Data bits

Note 1: Register bits are read-only in Receive mode (RCVEN = 1). In Transmit mode, the CRC<3:0> bits are read-only when automatic CRC calculation is enabled (RCVEN = 0, CRCEN = 1).

REGISTER 20-4:	SENTXDATH: SENTX RECEIVE DATA REGISTER HIGH ⁽¹⁾

N-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
DATA1<3:0>		STAT<3:0>				
bit	bit 15					
N-0 R/W-0 R/W-0 R/W-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
DATA3<3:0>		2<3:0>	DATA2			
bit				bit 7		
				Legend:		
/ritable bit U = Unimplemented bit, read as '0'	bit	R = Readable bit W = Writable bit				
it is set '0' = Bit is cleared x = Bit is unknown	-n = Value at POR '1' = Bit is set					
/ritable bit U = Unimplemented bit, read as '0' it is set '0' = Bit is cleared x = Bit is unknown	bit	W = Writable '1' = Bit is set	bit POR	Legend: R = Readable -n = Value at P		

bit 15-12 STAT<3:0>: Status Nibble Data bits

bit 11-8 **DATA1<3:0>:** Data Nibble 1 Data bits

bit 7-4 DATA2<3:0>: Data Nibble 2 Data bits

bit 3-0 DATA3<3:0>: Data Nibble 3 Data bits

Note 1: Register bits are read-only in Receive mode (RCVEN = 1). In Transmit mode, the CRC<3:0> bits are read-only when automatic CRC calculation is enabled (RCVEN = 0, CRCEN = 1).

22.3 CAN Control Registers

REGISTER 22-1: CxCTRL1: CANx CONTROL REGISTER 1

		B # 1 / 2				54446	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
—	—	CSIDL	ABAT	CANCKS	REQOP2	REQOP1	REQOP0
bit 15							bit 8
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
OPMODE2	OPMODE1	OPMODE0	_	CANCAP	_	_	WIN
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	CSIDL: CANx Stop in Idle Mode bit
	1 = Discontinues module operation when the device enters Idle mode
	0 = Continues module operation in Idle mode
bit 12	ABAT: Abort All Pending Transmissions bit
	1 = Signals all transmit buffers to abort transmission
	0 = Module will clear this bit when all transmissions are aborted
bit 11	CANCKS: CANx Module Clock (FCAN) Source Select bit
	1 = FCAN is equal to 2 * FP
	0 = FCAN is equal to FP
bit 10-8	REQOP<2:0>: Request Operation Mode bits
	111 = Sets Listen All Messages mode
	110 = Reserved
	101 = Reserved 100 = Sets Configuration mode
	011 = Sets Listen Only mode
	010 = Sets Loopback mode
	001 = Sets Disable mode
	000 = Sets Normal Operation mode
bit 7-5	OPMODE<2:0>: Operation Mode bits
	111 = Module is in Listen All Messages mode
	110 = Reserved
	101 - Reserved 100 = Module is in Configuration mode
	011 = Module is in Listen Only mode
	010 = Module is in Loopback mode
	001 = Module is in Disable mode
	000 = Module is in Normal Operation mode
bit 4	Unimplemented: Read as '0'
bit 3	CANCAP: CANx Message Receive Timer Capture Event Enable bit
	1 = Enables input capture based on CAN message receive
	0 = Disables CAN capture
bit 2-1	Unimplemented: Read as '0'
bit 0	WIN: SFR Map Window Select bit
	1 = Uses filter window
	0 = Uses buffer window

REGISTER 22-24: CxRXOVF1: CANx RECEIVE BUFFER OVERFLOW REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0		
RXOVF<15:8>									
bit 15							bit 8		
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0		
			RXOV	F<7:0>					
bit 7							bit 0		
Legend:		C = Writable I	oit, but only '0'	can be writter	n to clear the bit				

Logona.	o windbio bit, but only o	ball be written to orear the bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **RXOVF<15:0>:** Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

REGISTER 22-25: CxRXOVF2: CANx RECEIVE BUFFER OVERFLOW REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0		
			RXOV	F<31:24>					
bit 15							bit 8		
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0		
			RXOV	F<23:16>					
bit 7							bit 0		
Legend:		C = Writable b	bit, but only '()' can be written	to clear the b	pit			
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		(0) = Bit is cleared x = Bit is unknown					

bit 15-0 **RXOVF<31:16>:** Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

R	R	R	R	R	R	R	R
			DEVID<	23:16> ⁽¹⁾			
bit 23							bit 16
R	R	R	R	R	R	R	R
			DEVID<	<15:8> (1)			
bit 15							bit 8
R	R	R	R	R	R	R	R
			DEVID	<7:0> ⁽¹⁾			
bit 7							bit 0
Legend:	R = Read-Only bit			U = Unimplen	nented bit		

REGISTER 27-1: DEVID: DEVICE ID REGISTER

bit 23-0 **DEVID<23:0>:** Device Identifier bits⁽¹⁾

Note 1: Refer to "*dsPIC33EVXXXGM00X/10X Families Flash Programming Specification*" (DS70005137) for the list of Device ID values.

REGISTER 27-2: DEVREV: DEVICE REVISION REGISTER

R	R	R	R	R	R	R	R			
	DEVREV<23:16> ⁽¹⁾									
bit 23							bit 16			
R	R	R	R	R	R	R	R			
			DEVREV	<15:8> ⁽¹⁾						
bit 15							bit 8			
R	R	R	R	R	R	R	R			
			DEVRE	/<7:0>(1)						
bit 7							bit 0			
Legend:	R = Read-only bit U = Unimplemented bit									

bit 23-0 **DEVREV<23:0>:** Device Revision bits⁽¹⁾

Note 1: Refer to "*dsPIC33EVXXXGM00X/10X Families Flash Programming Specification*" (DS70005137) for the list of device revision values.

31.1 High-Temperature DC Characteristics

TABLE 31-1: OPERATING MIPS vs. VOLTAGE

Charactoristic	Characteristic VDD Range		Max MIPS		
Characteristic	(in Volts)	(in °C)	dsPIC33EVXXXGM00X/10X Family		
HDC5	4.5V to 5.5V ^(1,2)	-40°C to +150°C	40		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules, such as the ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Device functionality is tested but is not characterized. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

2: When BOR is enabled, the device will work from 4.7V to 5.5V.

TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
High-Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+155	°C
Operating Ambient Temperature Range	TA	-40	—	+150	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	D PINT + PI/O			W
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	IA	W

TABLE 31-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHA	ARACTER	ISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions		
Operati	Operating Voltage								
HDC10	Vdd	Supply Voltage ⁽³⁾	VBOR		5.5	V			
HDC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	—	—	V			
HDC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	_	—	Vss	V			
HDC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	1.0	_		V/ms	0V-5.0V in 5 ms		
HDC18	VCORE	VDD Core Internal Regulator Voltage	1.62	1.8	1.98	V	Voltage is dependent on load, temperature and VDD		

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

2: This is the limit to which VDD may be lowered without losing RAM data.

3: VDD voltage must remain at Vss for a minimum of 200 μ s to ensure POR.

32.14 Comparator Op Amp Offset

33.14 Comparator Op Amp Offset

FIGURE 33-33: TYPICAL COMPARATOR OFFSET vs. Vcm

