

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                          |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                           |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 60 MIPs                                                                         |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                                 |
| Peripherals                | Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT                   |
| Number of I/O              | 35                                                                              |
| Program Memory Size        | 64KB (22K x 24)                                                                 |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 8K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 4.5V ~ 5.5V                                                                     |
| Data Converters            | A/D 24x10/12b                                                                   |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 44-VQFN Exposed Pad                                                             |
| Supplier Device Package    | 44-QFN (8x8)                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev64gm004-e-ml |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## dsPIC33EVXXXGM00X/10X FAMILY

### FIGURE 3-1: dsPIC33EVXXXGM00X/10X FAMILY CPU BLOCK DIAGRAM



### REGISTER 3-3: CTXTSTAT: CPU W REGISTER CONTEXT STATUS REGISTER

| U-0             | U-0                                                                                            | U-0                                                                                              | U-0                                                                   | U-0                                                             | R-0              | R-0             | R-0    |  |  |  |
|-----------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|------------------|-----------------|--------|--|--|--|
| _               | _                                                                                              |                                                                                                  |                                                                       |                                                                 | CCTXI2           | CCTXI1          | CCTXI0 |  |  |  |
| bit 15          |                                                                                                |                                                                                                  |                                                                       |                                                                 | •                | ·               | bit 8  |  |  |  |
|                 |                                                                                                |                                                                                                  |                                                                       |                                                                 |                  |                 |        |  |  |  |
| U-0             | U-0                                                                                            | U-0                                                                                              | U-0                                                                   | U-0                                                             | R-0              | R/W-0           | R/W-0  |  |  |  |
| —               | —                                                                                              | —                                                                                                | —                                                                     | —                                                               | MCTXI2           | MCTXI1          | MCTXI0 |  |  |  |
| bit 7           |                                                                                                |                                                                                                  |                                                                       |                                                                 |                  |                 | bit 0  |  |  |  |
|                 |                                                                                                |                                                                                                  |                                                                       |                                                                 |                  |                 |        |  |  |  |
| Legend:         |                                                                                                |                                                                                                  |                                                                       |                                                                 |                  |                 |        |  |  |  |
| R = Readable    | bit                                                                                            | W = Writable b                                                                                   | bit                                                                   | U = Unimpler                                                    | mented bit, read | d as '0'        |        |  |  |  |
| -n = Value at I | POR                                                                                            | '1' = Bit is set                                                                                 |                                                                       | '0' = Bit is cle                                                | ared             | x = Bit is unkr | nown   |  |  |  |
| bit 10-8        | CCTXI<2:0>:<br>111 = Reserv<br>011 = Reserv<br>010 = Alterna<br>001 = Alterna<br>000 = Default | Current (W Re<br>red<br>te Working Reg<br>te Working Reg<br>t register set is<br>ted: Read as 'f | gister) Conte<br>gister Set 2 is<br>gister Set 1 is<br>currently in u | ext Identifier bits<br>currently in us<br>currently in us<br>se | se<br>se         |                 |        |  |  |  |
| bit 2-0         | MCTXI<2:0>:<br>111 = Reserv<br>011 = Reserv<br>010 = Alterna<br>001 = Alterna<br>000 = Default | <pre>MCTXI&lt;2:0&gt;: Manual (W Register) Context Identifier bits 111 = Reserved</pre>          |                                                                       |                                                                 |                  |                 |        |  |  |  |

## TABLE 4-29: PWM GENERATOR 2 REGISTER MAP

| SFR<br>Name | Addr. | Bit 15  | Bit 14  | Bit 13  | Bit 12           | Bit 11       | Bit 10    | Bit 9     | Bit 8     | Bit 7     | Bit 6   | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    | All<br>Resets |
|-------------|-------|---------|---------|---------|------------------|--------------|-----------|-----------|-----------|-----------|---------|----------|----------|----------|----------|----------|----------|---------------|
| PWMCON2     | 0C40  | FLTSTAT | CLSTAT  | TRGSTAT | FLTIEN           | CLIEN        | TRGIEN    | ITB       | MDCS      | DTC1      | DTC0    | DTCP     | _        | _        | CAM      | XPRES    | IUE      | 0000          |
| IOCON2      | 0C42  | PENH    | PENL    | POLH    | POLL             | PMOD1        | PMOD0     | OVRENH    | OVRENL    | OVRDAT1   | OVRDAT0 | FLTDAT1  | FLTDAT0  | CLDAT1   | CLDAT0   | SWAP     | OSYNC    | 0000          |
| FCLCON2     | 0C44  | —       | CLSRC4  | CLSRC3  | CLSRC2           | CLSRC1       | CLSRC0    | CLPOL     | CLMOD     | FLTSRC4   | FLTSRC3 | FLTSRC2  | FLTSRC1  | FLTSRC0  | FLTPOL   | FLTMOD1  | FLTMOD0  | 0000          |
| PDC2        | 0C46  |         |         |         |                  |              |           |           | PDC2      | 2<15:0>   |         |          |          |          |          |          |          | 0000          |
| PHASE2      | 0C48  |         |         |         | PHASE2<15:0> 00  |              |           |           |           |           | 0000    |          |          |          |          |          |          |               |
| DTR2        | 0C4A  | —       | -       |         | DTR2<13:0>       |              |           |           |           |           | 0000    |          |          |          |          |          |          |               |
| ALTDTR2     | 0C4C  | —       | -       |         |                  |              |           |           |           | ALTDTF    | 2<13:0> |          |          |          |          |          |          | 0000          |
| TRIG2       | 0C52  |         |         |         |                  |              |           |           | TRGC      | /IP<15:0> |         |          |          |          |          |          |          | 0000          |
| TRGCON2     | 0C54  | TRGDIV3 | TRGDIV2 | TRGDIV1 | TRGDIV0          | _            | _         | _         | _         | _         | _       | TRGSTRT5 | TRGSTRT4 | TRGSTRT3 | TRGSTRT2 | TRGSTRT1 | TRGSTRT0 | 0000          |
| PWMCAP2     | 0C58  |         |         |         | PWMCAP2<15:0> 00 |              |           |           |           |           | 0000    |          |          |          |          |          |          |               |
| LEBCON2     | 0C5A  | PHR     | PHF     | PLR     | PLF              | FLTLEBEN     | CLLEBEN   | _         | _         | _         | _       | BCH      | BCL      | BPHH     | BPHL     | BPLH     | BPLL     | 0000          |
| LEBDLY2     | 0C5C  | —       | -       | _       | _                | LEB<11:0> 00 |           |           |           |           |         | 0000     |          |          |          |          |          |               |
| AUXCON2     | 0C5E  | —       | —       | —       | _                | BLANKSEL3    | BLANKSEL2 | BLANKSEL1 | BLANKSEL0 | —         | _       | CHOPSEL3 | CHOPSEL2 | CHOPSEL1 | CHOPSEL0 | CHOPHEN  | CHOPLEN  | 0000          |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

### TABLE 4-30: PWM GENERATOR 3 REGISTER MAP

| SFR<br>Name | Addr. | Bit 15  | Bit 14  | Bit 13  | Bit 12            | Bit 11            | Bit 10    | Bit 9     | Bit 8     | Bit 7    | Bit 6   | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    | All<br>Resets |
|-------------|-------|---------|---------|---------|-------------------|-------------------|-----------|-----------|-----------|----------|---------|----------|----------|----------|----------|----------|----------|---------------|
| PWMCON3     | 0C60  | FLTSTAT | CLSTAT  | TRGSTAT | FLTIEN            | CLIEN             | TRGIEN    | ITB       | MDCS      | DTC1     | DTC0    | DTCP     | —        | —        | CAM      | XPRES    | IUE      | 0000          |
| IOCON3      | 0C62  | PENH    | PENL    | POLH    | POLL              | PMOD1             | PMOD0     | OVRENH    | OVRENL    | OVRDAT1  | OVRDAT0 | FLTDAT1  | FLTDAT0  | CLDAT1   | CLDAT0   | SWAP     | OSYNC    | 0000          |
| FCLCON3     | 0C64  | _       | CLSRC4  | CLSRC3  | CLSRC2            | CLSRC1            | CLSRC0    | CLPOL     | CLMOD     | FLTSRC4  | FLTSRC3 | FLTSRC2  | FLTSRC1  | FLTSRC0  | FLTPOL   | FLTMOD1  | FLTMOD0  | 0000          |
| PDC3        | 0C66  |         |         |         |                   |                   |           |           | PDC       | 3<15:0>  |         |          |          |          |          |          |          | 0000          |
| PHASE3      | 0C68  |         |         |         |                   | PHASE3<15:0> 0000 |           |           |           |          |         |          |          |          |          |          |          |               |
| DTR3        | 0C6A  | _       | _       |         |                   | DTR3<13:0> 0      |           |           |           |          | 0000    |          |          |          |          |          |          |               |
| ALTDTR3     | 0C6C  | _       | _       |         |                   |                   |           |           |           | ALTDTF   | 3<13:0> |          |          |          |          |          |          | 0000          |
| TRIG3       | 0C72  |         |         |         |                   |                   |           |           | TRGC      | MP<15:0> |         |          |          |          |          |          |          | 0000          |
| TRGCON3     | 0C74  | TRGDIV3 | TRGDIV2 | TRGDIV1 | TRGDIV0           | _                 | _         | _         | _         | _        | _       | TRGSTRT5 | TRGSTRT4 | TRGSTRT3 | TRGSTRT2 | TRGSTRT1 | TRGSTRT0 | 0000          |
| PWMCAP3     | 0C78  |         |         |         | PWMCAP3<15:0> 00/ |                   |           |           |           |          | 0000    |          |          |          |          |          |          |               |
| LEBCON3     | 0C7A  | PHR     | PHF     | PLR     | PLF               | FLTLEBEN          | CLLEBEN   | _         | _         | —        |         | BCH      | BCL      | BPHH     | BPHL     | BPLH     | BPLL     | 0000          |
| LEBDLY3     | 0C7C  | _       | _       | _       | _                 | LEB<11:0> 001     |           |           |           |          |         | 0000     |          |          |          |          |          |               |
| AUXCON3     | 0C7E  | _       | _       | —       | _                 | BLANKSEL3         | BLANKSEL2 | BLANKSEL1 | BLANKSEL0 | —        | _       | CHOPSEL3 | CHOPSEL2 | CHOPSEL1 | CHOPSEL0 | CHOPHEN  | CHOPLEN  | 0000          |

**Legend:** — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

## 4.7 Interfacing Program and Data Memory Spaces

The dsPIC33EVXXXGM00X/10X family architecture uses a 24-bit wide Program Space and a 16-bit wide Data Space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the Program Space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both the spaces.

Aside from normal execution, the architecture of the dsPIC33EVXXXGM00X/10X family devices provides two methods by which Program Space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the Program Space
- Remapping a portion of the Program Space into the Data Space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

Table 4-47 shows the construction of the Program Space address.

How the data is accessed from Program Space is shown in Figure 4-17.

|                        | Access                                    | Program Space Address     |           |                     |           |     |  |  |  |  |  |
|------------------------|-------------------------------------------|---------------------------|-----------|---------------------|-----------|-----|--|--|--|--|--|
| Access Type            | Space                                     | <23>                      | <22:16>   | <15>                | <14:1>    | <0> |  |  |  |  |  |
| Instruction Access     | User                                      | 0                         |           | 0                   |           |     |  |  |  |  |  |
| (Code Execution)       | Execution) 0xx xxxx xxxx xxxx xxxx xxxx x |                           |           |                     | xxxx xxx0 |     |  |  |  |  |  |
| TBLRD/TBLWT            | User                                      | TBLPAG<7:0> Data EA<15:0> |           |                     |           |     |  |  |  |  |  |
| (Byte/Word Read/Write) |                                           | 0xxx xxxx xxxx xxxx xxxx  |           | xxxx xxxx xx        | xx        |     |  |  |  |  |  |
| Configuration          |                                           | TB                        | LPAG<7:0> | Data EA<15:0>       |           |     |  |  |  |  |  |
|                        |                                           | 1                         | xxx xxxx  | xxxx xxxx xxxx xxxx |           |     |  |  |  |  |  |

### TABLE 4-47: PROGRAM SPACE ADDRESS CONSTRUCTION

## **10.0 POWER-SAVING FEATURES**

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EVXXXGM00X/10X devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of peripherals being clocked constitutes lower consumed power.

The dsPIC33EVXXXGM00X/10X family devices can manage power consumption in the following four methods:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- · Software Controlled Doze mode
- · Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

### EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP\_MODE ; Put the device into Sleep mode
PWRSAV #IDLE\_MODE ; Put the device into Idle mode

## 10.1 Clock Frequency and Clock Switching

The dsPIC33EVXXXGM00X/10X family devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or highprecision oscillators by simply changing the NOSCx bits (OSCCON<10:8>). For more information on the process of changing a system clock during operation, as well as limitations to the process, see **Section 9.0 "Oscillator Configuration"**.

## 10.2 Instruction-Based Power-Saving Modes

The dsPIC33EVXXXGM00X/10X family devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP\_MODE and IDLE\_MODE are constants defined in the Assembler Include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

| R/W-0               | R/W-0                                                                                                                                              | R/W-0                                                                                                                                                                                              | R/W-0                                                                                                          | R/W-0                                                | R/W-0           | R/W-0           | R/W-0 |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------|-----------------|-------|
| IC2R7               | IC2R6                                                                                                                                              | IC2R5                                                                                                                                                                                              | IC2R4                                                                                                          | IC2R3                                                | IC2R2           | IC2R1           | IC2R0 |
| bit 15              |                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                |                                                      |                 |                 | bit 8 |
|                     |                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                |                                                      |                 |                 |       |
| R/W-0               | R/W-0                                                                                                                                              | R/W-0                                                                                                                                                                                              | R/W-0                                                                                                          | R/W-0                                                | R/W-0           | R/W-0           | R/W-0 |
| IC1R7               | IC1R6                                                                                                                                              | IC1R5                                                                                                                                                                                              | IC1R4                                                                                                          | IC1R3                                                | IC1R2           | IC1R1           | IC1R0 |
| bit 7               |                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                |                                                      |                 |                 | bit 0 |
|                     |                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                |                                                      |                 |                 |       |
| Legend:             |                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                |                                                      |                 |                 |       |
| R = Readable        | bit                                                                                                                                                | W = Writable                                                                                                                                                                                       | bit                                                                                                            | U = Unimple                                          | mented bit, rea | <b>d as</b> '0' |       |
| -n = Value at F     | POR                                                                                                                                                | '1' = Bit is set                                                                                                                                                                                   |                                                                                                                | '0' = Bit is cle                                     | eared           | x = Bit is unk  | nown  |
| bit 15-8<br>bit 7-0 | IC2R<7:0>: A<br>(see Table 11<br>10110101 =<br>00000001 =<br>00000000 =<br>IC1R<7:0>: A<br>(see Table 11<br>10110101 =<br>00000001 =<br>00000001 = | Assign Input Ca<br>-2 for input pin<br>Input tied to CI<br>Input tied to CI<br>Input tied to Vs<br>Assign Input Ca<br>-2 for input pin<br>Input tied to CI<br>Input tied to CI<br>Input tied to Vs | apture 2 (IC2)<br>selection nur<br>PI181<br>MP1<br>SS<br>apture 1 (IC1)<br>selection nur<br>PI181<br>MP1<br>SS | to the Corresp<br>mbers)<br>to the Corresp<br>mbers) | onding RPn Piı  | n bits          |       |

### REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

## REGISTER 14-11: DMTHOLDREG: DMT HOLD REGISTER<sup>(1)</sup>

| R/W-0         | R/W-0 | R/W-0            | R/W-0 | R/W-0             | R/W-0            | R/W-0           | R/W-0 |
|---------------|-------|------------------|-------|-------------------|------------------|-----------------|-------|
|               |       |                  | UPRO  | CNT<15:8>         |                  |                 |       |
| bit 15        |       |                  |       |                   |                  |                 | bit 8 |
|               |       |                  |       |                   |                  |                 |       |
| R/W-0         | R/W-0 | R/W-0            | R/W-0 | R/W-0             | R/W-0            | R/W-0           | R/W-0 |
|               |       |                  | UPR   | CNT<7:0>          |                  |                 |       |
| bit 7         |       |                  |       |                   |                  |                 | bit 0 |
|               |       |                  |       |                   |                  |                 |       |
| Legend:       |       |                  |       |                   |                  |                 |       |
| R = Readable  | e bit | W = Writable b   | oit   | U = Unimplen      | nented bit, read | <b>d as</b> '0' |       |
| -n = Value at | POR   | '1' = Bit is set |       | '0' = Bit is clea | ared             | x = Bit is unkr | nown  |
|               |       |                  |       |                   |                  |                 |       |

bit 15-0 UPRCNT<15:0>: Value of the DMTCNTH register when DMTCNTL and DMTCNTH were Last Read bits

**Note 1:** The DMTHOLDREG register is initialized to '0' on Reset, and is only loaded when the DMTCNTL and DMTCNTH registers are read.

## 15.1 Input Capture Control Registers

## REGISTER 15-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

| 11-0          | 11_0                                                                                 | R/\\/_0                                        | R/\/\_0             | R/\\/_0            | R/\//_0            | 11-0           | 11-0           |  |  |  |  |  |
|---------------|--------------------------------------------------------------------------------------|------------------------------------------------|---------------------|--------------------|--------------------|----------------|----------------|--|--|--|--|--|
|               | <u> </u>                                                                             |                                                | ICTSFI 2            | ICTSFI 1           | ICTSEL0            |                |                |  |  |  |  |  |
| bit 15        |                                                                                      | IOOIDE                                         | ICTOLLZ             | IOTOLLI            | ICTOLLO            |                | bit 8          |  |  |  |  |  |
|               |                                                                                      |                                                |                     |                    |                    |                | bit 0          |  |  |  |  |  |
| U-0           | R/W-0                                                                                | R/W-0                                          | R-0 HC HS           | R-0 HC HS          | R/W-0              | R/W-0          | R/W-0          |  |  |  |  |  |
|               |                                                                                      |                                                |                     | ICBNE              | ICM2               | ICM1           | ICM0           |  |  |  |  |  |
| bit 7         | 1011                                                                                 | 1010                                           | 1001                | TODILE             | TOTAL              | 101111         | bit 0          |  |  |  |  |  |
|               |                                                                                      |                                                |                     |                    |                    |                |                |  |  |  |  |  |
| Legend:       |                                                                                      | HC = Hardwa                                    | re Clearable bit    | HS = Hardwa        | re Settable bit    |                |                |  |  |  |  |  |
| R = Readable  | e bit                                                                                | W = Writable                                   | bit                 | U = Unimplem       | nented bit, read   | <b>as</b> '0'  |                |  |  |  |  |  |
| -n = Value at | POR                                                                                  | '1' = Bit is set                               |                     | '0' = Bit is clea  | ared               | x = Bit is unl | known          |  |  |  |  |  |
|               |                                                                                      |                                                |                     |                    |                    |                |                |  |  |  |  |  |
| bit 15-14     | Unimplemen                                                                           | ted: Read as                                   | 0'                  |                    |                    |                |                |  |  |  |  |  |
| bit 13        | ICSIDL: Inpu                                                                         | it Capture x Sto                               | op in Idle Mode C   | ontrol bit         |                    |                |                |  |  |  |  |  |
|               | 1 = Input Ca                                                                         | 1 = Input Capture x will halt in CPU Idle mode |                     |                    |                    |                |                |  |  |  |  |  |
|               | 0 = Input Capture x will continue to operate in CPU Idle mode                        |                                                |                     |                    |                    |                |                |  |  |  |  |  |
| bit 12-10     | ICTSEL<2:0>: Input Capture x Timer Select bits                                       |                                                |                     |                    |                    |                |                |  |  |  |  |  |
|               | 111 = Periph                                                                         | eral clock (FP)                                | is the clock sour   | ce of the ICx      |                    |                |                |  |  |  |  |  |
|               | 110 = Reserved                                                                       |                                                |                     |                    |                    |                |                |  |  |  |  |  |
|               | 100 = T1CLK                                                                          | K is the clock s                               | ource of the ICx (  | only the synchr    | ronous clock is    | supported)     |                |  |  |  |  |  |
|               | 011 = T5CLK                                                                          | K is the clock se                              | ource of the ICx    |                    |                    | ,              |                |  |  |  |  |  |
|               | 010 = T4CLK                                                                          | K is the clock so                              | ource of the ICx    |                    |                    |                |                |  |  |  |  |  |
|               | 001 = 12CLF                                                                          | s the clock so ( is the clock so               | ource of the ICx    |                    |                    |                |                |  |  |  |  |  |
| bit 9-7       | Unimplemen                                                                           | ted: Read as                                   | 0'                  |                    |                    |                |                |  |  |  |  |  |
| bit 6-5       | ICI<1:0>: Nu                                                                         | mber of Captur                                 | es per Interrupt S  | elect bits (this f | ield is not used i | if ICM<2:0> =  | 001 or 111)    |  |  |  |  |  |
|               | 11 = Interrup                                                                        | t on every four                                | th capture event    | (                  |                    |                | ,              |  |  |  |  |  |
|               | 10 = Interrup                                                                        | ot on every third                              | l capture event     |                    |                    |                |                |  |  |  |  |  |
|               | 01 = Interrup                                                                        | t on every sec                                 | ond capture even    | it                 |                    |                |                |  |  |  |  |  |
| hit 1         |                                                                                      | Conture x Over                                 | flow Status Flog    | hit (read anly)    |                    |                |                |  |  |  |  |  |
| DIC 4         |                                                                                      | papiere x Over                                 | now Status Flag     | urrod              |                    |                |                |  |  |  |  |  |
|               | 0 = Input Ca                                                                         | pture x buffer o                               | overflow has not o  | occurred           |                    |                |                |  |  |  |  |  |
| bit 3         | ICBNE: Input                                                                         | t Capture x But                                | fer Not Empty St    | atus bit (read-o   | nly)               |                |                |  |  |  |  |  |
|               | 1 = Input Capture x buffer is not empty, at least one more capture value can be read |                                                |                     |                    |                    |                |                |  |  |  |  |  |
|               | 0 = Input Capture x buffer is empty                                                  |                                                |                     |                    |                    |                |                |  |  |  |  |  |
| bit 2-0       | ICM<2:0>: Input Capture x Mode Select bits                                           |                                                |                     |                    |                    |                |                |  |  |  |  |  |
|               | 111 = Input                                                                          | Capture x fund                                 | tions as an inter   | rupt pin only in   | CPU Sleep an       | d Idle modes   | (rising edge   |  |  |  |  |  |
|               | detect                                                                               | t only, all other                              | control bits are n  | ot applicable)     |                    |                |                |  |  |  |  |  |
|               | 101 = Captu                                                                          | re mode, even                                  | / 16th rising edge  | e (Prescaler Ca    | pture mode)        |                |                |  |  |  |  |  |
|               | 100 = Captu                                                                          | ire mode, ever                                 | / 4th rising edge   | (Prescaler Cap     | ture mode)         |                |                |  |  |  |  |  |
|               | 011 = Captu                                                                          | ire mode, ever                                 | rising edge (Sin    | nple Capture m     | ode)               |                |                |  |  |  |  |  |
|               | 010 = Captu                                                                          | ire mode, ever                                 | / falling edge (Sir | nple Capture m     | node)              |                |                |  |  |  |  |  |
|               | 00⊥ = Captu                                                                          | re moae, every<br>\                            | edge, rising and    | i ialling (Edge L  | Jetect mode (IC    | //<1:0>) IS NO | i usea in this |  |  |  |  |  |
|               | moue                                                                                 | /                                              |                     |                    |                    |                |                |  |  |  |  |  |

000 = Input Capture x module is turned off

### REGISTER 16-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits 11111 = OCxRS compare event is used for synchronization 11110 = INT2 is the source for compare timer synchronization 11101 = INT1 is the source for compare timer synchronization 11100 = CTMU Trigger is the source for compare timer synchronization 11011 = ADC1 interrupt is the source for compare timer synchronization 11010 = Analog Comparator 3 is the source for compare timer synchronization 11001 = Analog Comparator 2 is the source for compare timer synchronization 11000 = Analog Comparator 1 is the source for compare timer synchronization 10111 = Analog Comparator 5 is the source for compare timer synchronization 10110 = Analog Comparator 4 is the source for compare timer synchronization 10101 = Capture timer is unsynchronized 10100 = Capture timer is unsynchronized 10011 = Input Capture 4 interrupt is the source for compare timer synchronization 10010 = Input Capture 3 interrupt is the source for compare timer synchronization 10001 = Input Capture 2 interrupt is the source for compare timer synchronization 10000 = Input Capture 1 interrupt is the source for compare timer synchronization 01111 = GP Timer5 is the source for compare timer synchronization 01110 = GP Timer4 is the source for compare timer synchronization 01101 = GP Timer3 is the source for compare timer synchronization 01100 = GP Timer2 is the source for compare timer synchronization 01011 = GP Timer1 is the source for compare timer synchronization 01010 = Compare timer is unsynchronized 01001 = Compare timer is unsynchronized 01000 = Capture timer is unsynchronized 00101 = Compare timer is unsynchronized 00100 = Output Compare 4 is the source for compare timer synchronization<sup>(1,2)</sup> 00011 = Output Compare 3 is the source for compare timer synchronization<sup>(1,2)</sup> 00010 = Output Compare 2 is the source for compare timer synchronization<sup>(1,2)</sup> 00001 = Output Compare 1 is the source for compare timer synchronization<sup>(1,2)</sup>
  - 00000 = Compare timer is unsynchronized
- **Note 1:** Do not use the OCx module as its own synchronization or trigger source.
  - 2: When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.

### REGISTER 18-2: SPIxCON1: SPIx CONTROL REGISTER 1 (CONTINUED)

- bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode)<sup>(3)</sup>
  - 111 = Secondary prescale 1:1
  - 110 = Secondary prescale 2:1

  - 000 = Secondary prescale 8:1
- bit 1-0 PPRE<1:0>: Primary Prescale bits (Master mode)<sup>(3)</sup>
  - 11 = Primary prescale 1:1
  - 10 = Primary prescale 4:1
  - 01 = Primary prescale 16:1
  - 00 = Primary prescale 64:1
- Note 1: The CKE bit is not used in Framed SPI modes. Program this bit to '0' for Framed SPI modes (FRMEN = 1).
  - 2: This bit must be cleared when FRMEN = 1.
  - **3:** Do not set both primary and secondary prescalers to the value of 1:1.

## dsPIC33EVXXXGM00X/10X FAMILY





## 24.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Analog-to-Digital Converter (ADC)" (DS70621) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Analog-to-Digital (ADC) module in the dsPIC33EVXXXGM00X/10X family devices supports up to 36 analog input channels.

The ADC module can be configured by the user as either a 10-bit, 4 Sample-and-Hold (S&H) ADC (default configuration) or a 12-bit, 1 S&H ADC.

**Note:** The ADC module needs to be disabled before modifying the AD12B bit.

## 24.1 Key Features

### 24.1.1 10-BIT ADC CONFIGURATION

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) Conversion
- Conversion Speeds of up to 1.1 Msps
- Up to 36 Analog Input Pins
- Connections to Four Internal Op Amps
- Connections to the Charge Time Measurement Unit (CTMU) and Temperature Measurement Diode
- Simultaneous Sampling of:
  - Up to four analog input pins
  - Four op amp outputs
- Combinations of Analog Inputs and Op Amp Outputs
- Automatic Channel Scan mode
- Selectable Conversion Trigger Source
- Selectable Buffer Fill modes
- Four Result Alignment Options (signed/unsigned, fractional/integer)
- Operation during CPU Sleep and Idle Modes

### 24.1.2 12-BIT ADC CONFIGURATION

The 12-bit ADC configuration supports all the features listed previously, with the exception of the following:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one S&H amplifier in the 12-bit configuration. Therefore, simultaneous sampling of multiple channels is not supported.

The ADC has up to 36 analog inputs. The analog inputs, AN32 through AN63, are multiplexed, thus providing flexibility in using any of these analog inputs in addition to the analog inputs, AN0 through AN31. Since AN32 through AN63 are multiplexed, do not use two channels simultaneously, since it may result in erroneous output from the module. These analog inputs are shared with op amp inputs and outputs, comparator inputs and external voltage references. When op amp/comparator functionality is enabled, the analog input that shares that pin is no longer available. The actual number of analog input pins and op amps depends on the specific device.

A block diagram of the ADC module with connection options is shown in Figure 24-1. Figure 24-2 shows a block diagram of the ADC conversion clock period.

| R/W-0                | R/W-0                                                                                                                                                                                                 | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U-0                              | U-0              | R/W-0                                 | R/W-0           | R/W-0                             |  |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|---------------------------------------|-----------------|-----------------------------------|--|--|--|--|
| VCFG2 <sup>(1)</sup> | VCFG1 <sup>(1)</sup>                                                                                                                                                                                  | ) VCFG0 <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | —                | CSCNA                                 | CHPS1           | CHPS0                             |  |  |  |  |
| bit 15               |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                  |                                       |                 | bit 8                             |  |  |  |  |
|                      |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                  |                                       |                 |                                   |  |  |  |  |
| R-0                  | R/W-0                                                                                                                                                                                                 | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R/W-0                            | R/W-0            | R/W-0                                 | R/W-0           | R/W-0                             |  |  |  |  |
| BUFS                 | SMPI4                                                                                                                                                                                                 | SMPI3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SMPI2                            | SMPI1            | SMPI0                                 | BUFM            | ALTS                              |  |  |  |  |
| bit 7                |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                  |                                       |                 | bit 0                             |  |  |  |  |
|                      |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                  |                                       |                 |                                   |  |  |  |  |
| Legend:              |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                  |                                       |                 |                                   |  |  |  |  |
| R = Readable         | bit                                                                                                                                                                                                   | W = Writable t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bit                              | U = Unimpler     | mented bit, reac                      | <b>l as</b> '0' |                                   |  |  |  |  |
| -n = Value at F      | POR                                                                                                                                                                                                   | '1' = Bit is set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | '0' = Bit is cle | eared                                 | x = Bit is unkn | own                               |  |  |  |  |
| bit 15-13            | VCFG<2:0                                                                                                                                                                                              | >: Converter Volta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ge Reference                     | Configuration    | bits <sup>(1)</sup>                   |                 |                                   |  |  |  |  |
|                      | Value                                                                                                                                                                                                 | VREFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VREFL                            |                  |                                       |                 |                                   |  |  |  |  |
|                      | xxx                                                                                                                                                                                                   | AVDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AVss                             |                  |                                       |                 |                                   |  |  |  |  |
| bit 12-11            | Unimplem                                                                                                                                                                                              | ented: Read as '0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                |                  |                                       |                 |                                   |  |  |  |  |
| bit 10               | CSCNA: In                                                                                                                                                                                             | CSCNA: Input Scan Select bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                  |                                       |                 |                                   |  |  |  |  |
|                      | <ul> <li>1 = Scans inputs for CH0+ during Sample MUX A</li> <li>0 = Does not scan inputs</li> </ul>                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                  |                                       |                 |                                   |  |  |  |  |
| bit 9-8              | CHPS<1:0>: Channel Select bits                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                  |                                       |                 |                                   |  |  |  |  |
|                      | In 12-Bit Mode (AD21B = 1), CHPS<1:0> bits are Unimplemented and are Read as '0':<br>1x = Converts CH0, CH1, CH2 and CH3<br>01 = Converts CH0 and CH1<br>00 = Converts CH0                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                  |                                       |                 |                                   |  |  |  |  |
| bit 7                | BUFS: Buff                                                                                                                                                                                            | fer Fill Status bit (o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | only valid when                  | BUFM = 1)        |                                       |                 |                                   |  |  |  |  |
|                      | 1 = ADCx i<br>first ha<br>0 = ADCx<br>second                                                                                                                                                          | is currently filling the buffer is currently filling is currently filling the buffer is currently filling the buffer the buffer the buffer is currently filling the buffer the buffer is currently filling the buffer is curre | he second half the first half of | of the buffer; t | he user applicat<br>e user applicatio | ion should acce | ess data in the<br>ss data in the |  |  |  |  |
| bit 6-2              | SMPI<4:0>                                                                                                                                                                                             | : Increment Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bits                             |                  |                                       |                 |                                   |  |  |  |  |
|                      | When ADDMAEN = 0:<br>x1111 = Generates interrupt after completion of every 16th sample/conversion operation<br>x1110 = Generates interrupt after completion of every 15th sample/conversion operation |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                  |                                       |                 |                                   |  |  |  |  |
|                      | •                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                  |                                       |                 |                                   |  |  |  |  |
|                      | x0001 = Generates interrupt after completion of every 2nd sample/conversion operation $x0000$ = Generates interrupt after completion of every sample/conversion operation                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                  |                                       |                 |                                   |  |  |  |  |
|                      | When ADD<br>11111 = In<br>11110 = In<br>•                                                                                                                                                             | <u>When ADDMAEN = 1:</u><br>11111 = Increments the DMA address after completion of every 32nd sample/conversion operation<br>11110 = Increments the DMA address after completion of every 31st sample/conversion operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                  |                                       |                 |                                   |  |  |  |  |
|                      | •<br>•<br>00001 = Increments the DMA address after completion of every 2nd sample/conversion operation<br>00000 = Increments the DMA address after completion of every sample/conversion operation    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                  |                                       |                 |                                   |  |  |  |  |

## REGISTER 24-2: ADxCON2: ADCx CONTROL REGISTER 2

**Note 1:** The ADCx VREFH Input is connected to AVDD and the VREFL input is connected to AVss.

| U-0                                                                        | U-0                                                      | U-0                              | U-0            | U-0             | U-0               | U-0             | R/W-0            |  |  |
|----------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------|----------------|-----------------|-------------------|-----------------|------------------|--|--|
|                                                                            | —                                                        | —                                | _              | _               | —                 | —               | ADDMAEN          |  |  |
| bit 15                                                                     |                                                          |                                  |                |                 |                   |                 | bit 8            |  |  |
|                                                                            |                                                          |                                  |                |                 |                   |                 |                  |  |  |
| U-0                                                                        | U-0                                                      | U-0                              | U-0            | U-0             | R/W-0             | R/W-0           | R/W-0            |  |  |
| —                                                                          | DMABL2 DMABL1                                            |                                  |                |                 | DMABL0            |                 |                  |  |  |
| bit 7                                                                      | bit 0                                                    |                                  |                |                 |                   |                 |                  |  |  |
|                                                                            |                                                          |                                  |                |                 |                   |                 |                  |  |  |
| Legend:                                                                    |                                                          |                                  |                |                 |                   |                 |                  |  |  |
| R = Readable                                                               | e bit                                                    | W = Writable b                   | bit            | U = Unimple     | mented bit, read  | <b>l as</b> '0' |                  |  |  |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown |                                                          |                                  |                |                 |                   | nown            |                  |  |  |
|                                                                            |                                                          |                                  |                |                 |                   |                 |                  |  |  |
| bit 15-9                                                                   | Unimplemen                                               | ted: Read as '0                  | )'             |                 |                   |                 |                  |  |  |
| bit 8                                                                      | ADDMAEN: A                                               | ADCx DMA Ena                     | ible bit       |                 |                   |                 |                  |  |  |
|                                                                            | 1 = Conversio                                            | on results are st                | ored in the AD | DC1BUF0 regi    | ster for transfer | to RAM using    | DMA              |  |  |
|                                                                            | 0 = Conversio                                            | n results are sto                | red in the ADC | C1BUF0 throug   | h ADC1BUFF re     | gisters; DMA v  | vill not be used |  |  |
| bit 7-3                                                                    | Unimplemen                                               | ted: Read as '0                  | )'             |                 |                   |                 |                  |  |  |
| bit 2-0                                                                    | DMABL<2:0>                                               | Selects Number<br>Selects Number | per of DMA Bu  | uffer Locations | per Analog Inpu   | ut bits         |                  |  |  |
|                                                                            | 111 = Allocates 128 words of buffer to each analog input |                                  |                |                 |                   |                 |                  |  |  |
|                                                                            | 110 = Allocates 64 words of buffer to each analog input  |                                  |                |                 |                   |                 |                  |  |  |
|                                                                            | 101 = Allocates 32 words of buffer to each analog input  |                                  |                |                 |                   |                 |                  |  |  |
|                                                                            | 100 = Allocat                                            | es 16 words of                   | buffer to each | analog input    |                   |                 |                  |  |  |
|                                                                            |                                                          | es & words of b                  | uner to each a | analog input    |                   |                 |                  |  |  |
|                                                                            | 010 = Allocates 4 words of buffer to each analog input   |                                  |                |                 |                   |                 |                  |  |  |

### REGISTER 24-4: ADxCON4: ADCx CONTROL REGISTER 4

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

| DC CHARACTER      | ISTICS                                 |       | $\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extende} \end{array}$ |       |            |       |          |  |  |
|-------------------|----------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|-------|----------|--|--|
| Parameter No.     | Parameter No. Typ. <sup>(2)</sup> Max. |       |                                                                                                                                                                                                                                                                                        | Units | Conditions |       |          |  |  |
| Doze Current (IDC | )ZE) <sup>(1)</sup>                    |       |                                                                                                                                                                                                                                                                                        |       |            |       |          |  |  |
| DC73a             | 16.0                                   | 18.25 | 1:2                                                                                                                                                                                                                                                                                    | mA    | 40°C       | 5.0\/ |          |  |  |
| DC73g             | 7.1                                    | 8.0   | 1:128                                                                                                                                                                                                                                                                                  | mA    | -40 C      | 5.00  | 70 MIE 3 |  |  |
| DC70a             | 16.25                                  | 18.5  | 1:2                                                                                                                                                                                                                                                                                    | mA    | ±25°C      | 5 0\/ |          |  |  |
| DC70g             | 7.3                                    | 8.2   | 1:128                                                                                                                                                                                                                                                                                  | mA    | +25 C      | 5.00  | 70 MIE 3 |  |  |
| DC71a             | 17.0                                   | 19.0  | 1:2                                                                                                                                                                                                                                                                                    | mA    | +95°C      | 5 0)/ |          |  |  |
| DC71g             | 7.5                                    | 8.9   | 1:128                                                                                                                                                                                                                                                                                  | mA    | +00 C      | 5.00  | 70 MIF3  |  |  |
| DC72a             | 17.75                                  | 19.95 | 1:2                                                                                                                                                                                                                                                                                    | mA    | ±125°C     | 5.01/ | 60 MIDS  |  |  |
| DC72g             | 8.25                                   | 9.32  | 1:128                                                                                                                                                                                                                                                                                  | mA    | 125 0      | 5.00  | 60 MIPS  |  |  |

### TABLE 30-9: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

**Note 1:** IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

• Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

• CLKO is configured as an I/O input pin in the Configuration Word

• All I/O pins are configured as outputs and driving low

• MCLR = VDD, WDT and FSCM are disabled

• CPU, SRAM, program memory and data memory are operational

• No peripheral modules are operating or being clocked (defined PMDx bits are all ones)

CPU executing

```
while(1)
{
NOP();
}
```

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

## 30.2 AC Characteristics and Timing Parameters

This section defines the dsPIC33EVXXXGM00X/10X family AC characteristics and timing parameters.

### TABLE 30-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

|                    | Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated)                                                            |  |  |  |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                    |                                                                                                                                  |  |  |  |  |  |
| AC CHARACTERISTICS | Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |  |  |  |  |  |
|                    | Operating voltage VDD range as described in <b>Section 30.1 "DC Characteristics"</b> .                                           |  |  |  |  |  |

### FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS



### TABLE 30-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

| Param<br>No. | Symbol | Characteristic        | Min. | Тур. | Max. | Units | Conditions                                                          |
|--------------|--------|-----------------------|------|------|------|-------|---------------------------------------------------------------------|
| DO50         | Cosco  | OSC2 Pin              | _    | —    | 15   | pF    | In XT and HS modes, when<br>external clock is used to drive<br>OSC1 |
| DO56         | Сю     | All I/O Pins and OSC2 | —    | —    | 50   | pF    | EC mode                                                             |
| DO58         | Св     | SCLx, SDAx            | —    | _    | 400  | pF    | In I <sup>2</sup> C mode                                            |



### FIGURE 30-24: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

# 28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-124C Sheet 1 of 2

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



## RECOMMENDED LAND PATTERN

|                          | MILLIMETERS |      |          |      |  |
|--------------------------|-------------|------|----------|------|--|
| Dimension Limits         |             | MIN  | NOM      | MAX  |  |
| Contact Pitch            | E           |      | 0.80 BSC |      |  |
| Contact Pad Spacing      | C1          |      | 11.40    |      |  |
| Contact Pad Spacing      | C2          |      | 11.40    |      |  |
| Contact Pad Width (X44)  | X1          |      |          | 0.55 |  |
| Contact Pad Length (X44) | Y1          |      |          | 1.50 |  |
| Distance Between Pads    | G           | 0.25 |          |      |  |

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

## 44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



## RECOMMENDED LAND PATTERN

|                                  | MILLIMETERS |          |      |      |
|----------------------------------|-------------|----------|------|------|
| Dimension Limits                 |             | MIN      | NOM  | MAX  |
| Contact Pitch                    | E           | 0.65 BSC |      |      |
| Optional Center Pad Width        | X2          |          |      | 6.60 |
| Optional Center Pad Length       | Y2          |          |      | 6.60 |
| Contact Pad Spacing              | C1          |          | 8.00 |      |
| Contact Pad Spacing              | C2          |          | 8.00 |      |
| Contact Pad Width (X44)          | X1          |          |      | 0.35 |
| Contact Pad Length (X44)         | Y1          |          |      | 0.85 |
| Contact Pad to Contact Pad (X40) | G1          | 0.30     |      |      |
| Contact Pad to Center Pad (X44)  | G2          | 0.28     |      |      |
| Thermal Via Diameter             | V           |          | 0.33 |      |
| Thermal Via Pitch                | EV          |          | 1.20 |      |

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2103C