

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev64gm002-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	••		•															
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100		Timer1 Register									0000						
PR1	0102								Peri	od Register	1							FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	—	0000
TMR2	0106		Timer2 Register								0000							
TMR3HLD	0108						Time	er3 Holdin	ig Register	· (For 32-bit	timer operat	tions only)						0000
TMR3	010A		Timer3 Register							0000								
PR2	010C		Period Register 2							FFFF								
PR3	010E	Period Register 3							FFFF									
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	—	0000
T3CON	0112	TON	_	TSIDL	_	_	_	_	—	_	TGATE	TCKPS1	TCKPS0	_	—	TCS	_	0000
TMR4	0114								Tim	ner4 Registe	r							0000
TMR5HLD	0116						Т	imer5 Hol	ding Regis	ster (For 32-	bit operation	ns only)						0000
TMR5	0118								Tim	ner5 Registe	r							0000
PR4	011A								Peri	od Register	4							FFFF
PR5	011C								Peri	od Register	5							FFFF
T4CON	011E	TON	_	TSIDL	—	—	—	—	—	—	TGATE	TCKPS1	TCKPS0	T32	—	TCS	—	0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000
Lonondi																		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 5-2: NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—	_	—	—		—
bit 15		· · ·					bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMADF	RU<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit	ł	W = Writable bit		U = Unimplem	ented bit, read	as '0'	

	VV VVIItable bit		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADRU<23:16>:** NVM Memory Upper Write Address bits Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

REGISTER 5-3: NVMADR: NONVOLATILE MEMORY LOWER ADDRESS REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
		NVMAD	R<15:8>			
						bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
		NVMAD)R<7:0>			
						bit 0
			NVMAD R/W-x R/W-x R/W-x	NVMADR<15:8>	NVMADR<15:8> R/W-x R/W-x R/W-x R/W-x	NVMADR<15:8> R/W-x R/W-x R/W-x R/W-x R/W-x

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 NVMADR<15:0>: NVM Memory Lower Write Address bits

Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
GIE	DISI	SWTRAP			—	—	AIVTEN
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	_		INT2EP	INT1EP	INT0EP
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable b	oit	•	mented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 15		Interrupt Enable					
		s and associated s are disabled, b					
bit 14		Instruction Status	•	Suil enabled			
DIL 14		struction is active					
		struction is not a	-				
bit 13	SWTRAP: S	Software Trap Sta	atus bit				
		e trap is enabled					
	0 = Software	e trap is disabled					
bit 12-9	Unimpleme	nted: Read as 'o	כ'				
bit 8	AIVTEN: Alt	ernate Interrupt	Vector Table	is Enabled bit			
	1 = AIVT is e						
L:1 7 0	0 = AIVT is 0		- 1				
bit 7-3	-	nted: Read as '					
bit 2		ternal Interrupt 2	•	t Polarity Selec	ct bit		
		on negative edg					
bit 1	•	ternal Interrupt 1		t Polarity Selec	rt bit		
		on negative edg	•				
		on positive edg					
bit 0	INTOEP: Ext	ternal Interrupt 0	Edge Detec	t Polarity Selec	ct bit		
		on negative edg					
	0 = Interrupt	on positive edg	е				

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1				
ROI	DOZE2 ⁽³⁾	DOZE1 ⁽³⁾	DOZE0 ⁽³⁾	DOZEN ^(1,4)	FRCDIV2	FRCDIV1	FRCDIV0				
bit 15		•	-	-		•	bit 8				
			DAMO	D/M/ 0		R/W-0	DAMA				
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		R/W-0				
PLLPOST1	PLLPOST0	—	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0				
bit 7							bit C				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15		on Interrupt b	i+								
		will clear the E									
		have no effect		N bit							
bit 14-12	•	Processor Clo									
	111 = FCY div										
	110 = FCY div										
	101 = FCY div										
	100 = FCY div 011 = FCY div										
		010 = FCY divided by 4									
	001 = FCY div										
		vided by 1 (def									
bit 11		e Mode Enable									
				tween the peri atio are forced		nd the process	or clocks				
bit 10-8	FRCDIV<2:0>	-: Internal Fast	RC Oscillator	Postscaler bit	S						
	111 = FRC d i	vided by 256									
	110 = FRC di										
	101 = FRC di	•									
	100 = FRC di 011 = FRC di										
	010 = FRC di										
		vided by 2 (de	fault)								
	000 = FRC di	•									
bit 7-6	PLLPOST<1:	0>: PLL VCO	Output Divide	r Select bits (al	so denoted as	'N2', PLL posts	caler)				
	11 = Output d										
	10 = Reserve 01 = Output d										
	00 = Output d										
bit 5	-	ted: Read as '	0'								
Note 1: Th	is bit is cleared v	when the ROI	bit is set and a	an interrupt occ	urs.						
2: Th	is register resets	s only on a Pov	wer-on Reset	(POR).							
)ZE<2:0> bits ca)ZE<2:0> are igi		en to when th	e DOZEN bit is	clear. If DOZE	N = 1, any wri	tes to				
	o DOZEN bit cou		075-2.05 -		2.0 > - 0.00 on	attempt by up	or ooftwara to				

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾

4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—		—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0			
—	—	—	DMA0MD ⁽¹⁾	—	—	—	—			
			DMA1MD ⁽¹⁾	-						
			DMA2MD ⁽¹⁾	-						
			DMA3MD ⁽¹⁾							
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit				•	nented bit, read					
-n = Value a	at POR	'1' = Bit is se	et	'0' = Bit is cle	ared	x = Bit is unkn	iown			
bit 15-5	Unimplement									
bit 4	DMA0MD: DN									
	1 = DMA0 mo 0 = DMA0 mo									
	DMA1MD: DN									
		1 = DMA1 module is disabled 0 = DMA1 module is enabled								
	DMA2MD: DA	DMA2MD: DMA2 Module Disable bit ⁽¹⁾								
	1 = DMA2 mo									
	0 = DMA2 module is enabled									
	DMA3MD: DN	MA3 Module E	Disable bit ⁽¹⁾							
	1 = DMA3 mo 0 = DMA3 mo									
bit 3-0	Unimplement	ted: Read as	' 0 '							

REGISTER 10-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7

Note 1: This single bit enables and disables all four DMA channels.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0
bit 7							bit 0

REGISTER 11-22: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP43R<5:0>: Peripheral Output Function is Assigned to RP43 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP42R<5:0>: Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-23: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP49R5	RP49R4	RP49R3	RP49R2	RP49R1	RP49R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP48R5	RP48R4	RP48R3	RP48R2	RP48R1	RP48R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8**RP49R<5:0>:** Peripheral Output Function is Assigned to RP49 Output Pin bits
(see Table 11-3 for peripheral function numbers)bit 7-6**Unimplemented:** Read as '0'

bit 5-0 **RP48R<5:0>:** Peripheral Output Function is Assigned to RP48 Output Pin bits

(see Table 11-3 for peripheral function numbers)

Note 1: This register is present in dsPIC33EVXXXGM004/104/006/106 devices only.

REGISTER 17-7: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

bit 7-6	DTC<1:0>: Dead-Time Control bits 11 = Dead-Time Compensation mode 10 = Dead-time function is disabled 01 = Negative dead time is actively applied for Complementary Output mode 00 = Positive dead time is actively applied for all Output modes
bit 5	DTCP: Dead-Time Compensation Polarity bit ⁽³⁾ <u>When Set to '1':</u> If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened. If DTCMPx = 1, PWMxH is shortened and PWMxL is lengthened.
	<u>When Set to '0':</u> If DTCMPx = 0, PWMxH is shortened and PWMxL is lengthened. If DTCMPx = 1, PWMxL is shortened and PWMxH is lengthened.
bit 4-3	Unimplemented: Read as '0'
bit 2	CAM: Center-Aligned Mode Enable bit ^(2,4)
	1 = Center-Aligned mode is enabled 0 = Edge-Aligned mode is enabled
bit 1	XPRES: External PWMx Reset Control bit ⁽⁵⁾
	 1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base mode 0 = External pins do not affect PWMx time base
bit 0	IUE: Immediate Update Enable bit ⁽²⁾
	 1 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are immediate 0 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are synchronized to the PWMx period boundary
Note 1: 2:	Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller. These bits should not be changed after the PWMx is enabled (PTEN = 1).
3:	DTC<1:0> = 11 for DTCP to be effective; else, DTCP is ignored.

- 4: The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.
- **5:** To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

18.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on $\frac{1}{SSx}$.

Note: This insures that the first frame transmission after initialization is not shifted or corrupted.

- 2. In Non-Framed 3-Wire mode (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = <u>0</u>, always place a pull-down resistor on SSx.
- **Note:** This will insure that during power-up and initialization, the master/slave will not lose sync due to an errant SCKx transition that would cause the slave to accumulate data shift errors, for both transmit and receive, appearing as corrupted data.

- 3. FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame Sync pulse is active on the SSx pin, which indicates the start of a data frame.
- Note: Not all third-party devices support Frame mode timing. For more information, refer to the SPI specifications in Section 30.0 "Electrical Characteristics".
- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPI data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.

To avoid invalid slave read data to the master, the user's master software must ensure enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF Transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPIx Shift register and is empty once the data transmission begins.

19.2 I²C Control Registers

REGISTER 19-1: I2CxCON1: I2Cx CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/S-1	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN		I2CSIDL	SCLREL ⁽¹⁾	STRICT	A10M	DISSLW	SMEN
bit 15 bit 8							

R/W-0	R/W-0	R/W-0	R/W-0, HC					
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	
bit 7 bit 0								

Legend:	d: S = Settable bit HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	k = Bit is unknown

bit 15	I2CEN: I2Cx Enable bit (writable from SW only)
	 1 = Enables the I²C module and configures the SDAx and SCLx pins as serial port pins 0 = Disables the I²C module and all I²C pins are controlled by port functions
bit 14	Unimplemented: Read as '0'
bit 13	I2CSIDL: I2Cx Stop in Idle Mode bit
	 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	SCLREL: SCLx Release Control bit (I ² C Slave mode only) ⁽¹⁾
	Module resets and (I2CEN = 0) sets SCLREL = 1.
	$\frac{\text{If STREN = }0}{2}$
	1 = Releases clock
	0 = Forces clock low (clock stretch)
	If STREN = 1: 1 = Releases clock
	0 = Holds clock low (clock stretch); user may program this bit to '0', clock stretch at the next SCLx low
bit 11	STRICT: Strict I ² C Reserved Address Rule Enable bit
	1 = Strict reserved addressing is enforced
	In Slave mode, the device does not respond to reserved address space and addresses falling in that category are NACKed.
	0 = Reserved addressing would be Acknowledged
	In Slave mode, the device will respond to an address falling in the reserved address space. When there is a match with any of the reserved addresses, the device will generate an ACK.
bit 10	A10M: 10-Bit Slave Address Flag bit
	1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address
bit 9	DISSLW: Slew Rate Control Disable bit
	 1 = Slew rate control is disabled for Standard Speed mode (100 kHz, also disabled for 1 MHz mode) 0 = Slew rate control is enabled for High-Speed mode (400 kHz)
bit 8	SMEN: SMBus Input Levels Enable bit
	 1 = Enables the input logic so thresholds are compliant with the SMBus specification 0 = Disables the SMBus-specific inputs
Note 1:	Automatically cleared to '0' at the beginning of slave transmission; automatically cleared to '0' at the end of slave reception.

2: Automatically cleared to '0' at the beginning of slave transmission.

REGISTER 24-1: ADxCON1: ADCx CONTROL REGISTER 1 (CONTINUED)

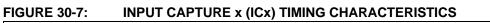
bit 7-5	SSRC<2:0>: Sample Clock Source Select bits
	If SSRCG = 1:
	111 = Reserved 110 = Reserved
	101 = Reserved
	100 = Reserved
	011 = Reserved
	010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion
	001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion
	000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion
	If SSRCG = 0:
	111 = Internal counter ends sampling and starts conversion (auto-convert)
	110 = CTMU ends sampling and starts conversion
	101 = Reserved
	100 = Timer5 compare ends sampling and starts conversion
	011 = PWM primary Special Event Trigger ends sampling and starts conversion 010 = Timer3 compare ends sampling and starts conversion
	001 = Active transition on the INTO pin ends sampling and starts conversion
	000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)
bit 4	SSRCG: Sample Trigger Source Group bit
511 4	See SSRC<2:0> for details.
h # 0	
bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)
	In 12-Bit Mode (AD12B = 1), SIMSAM is Unimplemented and is Read as '0': 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x) or samples CH0 and CH1
	simultaneously (when CHPS<1:0> = 01)
	0 = Samples multiple channels individually in sequence
bit 2	ASAM: ADCx Sample Auto-Start bit
	1 = Sampling begins immediately after last conversion; SAMP bit is auto-set
	0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADCx Sample Enable bit
	1 = ADCx Sample-and-Hold amplifiers are sampling
	0 = ADCx Sample-and-Hold amplifiers are holding
	If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If
	SSRC<2:0> = 000, software can write '0' to end sampling and start conversion. If SSRC<2:0> \neq 000,
	automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADCx Conversion Status bit ⁽¹⁾
	1 = ADCx conversion cycle is completed.
	0 = ADCx conversion has not started or is in progress
	Automatically set by hardware when conversion is complete. Software can write '0' to clear DONE bit
	status (software not allowed to write '1'). Clearing this bit does NOT affect any operation in progress.
	Automatically cleared by hardware at the start of a new conversion.

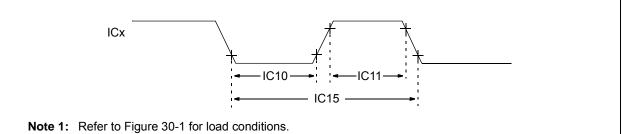
Note 1: Do not clear the DONE bit in software if auto-sample is enabled (ASAM = 1).

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected	
63	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	6 (5)	SFA	
64	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA	
65	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z	
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z	
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z	
66	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z	
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z	
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z	
67	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z	
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z	
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z	
68	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z	
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z	
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z	
69	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None	
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None	
70	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z	
71	SETM	SETM	f	f = 0xFFFF	1	1	None	
		SETM	WREG	WREG = 0xFFFF	1	1	None	
		SETM	Ws	Ws = 0xFFFF	1	1	None	
72	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAI SA,SB,SAI	
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OA SA,SB,SA	
73	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z	
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z	
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z	
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z	
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z	
74	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OA SA,SB,SA	
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,	
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV	
		SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C,DC,N,OV	
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV	
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV	
75	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV	
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV	
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV	
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV	
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV	
76	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV	
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV	
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV	
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV	
77	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV	
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV	
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV	
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV	

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.


DC CHARACT	ERISTICS		(unless oth	erwise state	$-40^{\circ}C \le TA \le$	V to 5.5V +85°C for Industrial +125°C for Extended			
Parameter No.	Typ. ⁽²⁾	Max.	Units	Conditions					
Power-Down Current (IPD) – dsPIC33EVXXXGM00X/10X ⁽¹⁾									
DC60d	9.25	30	μA	-40°C					
DC60a	15.75	35	μA	+25°C	E OV	Base Power-Down Current			
DC60b	67.75	250	μA	+85°C	5.0V	Base Power-Down Current			
DC60c	270	750	μA	+125°C					
DC61d	1	7	μA	-40°C					
DC61a	1.25	8	μA	+25°C	5.0V	Watchdog Timer Current: ∆IwDT ⁽³⁾			
DC61b	3.5	12	μA	+85°C	5.00				
DC61c	5	15	μA	+125°C					


TABLE 30-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: IPD (Sleep) current is measured as follows:

 CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all ones)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- **2:** Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.
- **3:** The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

TABLE 30-26: INPUT CAPTURE x (ICx) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min. Max. Units Conditions				litions
IC10	TCCL	ICx Input Low Time	Greater of: 12.5 + 25 or (0.5 TCY/N) + 25		ns	Must also meet Parameter IC15	
IC11	ТссН	ICx Input High Time	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	—	ns	Must also meet Parameter IC15	N = Prescaler Value (1, 4, 16)
IC15	ТссР	ICx Input Period	Greater of: 25 + 50 or (1 Tcy/N) + 50	—	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 30-36:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK2 Input Frequency	—		15	MHz	See Note 3
SP72	TscF	SCK2 Input Fall Time	—	_		ns	See Parameter DO32 and Note 4
SP73	TscR	SCK2 Input Rise Time		_		ns	See Parameter DO31 and Note 4
SP30	TdoF	SDO2 Data Output Fall Time	_	_		ns	See Parameter DO32 and Note 4
SP31	TdoR	SDO2 Data Output Rise Time	_	_	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	_	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	_	-	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS2} \downarrow$ to SCK2 \uparrow or SCK2 \downarrow Input	120	—	_	ns	
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 Tcy + 40	—	_	ns	See Note 4

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

TABLE 30-44:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency		_	25	MHz	See Note 3
SP72	TscF	SCK1 Input Fall Time	—			ns	See Parameter DO32 and Note 4
SP73	TscR	SCK1 Input Rise Time	_			ns	See Parameter DO31 and Note 4
SP30	TdoF	SDO1 Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDO1 Data Output Rise Time	—			ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20			ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15		_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS1} \downarrow$ to SCK1 \uparrow or SCK1 \downarrow Input	120	—	_	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	_	50	ns	See Note 4
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	_		ns	See Note 4

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 40 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

DC CHARACTERISTICS				Standard Operating Conditions (see Note 3): 4.5V to 5.5V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
Comparator DC Characteristics								
HCM30	VOFFSET	Comparator Offset Voltage	-80	±60	80	mV		
HCM31	VHYST	Input Hysteresis Voltage	—	30	_	mV		
HCM34	VICM	Input Common-Mode Voltage	AVss	—	AVdd	V		
Op Amp DC Characteristics ⁽²⁾								
HCM40	VCMR	Common-Mode Input Voltage Range	AVss	—	AVdd	V		
HCM42	VOFFSET	Op Amp Offset Voltage	-50	±6	50	mV		

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

2: Resistances can vary by ±10% between op amps.

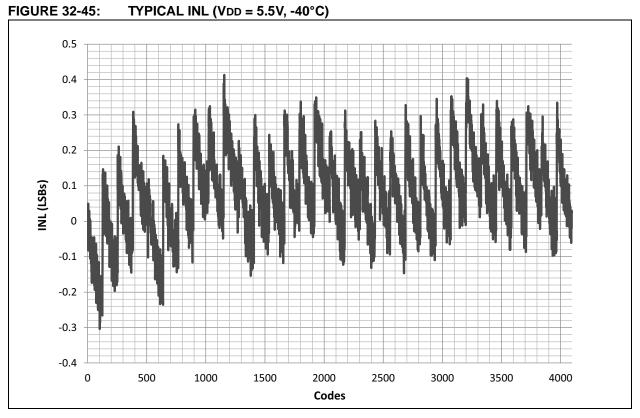

3: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter HBO10 in Table 31-10 for the minimum and maximum BOR values.

TABLE 31-18: ADC MODULE SPECIFICATIONS (12-BIT MODE)

AC CHARACTERISTICS			Standard Operating Conditions (see Note 1): 4.5V to 5.5V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
		ADC	Accurac	y (12-Bi	t Mode)		
HAD20a	Nr	Resolution	1:	2 data bi	ts	bits	
HAD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V
HAD22a	DNL	Differential Nonlinearity	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V
HAD23a	Gerr	Gain Error	-10	4	10	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 5.5V
HAD24a	EOFF	Offset Error	-10	1.75	10	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 5.5V

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

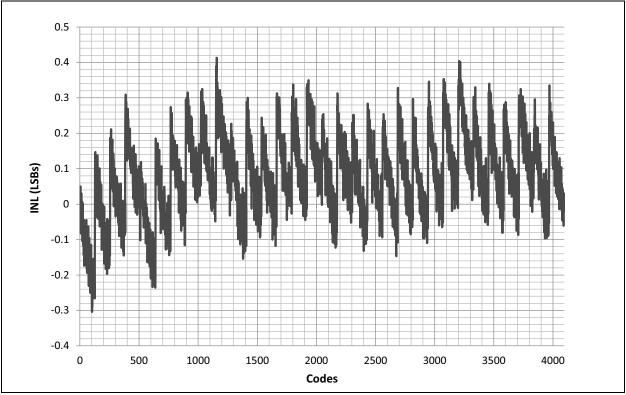


FIGURE 32-46: TYPICAL INL (VDD = 5.5V, +25°C)

SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0)	
SPI2 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	
Timer1-Timer5 External Clock	
UARTx I/O	
U	
UART	

Control Registers	249
Helpful Tips	
Universal Asynchronous Receiver	
Transmitter (UART)	247
Universal Asynchronous Receiver Transmitter. See I	JART.
User OTP Memory	324

۱/	
v	

Voltage Regulator (On-Chip)	324
W	
Watchdog Timer (WDT)	317, 325
Programming Considerations	325
WWW Address	493
WWW, On-Line Support	11

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Product Group Pin Count Tape and Reel Fla Package		Example: dsPIC33EV256GM006-I/PT: dsPIC33, Enhanced Voltage, 256-Kbyte Program Memory, 64-Pin, Industrial Temperature, TQFP Package.
Architecture:	33 = 16-Bit Digital Signal Controller	
Family:	EV = Enhanced Voltage	
Product Group:	GM = General Purpose plus Motor Control Family	
Pin Count:	02 = 28-Pin 04 = 44-Pin 06 = 64-Pin	
Temperature Range	$ \begin{array}{rcl} & = & -40^{\circ} \text{C to } +85^{\circ} \text{C (Industrial)} \\ \text{E} & = & -40^{\circ} \text{C to } +125^{\circ} \text{C (Extended)} \\ \text{H} & = & -40^{\circ} \text{C to } +150^{\circ} \text{C (High)} \end{array} $	
Package:	MM =Plastic Quad Flat, No Lead Package – (28-pin) 6x6x0.9 mm body (QFN-S)SO =Plastic Small Outline – (28-pin) 7.50 mm body (SOIC)SS =Plastic Shrink Small Outline – (28-pin) 5.30 mm body (SOP)SP =Skinny Plastic Dual In-Line – (28-pin) 300 mil body (SPDIP)ML =Plastic Quad Flat, No Lead Package – (44-pin) 8x8 mm body (QFN)MR =Plastic Quad Flat, No Lead Package – (64-pin) 9x9x0.9 mm body (QFN)PT =Plastic Thin Quad Flatpack – (44-pin) 10x10x1 mm body (TQFP)PT =Plastic Thin Quad Flatpack – (64-pin) 10x10x1 mm body (TQFP)	

NOTES: