

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev64gm004-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-26: DMAC REGISTER MAP (CONTINUED)

			Bit 0	Resets						
LSTCH<3:0>	LSTC	CH<3:0>		000F						
				0000						
DSADR<23:16>										
	_	LST	LSTCH<3:0>	LSTCH<3:0>						

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: PWM REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets								
PTCON	0C00	PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000								
PTCON2	0C02	_															0000									
PTPER	0C04	PTPER<15:0>													FFF8											
SEVTCMP	0C06	SEVTCMP<15:0>												0000												
MDC	0C0A									MDC<1	15:0>							0000								
CHOP	0C1A	CHPCLKEN	_		_	-	—	CHOPCLK9	CHOPCLK8	CHOPCLK7	CHOPCLK6	CHOPCLK5	CHOPCLK4	CHOPCLK3	CHOPCLK2	CHOPCLK1	CHOPCLK0	0000								
PWMKEY	0C1E									PWMKEY	/<15:0>															

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: PWM GENERATOR 1 REGISTER MAP

20 FLTSTAT 22 PENH 24 — 26	CLSTAT PENL CLSRC4	TRGSTAT POLH CLSRC3	FLTIEN POLL	CLIEN PMOD1	TRGIEN	ITB	MDCS									
24 —				PMOD1			IVIDUS	DTC1	DTC0	DTCP		-	CAM	XPRES	IUE	0000
	CLSRC4	CLSRC3			PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
26			CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
							PDC	1<15:0>								0000
28	PHASE1<15:0> 0													0000		
2A —	— DTR1<13:0>												0000			
2C —	_							ALTDT	R1<13:0>							0000
32							TRGC	MP<15:0>								0000
34 TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	_	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
38							PWMC	AP1<15:0>								0000
3A PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
3C —	—	-	— — LEB<11:0>										0000			
3E —	—	-	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	—	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000
2A 2C 32 34 38 3A 3C 3E	3	3 2 4 TRGDIV3 TRGDIV2 3 4 PHR PHF 2 4 PHR PHF 5 6	3 2 4 TRGDIV3 TRGDIV2 TRGDIV1 3 4 PHR PHF PLR 2 4 PHR PHF PLR 5 6	3 2 2 4 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 3 4 PHR PHF PLR PLF 5	3 2 4 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 3 4 PHR PHF PLR PLF FLTLEBEN 2 3 BLANKSEL3	3 2 4 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 3 4 PHR PHF PLR PLF FLTLEBEN CLLEBEN 2 3 BLANKSEL3 BLANKSEL2	3 2 2 4 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 3 4 PHR PHF PLR PLF FLTLEBEN CLLEBEN 2	3 PHASI 4 2 TRGCIV 4 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 3 PWMC/ 4 PHR PHF PLR PLF FLTLEBEN CLLEBEN 2	Bit Markowski k PHASE 1<15:0> A — — DTR1 C — — ALTDTF 2 — — ALTDTF 2 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 — — — — 3 Markowski A PHR PHF PLF FLTLEBEN CLLEBEN — — — C — — — — — — — — C — — — — — — — —	Bit Markowski filo PHASE1<15:0> A — — DTR1<13:0> C — — ALTDTR1<13:0> C — — ALTDTR1<13:0> C — — — ITRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 — — — — — — ITRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 — — — — — — — — — — — — —	Bit Markowski fill PHASE 1<15:0> Markowski fill Markowski fill DTR1<13:0> Markowski fill Markowski fill Markowski fill Markowski fill Markowski fill Markowski filli	Bit Network PHASE1<15:0> A — — DTR1<13:0> C — — ALTDTR1<13:0> C — — ALTDTR1<13:0> C — — ALTDTR1<13:0> C — — ALTDTR1<13:0> C — — — ALTDTR1<13:0> C — — — — ALTDTR1<13:0> C — — — — — ITRGCMP<15:0> I TRGDIV3 TRGDIV1 TRGDIV0 — — — — — — MCAP1 TRGSTRT4 PHR PHF PLR PLF FLTLEBEN CLLEBEN — — — BCH BCL C — — — — — _ LEB<11:0>	Bit Notes PHASE 1<15:0> DTR1<13:0> DTR1<13:0> DTR1<13:0> ALTDTR1<13:0> DTR1 ALTDTR1<13:0> ALTDTR1<13:0> DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1	Bit Notes Second Se	B PHASE1<15:0> A — — DTR1<13:0> C — — ALTDTR1<13:0> C — — ALTDTR1<13:0> C — — ALTDTR1<13:0> C — — — ALTDTR1<13:0> C — — — — ALTDTR1 TRGSTRT5 TRGSTRT3 TRGSTRT3 TRGSTRT2 TRGSTRT1 V V PHR PHF PLR PLF FLTLEBEN CLLEBEN — — — M BCL BPHH BPHL BPLH V — — — — — — LEB<11:0> U	B PHASE1<15:0> A DTR1<13:0> C ALTDTR1<13:0> 2 COMP<15:0> 4 TRGCMP<15:0> 5 TRGDIV2 TRGDIV1 TRGDIV0

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-31: PORTA REGISTER MAP FOR dsPIC33EVXXXGMX06 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	—	—			TRISA<	12:7>			—	—	TRISA4	—	_	TRISA	<1:0>	1F93
PORTA	0E02	_	—	—			RA<12	2:7>				—	RA4	—	-	RA<	1:0>	0000
LATA	0E04	_	—	—		LATA<12:7>						—	LATA4	—	-	LATA	<1:0>	0000
ODCA	0E06	—	—	—		ODCA<12:7>						_	ODCA4	—	-	ODCA	<1:0>	0000
CNENA	0E08	_	_	_		CNIEA<12:7>					_	_	CNIEA4	_	_	CNIEA	<1:0>	0000
CNPUA	0E0A	—	—	—			CNPUA<	:12:7>				_	CNPUA4	—	-	CNPU	۹<1:0>	0000
CNPDA	0E0C	_	_	_			CNPDA<	:12:7>			_	_	CNPDA4	_	_	CNPD	A<1:0>	0000
ANSELA	0E0E	_	—	—		ANSA<12:9>				ANSA7		—	ANSA4	—	-	ANSA	<1:0>	1E93
SR1A	0E10	_	—	—		—	_	SR1A9				—	SR1A4	—	-			0000
SR0A	0E12	_	_	—		_	_	SR0A9				—	SR0A4	—	_		_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PORTA REGISTER MAP FOR dsPIC33EVXXXGMX04 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	_	_	_	_		TRISA	<10:7>		—	—		-	TRISA<4:0>	>		DF9F
PORTA	0E02	_	_	_	_	_	RA<10:7>			—	—			RA<4:0>			0000	
LATA	0E04	—	_	_	_	_	LATA<10:7>					—	LATA<4:0>				0000	
ODCA	0E06	—	_	_	_	_	ODCA<10:7>				—	ODCA<4:0>				0000		
CNENA	0E08	—	—	_	_			CNIEA<10:7>				—		(CNIEA<4:0	>		0000
CNPUA	0E0A	—	—	_	_			CNPUA	<10:7>			—	CNPUA<4:0>				0000	
CNPDA	0E0C	—	—	_	_			CNPDA	<10:7>			—		C	NPDA<4:0	>		0000
ANSELA	0E0E	—	—	_	_		ANSA<10:9> — ANSA7			—	ANSA4	—		ANSA<2:0>	•	1813		
SR1A	0E10	—	—	_	_			SR1A9	_	_		—	SR1A4	—	—			0000
SR0A	0E12	—	—	_	_			SR0A9	_	_		—	SR0A4	—	—			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Allocating different Page registers for read and write access allows the architecture to support data movement between different pages in the data memory. This is accomplished by setting the DSRPAG register value to the page from which you want to read, and configure the DSWPAG register to the page to which it needs to be written. Data can also be moved from different PSV to EDS pages by configuring the DSRPAG and DSWPAG registers to address PSV and EDS space, respectively. The data can be moved between pages by a single instruction.

When an EDS or PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the EDS or PSV pages can occur at the page boundaries when:

- The initial address, prior to modification, addresses an EDS or a PSV page.
- The EA calculation uses Pre- or Post-Modified Register Indirect Addressing. However, this does not include Register Offset Addressing.

In general, when an overflow is detected, the DSxPAG register is incremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. When an underflow is detected, the DSxPAG register is decremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. This creates a linear EDS and PSV address space, but only when using the Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0, EDS and PSV spaces. Table 4-43 lists the effects of overflow and underflow scenarios at different boundaries.

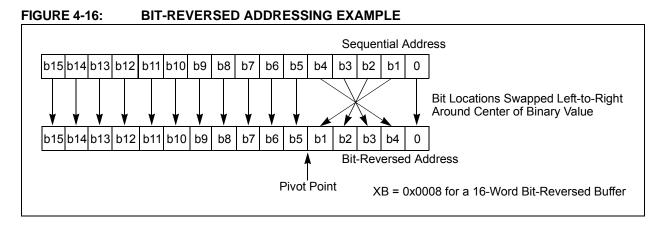
In the following cases, when an overflow or underflow occurs, the EA<15> bit is set and the DSxPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- · Register Indirect with Register Offset Addressing
- Modulo Addressing
- · Bit-Reversed Addressing

TABLE 4-43: OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0, EDS AND PSV SPACE BOUNDARIES^(2,3,4)

0/11			Before			After	
0/U, R/W	Operation	DSxPAG	DS EA<15>	Page Description	DSxPAG	DS EA<15>	Page Description
O, Read		DSRPAG = 0x1FF	1	EDS: Last Page	DSRPAG = 0x1FF	0	See Note 1
O, Read	[++Wn]	DSRPAG = 0x2FF	1	PSV: Last Isw Page	DSRPAG = 0x300	1	PSV: First MSB Page
O, Read	or [Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB Page	DSRPAG = 0x3FF	0	See Note 1
O, Write		DSWPAG = 0x1FF	1	EDS: Last Page	DSWPAG = 0x1FF	0	See Note 1
U, Read	r 1	DSRPAG = 0x001	1	PSV Page	DSRPAG = 0x001	0	See Note 1
U, Read	[Wn] Or [Wn]	DSRPAG = 0x200	1	PSV: First Isw Page	DSRPAG = 0x200	0	See Note 1
U, Read	[WII]	DSRPAG = 0x300	1	PSV: First MSB Page	DSRPAG = 0x2FF	1	PSV: Last lsw Page

Legend: O = Overflow, U = Underflow, R = Read, W = Write


Note 1: The Register Indirect Addressing now addresses a location in the Base Data Space (0x0000-0x8000).

2: An EDS access with DSxPAG = 0x000 will generate an address error trap.

3: Only reads from PS are supported using DSRPAG. An attempt to write to PS using DSWPAG will generate an address error trap.

4: Pseudolinear Addressing is not supported for large offsets.

dsPIC33EVXXXGM00X/10X FAMILY

TABLE 4-46: BIT-REVERSED ADDRESSING SEQUENCE (16-ENTRY)

		Norma	al Addres	SS			Bit-Rev	ersed Ac	Idress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred
	0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_	—	—	—	PWCOL3	PWCOL2	PWCOL1	PWCOL0
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-4	Unimplemen	ted: Read as '	0'				
bit 3		annel 3 Periph		Ilision Flag bit			
	$\perp = vvrite col$	ision is detecte	a				

REGISTER 8-11: DMAPWC: DMA PERIPHERAL WRITE COLLISION STATUS REGISTER

1 = Write collision is detected
0 = Write collision is not detected

0 = Write collision is not detected

1 = Write collision is detected0 = Write collision is not detected

PWCOL2: Channel 2 Peripheral Write Collision Flag bit

PWCOL1: Channel 1 Peripheral Write Collision Flag bit

bit 0 PWCOL0: Channel 0 Peripheral Write Collision Flag bit

- 1 = Write collision is detected
 - 0 = Write collision is not detected

bit 2

bit 1

dsPIC33EVXXXGM00X/10X FAMILY

REGISTER 17-18: AUXCONx: PWMx AUXILIARY CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—		—	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0
bit 15							bit 8

U-0	U-0 R/W-0 R/V		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	— — CHOPSEL3 CHO		CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN
bit 7							bit 0

Legend:										
R = Readab	ole bit	W = Writable bit	U = Unimplemented bit,	read as '0'						
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 15-12	Unimple	mented: Read as '0'								
bit 11-8	BLANKSEL<3:0>: PWMx State Blank Source Select bits									
	the BCH 1001 = F • • 0100 = F	and BCL bits in the LEBCO Reserved	Nx register).	ult input signals (if enabled through						
	0010 = PWM2H is selected as the state blank source 0001 = PWM1H is selected as the state blank source 0000 = No state blanking									
bit 7-6	Unimple	mented: Read as '0'								
bit 5-2	CHOPSEL<3:0>: PWMx Chop Clock Source Select bits									
	The sele 1001 = F •		lisable (Chop) the selected PW	/Mx outputs.						
	• 0100 = Reserved 0011 = PWM3H is selected as the chop clock source 0010 = PWM2H is selected as the chop clock source 0001 = PWM1H is selected as the chop clock source 0000 = Chop clock generator is selected as the chop clock source									
bit 1	1 = PWN	EN: PWMxH Output Choppi IxH chopping function is en IxH chopping function is dis	abled							
bit 0	L = PWN	EN: PWMxL Output Choppin IxL chopping function is ena IxL chopping function is disa	ng Enable bit abled							

REGISTER 18-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

bit 1 SPITBF: SPIx Transmit Buffer Full Status bit 1 = Transmit has not yet started, the SPIxTXB bit is full 0 = Transmit has started, the SPIxTXB bit is empty Standard Buffer mode: Automatically set in hardware when the core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR. Enhanced Buffer mode: Automatically set in the hardware when the CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation. bit 0 SPIRBF: SPIx Receive Buffer Full Status bit 1 = Receive is complete, the SPIxRXB bit is full 0 = Receive is incomplete, the SPIxRXB bit is empty Standard Buffer mode:

Automatically set in the hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.

Enhanced Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
FRMEN	SPIFSD	FRMPOL	_			—	—				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0				
_					_	FRMDLY	SPIBEN				
bit 7							bit 0				
Legend:											
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'											
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown					
bit 15	FRMEN: Fran	med SPIx Supp	ort bit								
	1 = Framed SPIx support is enabled (\overline{SSx} pin is used as the Frame Sync pulse input/output)										
		SPIx support is									
bit 14		x Frame Sync F		n Control bit							
	1 = Frame Sync pulse input (slave) 0 = Frame Sync pulse output (master)										
h:+ 40	-	• •	. ,								
bit 13		ame Sync Pulse	5								
	1 = Frame Sync pulse is active-high 0 = Frame Sync pulse is active-low										
bit 12-2	-	ited: Read as '									
bit 1	•			hit							
	FRMDLY: Frame Sync Pulse Edge Select bit 1 = Frame Sync pulse coincides with the first bit clock										
		0 = Frame Sync pulse precedes the first bit clock									
bit 0	SPIBEN: SPI	x Enhanced Bu	iffer Enable b	it							
	1 = Enhanced buffer is enabled										
	0 = Enhance	d buffer is disab	led (Standard	d mode)							

REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F15BP3	F15BP2	F15BP1	F15BP0	F14BP3	F14BP2	F14BP1	F14BP0		
bit 15					•		bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F13BP3	F13BP2	F13BP1	F13BP0	F12BP3	F12BP2	F12BP1	F12BP0		
bit 7						bit 0			
Legend:									
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		nown		
bit 15-12	F15BP<3:0>:	RX Buffer Ma	sk for Filter 15	5 bits					
	1111 = Filter	hits received in	n RX FIFO but	ffer					
	1110 = Filter	hits received in	n RX Buffer 14	ļ.					
	•								
	•								
	0001 = Filter	hits received ir	n RX Buffer 1						
	0000 = Filter hits received in RX Buffer 0								
bit 11-8	F14BP<3:0>:	RX Buffer Ma	sk for Filter 14	l bits (same va	lues as bits 15-	12)			
bit 7-4	F13BP<3:0>:	RX Buffer Ma	sk for Filter 13	3 bits (same va	lues as bits 15-	12)			
bit 3-0									

REGISTER 22-15: CxBUFPNT4: CANx FILTERS 12-15 BUFFER POINTER REGISTER 4

24.3 ADC Control Registers

REGISTER 24-1: ADxCON1: ADCx CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
ADON	—	ADSIDL	ADDMABM	—	AD12B	FORM1	FORM0	
bit 15 bit 8								

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC, HS	R/C-0, HC, HS
SSRC2	SSRC1	SSRC0	SSRCG	SIMSAM	ASAM	SAMP	DONE ⁽¹⁾
bit 7				•			bit 0

Legend:	C = Clearable bit U = Unimplemented bit, read as '0'			
R = Readable bit	W = Writable bit	HS = Hardware Settable bit	HC = Hardware Clearable bit	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	ADON: ADCx Operating Mode bit
	1 = ADCx module is operating
	0 = ADCx is off
bit 14	Unimplemented: Read as '0'
bit 13	ADSIDL: ADCx Stop in Idle Mode bit
	 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	ADDMABM: ADCx DMA Buffer Build Mode bit
	 1 = DMA buffers are written in the order of conversion; the module provides an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode; the module provides a Scatter/Gather mode address to the DMA channel based on the index of the analog input and the size of the DMA buffer
bit 11	Unimplemented: Read as '0'
bit 10	AD12B: ADCx 10-Bit or 12-Bit Operation Mode bit
	1 = 12-bit, 1-channel ADC operation
	0 = 10-bit, 4-channel ADC operation
bit 9-8	FORM<1:0>: Data Output Format bits
	For 10-Bit Operation:
	11 = Signed fractional (Dout = sddd dddd dd00 0000, where s = .NOT.d<9>)
	10 = Fractional (Dout = dddd dddd dd00 0000) 01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>)
	$00 = \text{Integer}(\text{DOUT} = 0.000 \ 0.00 \text{d} \text{d} \text{d} \text{d} \text{d} \text{d} \text{d} \text{d}$
	For 12-Bit Operation:
	11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<11>)
	10 = Fractional (Dout = dddd dddd dddd 0000)
	01 = Signed integer (Dout = ssss sddd dddd dddd, where s = .NOT.d<11>) 00 = Integer (Dout = 0000 dddd dddd dddd)

26.0 COMPARATOR VOLTAGE REFERENCE

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Op Amp/Comparator" (DS70000357) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

26.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRxCON registers (Register 26-1 and Register 26-2). The comparator voltage reference provides a range of output voltages with 128 distinct levels. The comparator reference supply voltage can come from either VDD and Vss, or the external CVREF+ and AVss pins. The voltage source is selected by the CVRSS bit (CVRxCON<11>). The settling time of the comparator voltage reference must be considered when changing the CVREF output.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
53	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU Wb,#lit5,Acc Accumulator = signed(Wb) * unsigned(lit5)				1	None
		MUL.US	Wb,Ws,Wnd	1	1	None	
		MUL.US	Wb,Ws,Acc	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc	1	1	None	
		MUL.UU	Wb,Ws,Acc	1	1	None	
		MULW.SS	Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU Wb,Ws,Wnd Wnd = signed(Wb) * unsigned(Ws)		1	1	None	
	MULW.US Wb,Ws,Wnd Wnd = u		Wnd = unsigned(Wb) * signed(Ws)	1	1	None	
		MULW.UU	Wb,Ws,Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
54	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
55	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
56	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
57	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
58	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
59	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
60	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
61	RESET	RESET		Software device Reset	1	1	None
62	RETFIE	RETFIE		Return from interrupt	1	6 (5)	SFA

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

Base Instr #	Assembly Mnemonic	Assembly Syntax RETLW #lit10,Wn		Description	# of Words	# of Cycles	Status Flags Affected
63	RETLW			Return with literal in Wn	1	6 (5)	SFA
64	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
65	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
66	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC f, WREG WREG = Rotate Left (No Carry) f				1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
67	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
68	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
69	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
70	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
71	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
72	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAE SA,SB,SAE
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAE SA,SB,SAE
73	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
74	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAE SA,SB,SAE
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,
		SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C,DC,N,OV,
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV
75	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV
		SUBB	#lit10,Wn	Wn = Wn – lit10 – (\overline{C})	1	1	C,DC,N,OV,
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV
76	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,
-		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV
77	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV
	SUPPR	SUBBR	f,WREG	$WREG = WREG - f - (\overline{C})$	1	1	C,DC,N,OV
						1	
		SUBBR	Wb,Ws,Wd	Wd = Ws - Wb - (C)	1	1 1	C,DC,N,OV

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

29.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

29.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

29.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

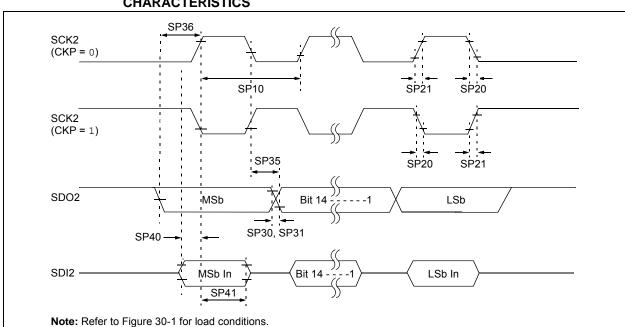
- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

29.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

DC CHARACTERISTICS			Standard Operating Co (unless otherwise state Operating temperature			ed)			
Param No.	Symbol	Characteristic	Min.	Min. Typ. ⁽¹⁾ Max. Units		Conditions			
		Program Flash Memory							
D130	Eр	Cell Endurance	10,000	—	_	E/W	-40°C to +125°C		
D131	Vpr	VDD for Read	4.5	—	5.5	V			
D132b	VPEW	VDD for Self-Timed Write	4.5	—	5.5	V			
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated, -40°C to +125°C		
D135	IDDP	Supply Current During Programming	_	10	—	mA			
D136a	Trw	Row Write Cycle Time	0.657	—	0.691	ms	Trw = 4965 FRC cycles, Ta = +85°C (see Note 2)		
D136b	Trw	Row Write Cycle Time	0.651	_	0.698	ms	Trw = 4965 FRC cycles, Ta = +125°C (see Note 2)		
D137a	TPE	Page Erase Time	19.44	_	20.44	ms	TPE = 146893 FRC cycles, TA = +85°C (see Note 2)		
D137b	TPE	Page Erase Time	19.24	—	20.65	ms	TPE = 146893 FRC cycles, TA = +125°C (see Note 2)		
D138a	Tww	Word Write Cycle Time	45.78	—	48.15	μs	Tww = 346 FRC cycles, TA = +85°C (see Note 2)		
D138b	Tww	Word Write Cycle Time	45.33	_	48.64	μs	Tww = 346 FRC cycles, TA = +125°C (see Note 2)		


TABLE 30-13: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

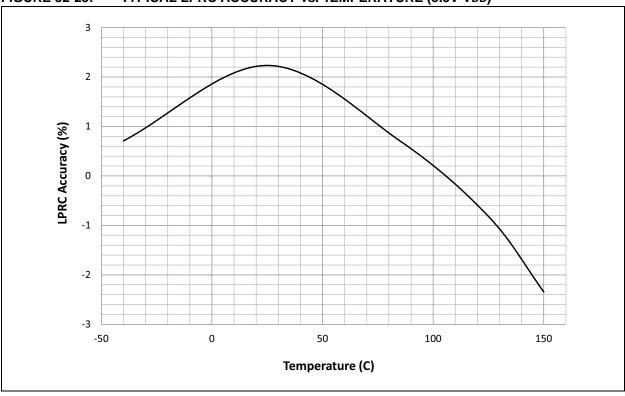
2: Other conditions: FRC = 7.3728 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 30-20) and the value of the FRC Oscillator Tuning register.

TABLE 30-14: ELECTRICAL CHARACTERISTICS: INTERNAL BAND GAP REFERENCE VOLTAGE

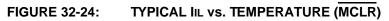
DC CHAR	DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
DVR10	Vbg	Internal Band Gap Reference Voltage	1.14	1.2	1.26	V			

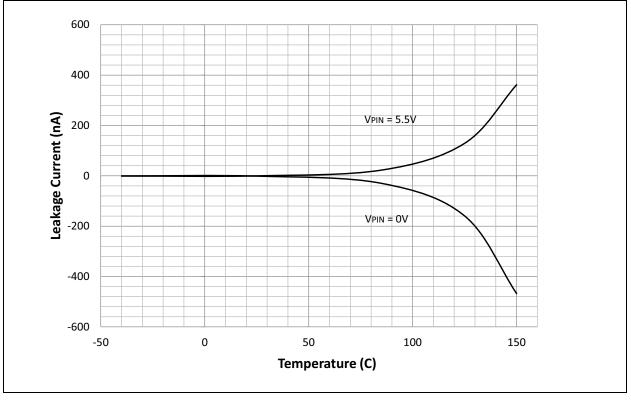
FIGURE 30-14: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-32:SPI2 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)TIMING REQUIREMENTS


AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK2 Frequency	_	_	9	MHz	See Note 3
SP20	TscF	SCK2 Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP21	TscR	SCK2 Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDO2 Data Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDO2 Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2sc, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—		ns	

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.


- **3:** The minimum clock period for SCK2 is 111 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPI2 pins.

dsPIC33EVXXXGM00X/10X FAMILY

32.7 Leakage Current

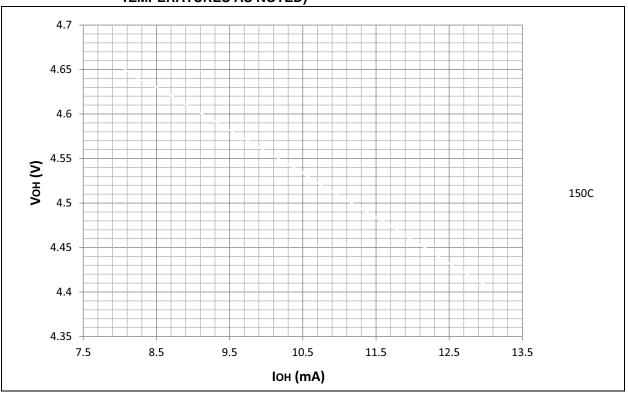
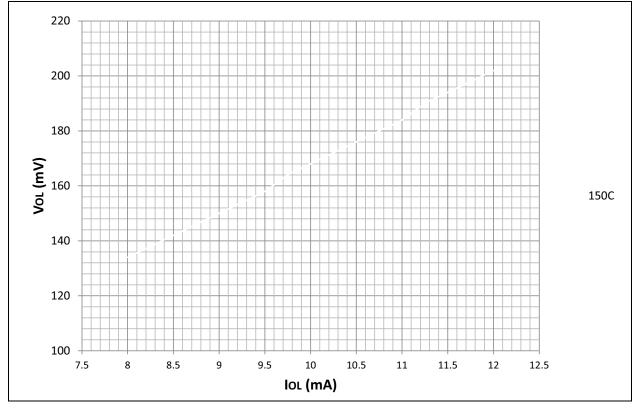
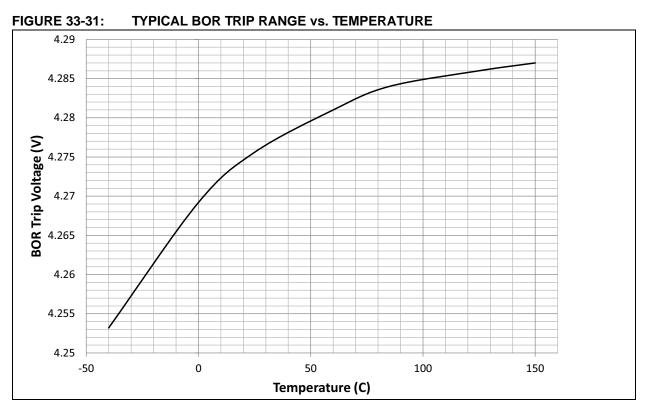
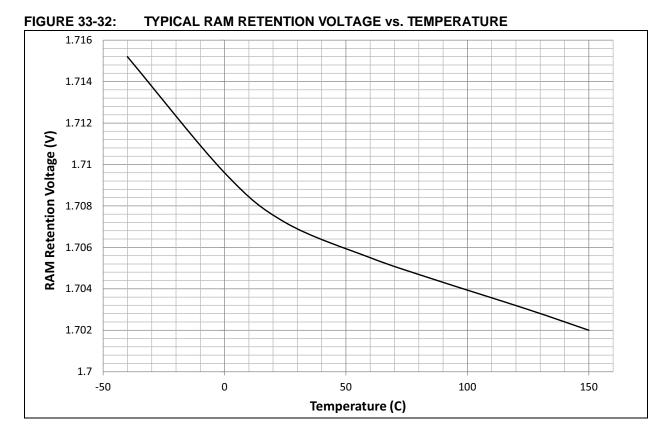




FIGURE 33-27: TYPICAL VOH 4x DRIVER PINS vs. IOH (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)


FIGURE 33-28: TYPICAL Vol 8x DRIVER PINS vs. Iol (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

33.12 VBOR

33.13 RAM Retention

© 2013-2016 Microchip Technology Inc.