

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev64gm004-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2)
	<pre>111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)</pre>
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop is in progress 0 = REPEAT loop is not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = Overflow has not occurred for signed arithmetic
bit 1	Z: MCU ALU Zero bit
	 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	 1 = A carry-out from the Most Significant bit (MSb) of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1.	The IPI <2:0> hits are concatenated with the IPI 3 hit (CORCON<3>) to form the CPU Interrupt Priority

- **Note 1:** The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL3 = 1. User interrupts are disabled when IPL3 = 1.
 - 2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
 - **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using the bit operations.

TABLE 4-19: NVM REGISTER MAP

									-			-					-	
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0728	WR	WREN	WRERR	NVMSIDL	_	_	RPDF	URERR	_	—	_	_	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000
NVMADR	072A		NVMADR<15:0> 00									0000						
NVMADRU	072C	_	_	_	_		_	_	_				NVMAD	RU<23:16>				0000
NVMKEY	072E	_	_	_	_		_	_	_				NVMK	EY<7:0>				0000
NVMSRCADRL	0730								NVMSF	RCADR<15:	1>						0	0000
NVMSRCADRH	0732	_	_	_	_		_	_	_				NVMSRC	ADR<23:16>				0000
Lonondy				Desetual	an are chour	a in heaven	d a stress al											

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: SYSTEM CONTROL REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR		_	VREGSF		СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	_	_	OSWEN	Note 2
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	FRCDIV2	FRCDIV1	FRCDIV0	PLLPOST1	PLLPOST0	_	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0	0000
PLLFBD	0746	-	—		—	_	_	—				PL	LDIV<8:0>					0000
OSCTUN	0748	-	—		—	_	_	—		_	_			TUN	<5:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the Configuration fuses.

TABLE 4-21: REFERENCE CLOCK REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
REFOCON	074E	ROON	-	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	_	_	_	_	_	_	—	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾ (CONTINUED)

- **Note 1:** This bit is cleared when the ROI bit is set and an interrupt occurs.
 - 2: This register resets only on a Power-on Reset (POR).
 - **3:** DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - 4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

REGISTER 11-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			T2CK	R<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **T2CKR<7:0>:** Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 •

• 00000001 = Input tied to CMP1 00000000 = Input tied to Vss

REGISTER 15-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0	SYNCSEL<4:0>: Input Source Select for Synchronization and Trigger Operation bits ⁽⁴⁾
	11111 = Reserved
	11110 = Reserved
	1110 = Reserved
	11100 = CTMU trigger is the source for the capture timer synchronization
	11011 = ADC1 interrupt is the source for the capture timer synchronization ⁽⁵⁾
	11010 = Analog Comparator 3 is the source for the capture timer synchronization ⁽⁵⁾
	11001 = Analog Comparator 2 is the source for the capture timer synchronization ⁽⁵⁾
	11000 = Analog Comparator 1 is the source for the capture timer synchronization ⁽⁵⁾
	10111 = Analog Comparator 5 is the source for the capture timer synchronization ⁽⁵⁾
	10110 = Analog Comparator 4 is the source for the capture timer synchronization ⁽⁵⁾
	10101 = Reserved
	10100 = Reserved
	10011 = Input Capture 4 interrupt is the source for the capture timer synchronization
	10010 = Input Capture 3 interrupt is the source for the capture timer synchronization
	10001 = Input Capture 2 interrupt is the source for the capture timer synchronization
	10000 = Input Capture 1 interrupt is the source for the capture timer synchronization
	01111 = GP Timer5 is the source for the capture timer synchronization
	01110 = GP Timer4 is the source for the capture timer synchronization
	01101 = GP Timer3 is the source for the capture timer synchronization
	01100 = GP Timer2 is the source for the capture timer synchronization
	01011 = GP Timer1 is the source for the capture timer synchronization
	01010 = Reserved
	01001 = Reserved
	01000 = Input Capture 4 is the source for the capture timer synchronization ⁽⁶⁾
	00111 = Input Capture 3 is the source for the capture timer synchronization ⁽⁶⁾
	00110 = Input Capture 2 is the source for the capture timer synchronization ⁽⁶⁾
	00101 = Input Capture 1 is the source for the capture timer synchronization ⁽⁶⁾ 00100 = Output Compare 4 is the source for the capture timer synchronization
	00011 = Output Compare 3 is the source for the capture timer synchronization
	00011 – Output Compare 3 is the source for the capture timer synchronization
	00001 = Output Compare 1 is the source for the capture timer synchronization
	00000 = Reserved
Note 1:	The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.

- **Note 1:** The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by the SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own sync or trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - 6: When the source ICx timer rolls over, then in the next clock cycle, trigger or synchronization occurs.

16.1 Output Compare Control Registers

REGISTER 16-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	—
bit 15							bit 8
R/W-0	U-0	U-0	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0
ENFLTA		_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0
bit 7							bit (
Legend:		HSC = Hardv	vare Settable/Cl	earable bit			
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
n = Value at	POR	'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 12-10	OCTSEL<2:0 111 = Periphe 110 = Reserv 101 = Reserv 100 = T1CLK 011 = T5CLK 010 = T4CLK	>: Output Con eral clock (FP) red is the clock so is the clock so is the clock so	inues to operate npare x Clock S purce of the OC purce of the OC purce of the OC purce of the OC	elect bits x (only the syn x x		(is supported)	
			ource of the OC				
bit 9-8	Unimplemen	ted: Read as '	0'				
bit 7	1 = Output C	ompare Fault	K Fault A Input E A (OCFA) input A (OCFA) input	is enabled			
bit 6-5	-	ted: Read as '					
bit 4	1 = PWM Fa	ult A condition	ndition Status bit on the OCFA pi on the OCFA pi	in has occurred			
bit 3	1 = TRIGSTA	AT (OCxCON2	Mode Select bit <6>) is cleared v nly by software		= OCxTMR or i	n software	

Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0					
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN		_					
bit 15		L		•			bit 8					
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
—		BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL					
bit 7							bit (
Legend:												
R = Readable b	nit	W = Writable	hit	II = I Inimpler	mented bit, read	as '0'						
-n = Value at P		'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown					
						X Bitle dill						
bit 15	PHR: PWMxH	Rising Edge	Trigger Enabl	e bit								
					Blanking count	ter						
	0 = Leading-E	Edge Blanking	gnores the ri	sing edge of PV	VMxH							
bit 14		I Falling Edge										
	0	0	00	e Leading-Edge alling edge of P ¹	e Blanking coun	ter						
bit 13	-	Rising Edge T	-									
DIL 15		• •			Blanking count	er						
				sing edge of PV								
bit 12	PLF: PWMxL Falling Edge Trigger Enable bit											
					Blanking count	ter						
	•	• •	•	alling edge of P								
bit 11		.EBEN: Fault Input Leading-Edge Blanking Enable bit eading-Edge Blanking is applied to the selected Fault input										
				to the selected Fa								
bit 10	•	• •		Edge Blanking E	•							
			-	he selected cur								
	0 = Leading-E	Edge Blanking	s not applied	to the selected	l current-limit in	put						
bit 9-6	-	ted: Read as '										
bit 5				al High Enable								
				Fault input sigr ng signal is hig	nals) when seled	cted blanking s	signal is high					
bit 4		•		al Low Enable b								
		•	•••		nals) when seled	cted blanking s	signal is low					
				ng signal is low		0	5					
bit 3		ing in PWMxH	-									
					nals) when the F	PWMxH output	is high					
h:# 0		ng when the P	-	-								
bit 2		ng in PWMxH			nals) when the F		ic low					
		ng when the P				www.kirioutput	. 15 10 W					
bit 1		ng in PWMxL I										
		-	-		nals) when the F	PWMxL output	is hiah					
	0 = No blankii	ng when the P	WMxL output	is high								
bit 0	BPLL: Blanki	ng when the P ng in PWMxL L	ow Enable b	it			-					
bit 0	BPLL: Blankii 1 = State blan	ng when the P ng in PWMxL L	ow Enable b t-limit and/or	it Fault input sigr	nals) when the F	PWMxL output	-					

Note 1: The blanking signal is selected through the BLANKSEL<3:0> bits in the AUXCONx register.

REGISTER 19-3: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	 S: I2Cx Start bit Updated when Start, Reset or Stop is detected; cleared when the I²C module is disabled, I2CEN = 0. 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Indicates that a Start bit was not detected last
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	 = Read: Indicates that the data transfer is output from the slave = Write: Indicates that the data transfer is input to the slave
bit 1	RBF: Receive Buffer Full Status bit
	 = Receive is complete, the I2CxRCV bit is full = Receive is not complete, the I2CxRCV bit is empty
bit 0	TBF: Transmit Buffer Full Status bit
	 1 = Transmit is in progress, I2CxTRN is full (8 bits of data) 0 = Transmit is complete, I2CxTRN is empty

REGISTER 19-4: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
—	—	—	—	—	—	MSK<9:8>		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
MSK<7:0>								

Legend:				
R = Readable bit	W = Writable bit	it U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-10 Unimplemented: Read as '0'

bit 7

bit 9-0 MSK<9:0>: I2Cx Mask for Address Bit x Select bits

1 = Enables masking for bit x of the incoming message address; bit match is not required in this position

0 = Disables masking for bit x; bit match is required in this position

bit 0

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0
CVREN	CVROE ⁽¹⁾	_	_	CVRSS	VREFSEL	_	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	CVR6	CVR5	CVR4	CVR3	CVR2	CVR1	CVR0
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	1 = Comparat 0 = Comparat	parator Voltag tor voltage refe tor voltage refe	erence circuit i erence circuit i	s powered on s powered dov		(1)	
bit 14	1 = Voltage le	nparator Voltag evel is output o evel is disconne	n the CVREF2	o pin	(CVREF20 Pin)	bit ⁽¹⁾	
bit 13-12	•	ted: Read as '					
bit 11	=	parator Voltag		Source Selection	on bit		
		tor reference s tor reference s					
bit 10	VREFSEL: Vo	oltage Referen	ce Select bit				
	(CVR1C0	ON<10>) = 0			es inverting inp	-	
		itor Reference ON<10>) = 0	Source 1 (CVR1) provide	es inverting inp	ut voltage wh	en VREFSEL
bit 9-7	Unimplemen	ted: Read as '	0'				
bit 6-0		omparator Vol 27/128 x VREF	-	e Value Selec	tion bits		
	• 0000000 = 0	0 volts					
Note 4: 0			evellekterer (ha 00 m ¹			
Note 1: C	VROE (CVR2CC	//////////////////////////////////////	available on t	ne 28-pin devi	ces.		

REGISTER 26-2: CVR2CON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER 2

27.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EVXXXGM00X/10X family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard™ Security
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

27.1 Configuration Bits

In dsPIC33EVXXXGM00X/10X family devices, the Configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored at the top of the on-chip program memory space, known as the Flash Configuration bytes. Their specific locations are shown in Table 27-1. The configuration data is automatically loaded from the Flash Configuration bytes to the proper Configuration Shadow registers during device Resets.

Note:	Configuration data is reloaded on all types
	of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration bytes for configuration data in their code for the compiler. This is to ensure that program code is not stored in this address when the code is compiled.

The upper 2 bytes of all Flash Configuration Words in program memory should always be '1111 1111 1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

Note:	Performing a page erase operation on the						
	last page of program memory clears the						
	Flash Configuration bytes, enabling code						
	protection as a result. Therefore, users						
	should avoid performing page erase						
	operations on the last page of program						
	memory.						

The Configuration Flash bytes map is shown in Table 27-1.

Bit Field	Register	Description
BWRP	FSEC	Boot Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
BSS<1:0>	FSEC	Boot Segment Code Flash Protection Level bits 11 = No protection (other than BWRP write protection) 10 = Standard security 0x = High security
BSEN	FSEC	Boot Segment Control bit 1 = No Boot Segment 0 = Boot Segment size is determined by BSLIM<12:0>
GWRP	FSEC	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
GSS<1:0>	FSEC	General Segment Code Flash Protection Level bits 11 = No protection (other than GWRP write protection) 10 = Standard security 0x = High security
CWRP	FSEC	Configuration Segment Write-Protect bit 1 = Configuration Segment is not write-protected 0 = Configuration Segment is write-protected
CSS<2:0>	FSEC	Configuration Segment Code Flash Protection Level bits 111 = No protection (other than CWRP write protection) 110 = Standard security 10x = Enhanced security 0xx = High security
AIVTDIS	FSEC	Alternate Interrupt Vector Table Disable bit 1 = Disables AIVT 0 = Enables AIVT
BSLIM<12:0>	FBSLIM	Boot Segment Code Flash Page Address Limit bits Contains the page address of the first active General Segment page. The value to be programmed is the inverted page address, such that programming additional '0's can only increase the Boot Segment size. For example, 0x1FFD = 2 pages or 1024 instruction words.
FNOSC<2:0>	FOSCSEL	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) Oscillator with Postscaler 110 = Internal Fast RC (FRC) Oscillator with Divide-by-16 101 = LPRC Oscillator 100 = Reserved 011 = Primary (XT, HS, EC) Oscillator with PLL 010 = Primary (XT, HS, EC) Oscillator 001 = Internal Fast RC (FRC) Oscillator with PLL 000 = FRC Oscillator
ĪĒSO	FOSCSEL	 Two-Speed Oscillator Start-up Enable bit 1 = Starts up device with FRC, then automatically switches to the user-selected oscillator source when ready 0 = Starts up device with user-selected oscillator source
POSCMD<1:0>	FOSC	Primary Oscillator Mode Select bits 11 = Primary Oscillator is disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode

TABLE 27-2: dsPIC33EVXXXGM00X/10X CONFIGURATION BITS DESCRIPTION

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
46 MAC		MAC Wm*Wn, Acc, Wx, Wxd, Wy, Wyd, AWB		Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB SA,SB,SAB
47	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#litl6,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
48	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit literal to DSRPAG	1	1	None
		MOVPAG	#lit9,DSWPAG	Move 9-bit literal to DSWPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit literal to TBLPAG	1	1	None
		MOVPAGW	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAGW	Ws, DSWPAG	Move Ws<8:0> to DSWPAG	1	1	None
		MOVPAGW	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
49	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and store accumulator	1	1	None
50	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB SA,SB,SAB
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB SA,SB,SAB
51	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
52	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd,AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB SA,SB,SAB

TABI F 28-2-	INSTRUCTION SET OVERVIEW ((CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

30.1 DC Characteristics

Characteristic	VDD Range	Temperature Range	Maximum MIPS		
Characteristic	(in Volts)	(in °C)	dsPIC33EVXXXGM00X/10X Family		
I-Temp	4.5V to 5.5V ^(1,2)	-40°C to +85°C	70		
E-Temp	4.5V to 5.5V ^(1,2)	-40°C to +125°C	60		

TABLE 30-1: OPERATING MIPS vs. VOLTAGE

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, op amp/comparator and comparator voltage reference will have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

2: When BOR is enabled, the device will work from 4.7V to 5.5V.

Note 1: Customer operating voltage range is specified as: 4.5V to 5.5V.

TABLE 30-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Тур.	Max.	Unit
Industrial Temperature Devices:					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices:					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD	D PINT + PI/O			W
I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} \times IOH) + \Sigma (VOL \times IOL)$					
Maximum Allowed Power Dissipation	PDMAX	ОМАХ (ТЈ – ТА)/θЈА \			W

TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 64-Pin QFN, 9x9x0.9 mm	θJA	28.0		°C/W	1
Package Thermal Resistance, 64-Pin TQFP, 10x10x1 mm	θJA	48.3	—	°C/W	1
Package Thermal Resistance, 44-Pin QFN, 8x8 mm	θJA	29.0	—	°C/W	1
Package Thermal Resistance, 44-Pin TQFP, 10x10x1 mm	θJA	49.8	_	°C/W	1
Package Thermal Resistance, 28-Pin QFN-S, 6x6x0.9 mm	θJA	30.0	—	°C/W	1
Package Thermal Resistance, 28-Pin SOIC, 7.50 mm	θJA	69.7	—	°C/W	1
Package Thermal Resistance, 28-Pin SSOP, 5.30 mm	θJA	71.0		°C/W	1
Package Thermal Resistance, 28-Pin SPDIP, 300 mil	θJA	60.0	—	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 30-18: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol Characteristic		Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8		8.0	MHz	ECPLL, XTPLL modes
OS51	Fsys	On-Chip VCO System Frequency	120	—	340	MHz	
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	ms	
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%	

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Time Base or Communication Clock}}}$$

For example, if FOSC = 120 MHz and the SPI bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 30-19: INTERNAL FRC ACCURACY

AC CHA	RACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditions			
Internal FRC Accuracy @ FRC Frequency = 7.37 MHz ⁽¹⁾									
F20a	FRC	-1	0.5	+1	%	$-40^{\circ}C \le TA \le +85^{\circ}C \qquad VDD = 4.5-5.5V$			
F20b	FRC	-2	1	+2	%	$-40^{\circ}C \leq TA \leq +125^{\circ}C VDD = 4.5 - 5.5V$			

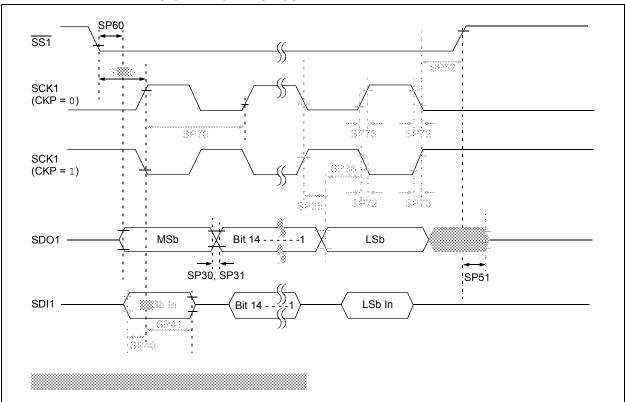

Note 1: Frequency calibrated at +25°C and 5.0V. TUN<5:0> bits can be used to compensate for temperature drift.

TABLE 30-20: INTERNAL LPRC ACCURACY

AC CHA	ARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditions			
LPRC @ 32.768 kHz ⁽¹⁾									
F21a	LPRC	-15	5	+15	%	$-40^{\circ}C \le TA \le +85^{\circ}C$ VDD = 4.5-5.5			
F21b	LPRC	-30	10	+30	%	$-40^\circ C \le T_A \le +125^\circ C$	VDD = 4.5-5.5V		

Note 1: Change of LPRC frequency as VDD changes.

^{© 2013-2016} Microchip Technology Inc.

FIGURE 30-25: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min.	. Typ. Max. Units			Conditions
		ADC	Accurac	cy (12-Bi	t Mode)		
AD20a	Nr	Resolution	1	2 data bi	ts	bits	
AD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V
AD22a	DNL	Differential Nonlinearity	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V
AD23a	Gerr	Gain Error	-10	4	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V
AD24a	EOFF	Offset Error	-10	1.75	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V
AD25a	—	Monotonicity ⁽²⁾	—	_	_	—	Guaranteed
		Dynamic	Perforn	nance (1	2-Bit Mo	de)	
AD30a	THD	Total Harmonic Distortion	—		-75	dB	
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	—	dB	
AD32a	SFDR	Spurious Free Dynamic Range	80	_	_	dB	
AD33a	Fnyq	Input Signal Bandwidth	—	—	250	kHz	
AD34a	ENOB	Effective Number of Bits	11.09	11.3	_	bits	

TABLE 30-55: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

2: The conversion result never decreases with an increase in the input voltage.

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min.	Тур. ⁽⁴⁾	Max.	Units	Conditions
		Cloc	k Parame	eters			
AD50	TAD	ADC Clock Period	75	_		ns	
AD51	tRC	ADC Internal RC Oscillator Period	—	250		ns	
		Con	version F	Rate			
AD55	tCONV	Conversion Time	—	12	_	TAD	
AD56	FCNV	Throughput Rate	—	—	1.1	Msps	Using simultaneous sampling
AD57a	TSAMP	Sample Time When Sampling Any ANx Input	2	—	—	TAD	
AD57b	TSAMP	Sample Time When Sampling the Op Amp Outputs	4	—	_	TAD	
		Timin	ng Param	eters			
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2	—	3	TAD	Auto-convert trigger is not selected
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2	—	3	TAD	
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5	_	TAD	
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽²⁾	—	—	20	μS	See Note 3

TABLE 30-58: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

- **2:** Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
- **3:** The parameter, tDPU, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (ADxCON1<15>) = 1). During this time, the ADC result is indeterminate.
- 4: These parameters are characterized but not tested in manufacturing.

TABLE 30-59: DMA MODULE TIMING REQUIREMENTS

		$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
DM1	DMA Byte/Word Transfer Latency	1 Tcy (2)	—		ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because DMA transfers use the CPU data bus, this time is dependent on other functions on the bus.

31.1 High-Temperature DC Characteristics

TABLE 31-1: OPERATING MIPS vs. VOLTAGE

Characteristic VDD Range		Temperature Range	Max MIPS		
Characteristic	(in Volts)	(in °C)	dsPIC33EVXXXGM00X/10X Family		
HDC5	4.5V to 5.5V ^(1,2)	-40°C to +150°C	40		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules, such as the ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Device functionality is tested but is not characterized. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

2: When BOR is enabled, the device will work from 4.7V to 5.5V.

TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
High-Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+155	°C
Operating Ambient Temperature Range	TA	-40	_	+150	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	I	Pint + Pi/c)	W
Maximum Allowed Power Dissipation	Pdmax	(TJ — TA)/θJ	IA	W

TABLE 31-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

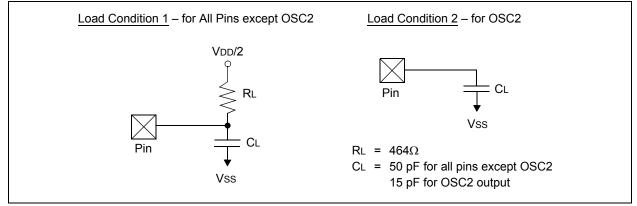
DC CHA	RACTER	ISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions	
Operating Voltage								
HDC10	Vdd	Supply Voltage ⁽³⁾	VBOR	_	5.5	V		
HDC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	_	—	V		
HDC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	—	—	Vss	V		
HDC17	Svdd	VDD Rise Rate to Ensure Internal Power-on Reset Signal	1.0	_	—	V/ms	0V-5.0V in 5 ms	
HDC18	VCORE	VDD Core Internal Regulator Voltage	1.62	1.8	1.98	V	Voltage is dependent on load, temperature and VDD	

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

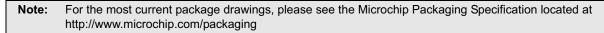
2: This is the limit to which VDD may be lowered without losing RAM data.

3: VDD voltage must remain at Vss for a minimum of 200 μ s to ensure POR.

31.2 AC Characteristics and Timing Parameters


The information contained in this section defines the dsPIC33EVXXXGM00X/10X family AC characteristics and timing parameters for high-temperature devices. However, all AC timing specifications in this section are the same as those in Section 30.2 "AC Characteristics and Timing Parameters", with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter OS53 in Section 30.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.


TABLE 31-12: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

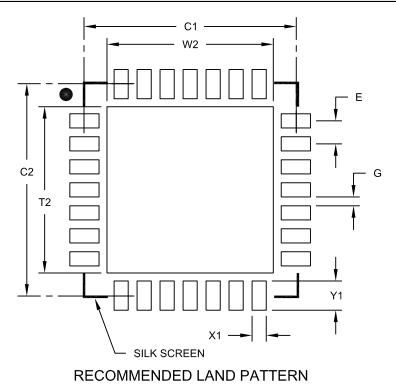

	Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated)						
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$						
	Operating voltage VDD range as described in Table 31-1.						

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

	MILLIMETERS				
Dimension	Dimension Limits			MAX	
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	W2			4.70	
Optional Center Pad Length	T2			4.70	
Contact Pad Spacing	C1		6.00		
Contact Pad Spacing	C2		6.00		
Contact Pad Width (X28)	X1			0.40	
Contact Pad Length (X28)	Y1			0.85	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A