

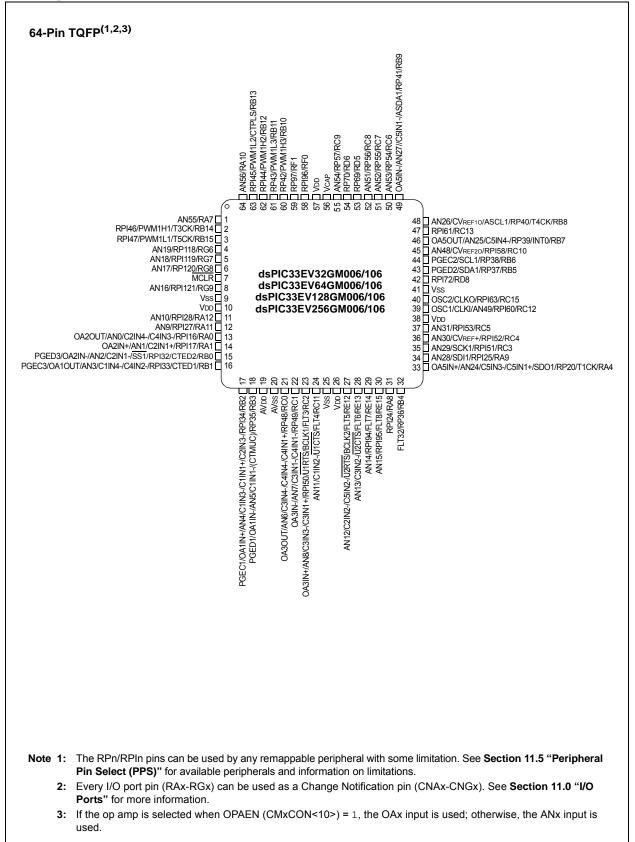
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

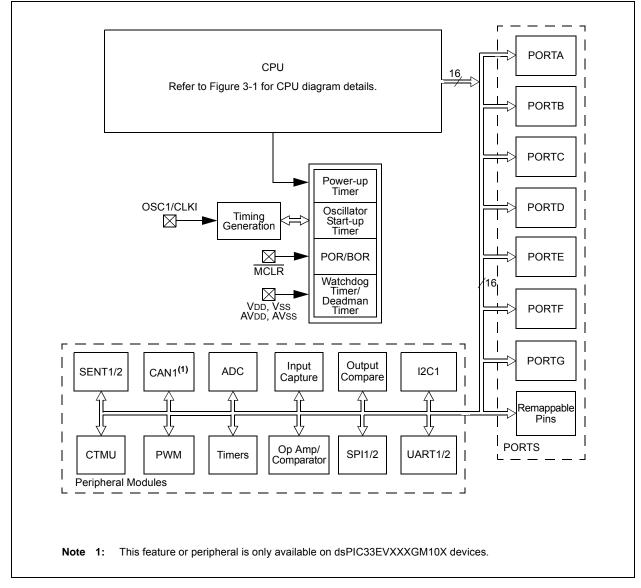
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev64gm004-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

1.0 DEVICE OVERVIEW


- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EVXXXGM00X/10X family Digital Signal Controller (DSC) devices.

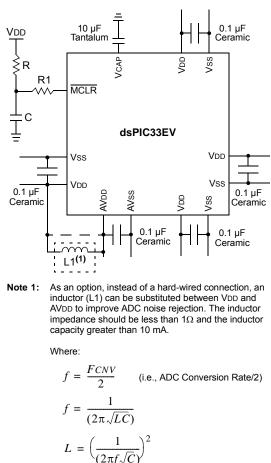

dsPIC33EVXXXGM00X/10X family devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EVXXXGM00X/10X FAMILY BLOCK DIAGRAM

TANK CAPACITORS 2.2.1

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 µF to 47 µF.

2.3 **CPU Logic Filter Capacitor** Connection (VCAP)

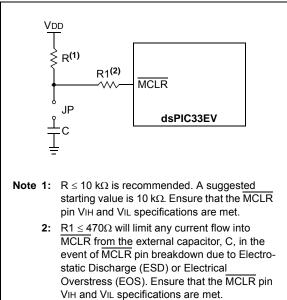
A low-ESR (<1 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the internal voltage regulator output. The VCAP pin must not be connected to VDD, and must have a capacitor greater than 4.7 µF (10 µF is recommended), with at least a 16V rating connected to the ground. The type can be ceramic or tantalum. See Section 30.0 "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP pin. It is recommended that the trace length should not exceed one-quarter inch (6 mm).

2.4 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions:

- · Device Reset
- Device Programming and Debugging


During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-1, it is recommended that the capacitor, C, be isolated from the MCLR pin during programming and debugging operations.

Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

EXAMPLE OF MCLR PIN CONNECTIONS

NOTES:

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "CPU" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for digital signal processing. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

3.1 Registers

The dsPIC33EVXXXGM00X/10X family devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can act as a Data, Address or Address Offset register. The sixteenth Working register (W15) operates as a Software Stack Pointer for interrupts and calls.

In addition, the dsPIC33EVXXXGM00X/10X devices include two alternate Working register sets, which consist of W0 through W14. The alternate registers can be made persistent to help reduce the saving and restoring of register content during Interrupt Service Routines (ISRs). The alternate Working registers can be assigned to a specific Interrupt Priority Level (IPL1 through IPL6) by configuring the CTXTx<2:0> bits in the FALTREG Configuration register.

The alternate Working registers can also be accessed manually by using the CTXTSWP instruction.

The CCTXI<2:0> and MCTXI<2:0> bits in the CTXTSTAT register can be used to identify the current, and most recent, manually selected Working register sets.

3.2 Instruction Set

The device instruction set has two classes of instructions: the MCU class of instructions and the DSP class of instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

3.3 Data Space Addressing

The Base Data Space can be addressed as 4K words or 8 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. On dsPIC33EV devices, certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Space boundary is device-specific.

The upper 32 Kbytes of the Data Space (DS) memory map can optionally be mapped into Program Space (PS) at any 16K program word boundary. The Program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were Data Space. Moreover, the Base Data Space address is used in conjunction with a Data Space Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address. The EDS can be addressed as 8M words or 16 Mbytes. For more information on EDS, PSV and table accesses, refer to "Data Memory" (DS70595) and "dsPIC33E/PIC24E Program Memory" (DS70000613) in the "dsPIC33/ PIC24 Family Reference Manual".

On dsPIC33EV devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU Circular Addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms. Figure 3-1 illustrates the block diagram of the dsPIC33EVXXXGM00X/10X family devices.

3.4 Addressing Modes

The CPU supports these addressing modes:

- Inherent (no operand)
- Relative
- Literal
- Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

REGISTER 5-2: NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—	_	—	—		—
bit 15		· · ·					bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMADF	RU<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit	ł	W = Writable bit		U = Unimplem	ented bit, read	as '0'	

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADRU<23:16>:** NVM Memory Upper Write Address bits Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

REGISTER 5-3: NVMADR: NONVOLATILE MEMORY LOWER ADDRESS REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
		NVMAD	R<15:8>			
						bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
		NVMAD)R<7:0>			
						bit 0
			NVMAD R/W-x R/W-x R/W-x	NVMADR<15:8>	NVMADR<15:8> R/W-x R/W-x R/W-x R/W-x	NVMADR<15:8> R/W-x R/W-x R/W-x R/W-x R/W-x

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 NVMADR<15:0>: NVM Memory Lower Write Address bits

Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	-	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0

REGISTER 8-14: DMAPPS: DMA PING-PONG STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	PPST3	PPST2	PPST1	PPST0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-4	Unimplemented: Read as '0'
bit 3	PPST3: Channel 3 Ping-Pong Mode Status Flag bit
	1 = DMA3STB register is selected0 = DMA3STA register is selected
bit 2	PPST2: Channel 2 Ping-Pong Mode Status Flag bit
	1 = DMA2STB register is selected
	0 = DMA2STA register is selected
bit 1	PPST1: Channel 1 Ping-Pong Mode Status Flag bit
	1 = DMA1STB register is selected
	0 = DMA1STA register is selected
bit 0	PPST0: Channel 0 Ping-Pong mode Status Flag bit
	1 = DMA0STB register is selected
	0 = DMA0STA register is selected

Table 9-1 provides the Configuration bits which allow users to choose between the various clock modes.

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>
Fast RC Oscillator with Divide-by-N (FRCDIVN) ^(1,2)	Internal	xx	111
Fast RC Oscillator with Divide-by-16 (FRCDIV16) ⁽¹⁾	Internal	xx	110
Low-Power RC Oscillator (LPRC) ⁽¹⁾	Internal	xx	101
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011
Primary Oscillator (EC) with PLL (ECPLL) ⁽¹⁾	Primary	00	011
Primary Oscillator (HS)	Primary	10	010
Primary Oscillator (XT)	Primary	01	010
Primary Oscillator (EC) ⁽¹⁾	Primary	00	010
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL) ⁽¹⁾	Internal	xx	001
Fast RC Oscillator (FRC) ⁽¹⁾	Internal	xx	000

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
IC2R7	IC2R6	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0	
oit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
IC1R7	IC1R6	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	
it 7				-			bit 0	
.egend:								
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
	10110101 -							
	• •	 Input tied to RI Input tied to CI 						
	• • 000000001 = 00000000 =	 Input tied to Cl Input tied to Vs 	MP1 SS					
bit 7-0	• • 00000001 = 00000000 = IC1R<7:0>:	 Input tied to Cl Input tied to Vs Assign Input Ca 	MP1 SS apture 1 (IC1)		onding RPn Pir	n bits		
iit 7-0	• • 000000001 = 00000000 = IC1R<7:0>: (see Table 1	 Input tied to Cl Input tied to Vs 	MP1 SS apture 1 (IC1) selection nur		onding RPn Pir	n bits		
iit 7-0	• • 000000001 = 00000000 = IC1R<7:0>: (see Table 1	Input tied to Cl Input tied to Vs Assign Input Ca 1-2 for input pin	MP1 SS apture 1 (IC1) selection nur		onding RPn Pir	n bits		
vit 7-0	• • 000000001 = 00000000 = IC1R<7:0>: (see Table 1	Input tied to Cl Input tied to Vs Assign Input Ca 1-2 for input pin	MP1 SS apture 1 (IC1) selection nur		onding RPn Pir	n bits		

REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

REGISTER 17-8: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER

		DAMA		D/14/ 0		D 44/ 0	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	x<15:8>			
bit 15							bit 8
]
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	\$x<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			

bit 15-0 PDCx<15:0>: PWMx Generator Duty Cycle Value bits

REGISTER 17-9: PHASEx: PWMx PRIMARY PHASE-SHIFT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			PHAS	Ex<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			PHAS	Ex<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimpler	nented bit, rea	ad as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	x = Bit is unknown		

bit 15-0 PHASEx<15:0>: PWMx Phase-Shift Value or Independent Time Base Period for the PWM Generator bits

Note 1: If ITB (PWMCONx<9>) = 0, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output modes (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs.

 If ITB (PWMCONx<9>) = 1, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output modes (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Independent Time Base period value for PWMxH and PWMxL.

REGISTER 17-17: LEBDLYx: PWMx LEADING-EDGE BLANKING DELAY REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—	—	—	LEB<11:8>							
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			LEE	3<7:0>							
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit i				'0' = Bit is clea	x = Bit is unkı	Bit is unknown					

bit 15-12 Unimplemented: Read as '0'

bit 11-0 LEB<11:0>: Leading-Edge Blanking Delay for Current-Limit and Fault Inputs bits

REGISTER				DE REGISTI									
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0						
	—	—	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0						
bit 15							bit 8						
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0						
0-0	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0						
 bit 7	ICODEO	ICODE5	ICODE4	ICODE3	ICODE2	ICODET	bit 0						
							bit 0						
Legend:													
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown						
		(ad. Daad aa (0'										
bit 15-13 bit 12-8	-	ted: Read as ' Filter Hit Num											
UIL 12-0	10000-11111												
	01111 = Filte												
	•												
	•												
	• 00001 = Filter 1												
	00000 = Filte												
bit 7	Unimplemen	ted: Read as '	0'										
bit 6-0	ICODE<6:0>: Interrupt Flag Code bits												
		11111 = Rese											
		IFO almost full											
		eceiver overflo /ake-up interru											
	1000001 = E												
	1000000 = No interrupt												
	•												
	•												
		11111 = Rese											
	0001111 = RB15 buffer interrupt												
	•												
	•												
		B9 buffer inter											
		B8 buffer inter RB7 buffer inter											
		RB6 buffer inte											
	0000101 = T	RB5 buffer inte	errupt										
		RB4 buffer inte											
		RB3 buffer inte RB2 buffer inte											
		RB1 buffer inte											
		RB0 Buffer inte											

REGISTER 22-3: CxVEC: CANx INTERRUPT CODE REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
DMABS2	DMABS1	DMABS0	_	—	_	_	_				
oit 15	·					·	bit 8				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—	FSA5	FSA4	FSA3	FSA2	FSA1	FSA0				
oit 7							bit (
Legend:											
R = Readabl	e bit	W = Writable t	bit	U = Unimplen	nented bit, rea	id as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown					
101 = 24 buffers in RAM 100 = 16 buffers in RAM 011 = 12 buffers in RAM 010 = 8 buffers in RAM 001 = 6 buffers in RAM 000 = 4 buffers in RAM											
bit 12-6 bit 5-0	-	Unimplemented: Read as '0' FSA<5:0>: FIFO Area Starts with Buffer bits									
	11111 = Rec 11110 = Rec •	eive Buffer RB3 eive Buffer RB3 RX Buffer TRB1	31 30								

REGISTER 22-4: CxFCTRL: CANx FIFO CONTROL REGISTER

24.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Analog-to-Digital Converter (ADC)" (DS70621) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Analog-to-Digital (ADC) module in the dsPIC33EVXXXGM00X/10X family devices supports up to 36 analog input channels.

The ADC module can be configured by the user as either a 10-bit, 4 Sample-and-Hold (S&H) ADC (default configuration) or a 12-bit, 1 S&H ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

24.1 Key Features

24.1.1 10-BIT ADC CONFIGURATION

The 10-bit ADC configuration has the following key features:

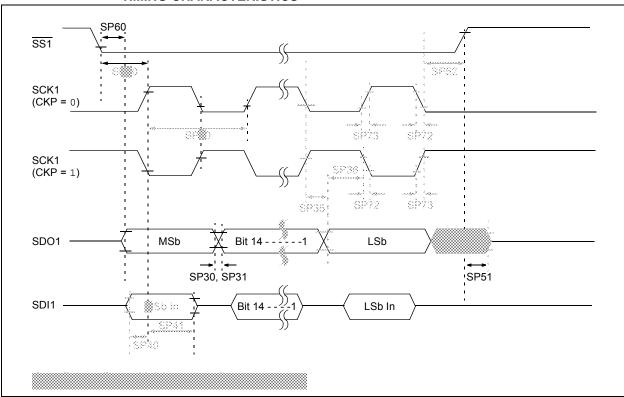
- Successive Approximation (SAR) Conversion
- Conversion Speeds of up to 1.1 Msps
- Up to 36 Analog Input Pins
- Connections to Four Internal Op Amps
- Connections to the Charge Time Measurement Unit (CTMU) and Temperature Measurement Diode
- Simultaneous Sampling of:
 - Up to four analog input pins
 - Four op amp outputs
- Combinations of Analog Inputs and Op Amp Outputs
- Automatic Channel Scan mode
- Selectable Conversion Trigger Source
- Selectable Buffer Fill modes
- Four Result Alignment Options (signed/unsigned, fractional/integer)
- Operation during CPU Sleep and Idle Modes

24.1.2 12-BIT ADC CONFIGURATION

The 12-bit ADC configuration supports all the features listed previously, with the exception of the following:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one S&H amplifier in the 12-bit configuration. Therefore, simultaneous sampling of multiple channels is not supported.

The ADC has up to 36 analog inputs. The analog inputs, AN32 through AN63, are multiplexed, thus providing flexibility in using any of these analog inputs in addition to the analog inputs, AN0 through AN31. Since AN32 through AN63 are multiplexed, do not use two channels simultaneously, since it may result in erroneous output from the module. These analog inputs are shared with op amp inputs and outputs, comparator inputs and external voltage references. When op amp/comparator functionality is enabled, the analog input that shares that pin is no longer available. The actual number of analog input pins and op amps depends on the specific device.


A block diagram of the ADC module with connection options is shown in Figure 24-1. Figure 24-2 shows a block diagram of the ADC conversion clock period.

File Name	Address	Device Memory Size (Kbytes)	23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
FSEC	005780	32																			
	00AB80	64		AIVTDIS				CSS2	0001	CSS0	CWRP	GSS1	GSS0	GWRP		BSEN	BSS1	BSS0	BWRP		
	015780	128	-	AIVIDIS	_	—	_	0332	0331	0330	CWRF	6331	6330	GWRF	_	DOEN	0001	6330	DWKF		
	02AB80	256																			
FBSLIM	005790	32																			
	00AB90	64		_	_	_							BSI IM	1<12:0>							
	015790	128											DOLIN	1412.05							
	02AB90	256																			
Reserved	005794	32																			
	00AB94	64		Reserved ⁽¹⁾	_	_	_		_	-	-	-	-	-	—	_	-	—	-		
	015794	128		1 toool vou																	
	02AB94	256																			
FOSCSEL	005798	32	-																		
(00AB98	64			_	_	_	_		_	_	IESO	_		_	FNOSC2	FNOSC1	FNOSC0			
	015798	128																			
	02AB98	256																			
FOSC	00579C	32				_							FCKSM0 IOL1W					C POSCMD1	POSCMD0		
	00AB9C	64		_	_		—	-	-	_	PLLKEN	FCKSM1		IOL1WAY	_	_	OSCIOFNC				
	01579C	128	-																		
	02AB9C	256													-	-					
FWDT	0057A0	32	-											1 FWDTEN0	WDTPRE						
	00ABA0	64		_	_	—	_	_	_	WDTWIN1	WDTWIN0	WINDIS	FWDTEN1			WDTPS3	WDTPS2	WDTPS1	WDTPS0		
	0157A0	128	-																		
FPOR	02ABA0 0057A4	256 32																			
FPUR	0057A4 00ABA4	32 64	-																		
	00ABA4 0157A4	04 128		—	—	—	—	—	—	—	_	—	-	—	—	—	—	—	BOREN		
	0157A4 02ABA4	256	1																		
FICD	02ABA4	32																			
	0037A8	64	1																		
	00ABA8	128		-	—	—	—	—	—	—	_	Reserved ⁽²⁾	-	—	-	—	-	ICS1	ICS0		
	0137A8		1																		
	UZADAO	200																			

TABLE 27-1: CONFIGURATION WORD REGISTER MAP

Legend: — = unimplemented, read as '1'.

Note 1:This bit is reserved and must be programmed as '0'.2:This bit is reserved and must be programmed as '1'.

FIGURE 30-24: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

AC CH/	ARACTER	RISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	n. Typ. Max.		Units	Conditions		
			Devic	e Suppl	у				
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or VBOR	_	Lesser of: VDD + 0.3 or 5.5	V			
AD02	AVss	Module Vss Supply	Vss – 0.3		Vss + 0.3	V			
			Refere	nce Inpu	its				
AD05	Vrefh	Reference Voltage High	4.5	—	5.5	V	VREFH = AVDD, VREFL = AVSS = 0		
AD06	VREFL	Reference Voltage Low	AVss		AVDD - VBORMIN	V	See Note 1		
AD06a			0		0	V	VREFH = AVDD, VREFL = AVSS = 0		
AD07	Vref	Absolute Reference Voltage	4.5	_	5.5	V	Vref = Vrefh – Vrefl		
AD08	IREF	Current Drain			10 600	μΑ μΑ	ADC off ADC on		
AD09	lad	Operating Current		5 2		mA mA	ADC operating in 10-bit mode (see Note 1) ADC operating in 12-bit mode (see Note 1)		
		•	Anal	og Input					
AD12	VINH	Input Voltage Range Vinн	VINL		Vrefh	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input		
AD13	VINL	Input Voltage Range Vın∟	VREFL	_	AVss + 1V	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), negative input		
AD17	Rin	Recommended Impedance of Analog Voltage Source			200	Ω	Impedance to achieve maximum performance of ADC		

TABLE 30-54: ADC MODULE SPECIFICATIONS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

34.0 PACKAGING INFORMATION

34.1 Package Marking Information

28-Lead SPDIP (.300")

28-Lead SOIC (.300")

28-Lead SSOP

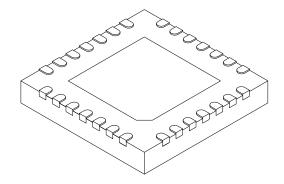
28-Lead QFN-S (6x6x0.9 mm)

Example

Legenc	I: XXX Y YY WW NNN	ustomer-specific information ear code (last digit of calendar year) ear code (last 2 digits of calendar year) eek code (week of January 1 is week '01') phanumeric traceability code					
Note:	be carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.					

Example

Example



Example

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	Limits	MIN	NOM	MAX			
Number of Pins	N		28				
Pitch	е		0.65 BSC				
Overall Height	A	0.80	0.90	1.00			
Standoff	A1	0.00	0.02	0.05			
Terminal Thickness	A3		0.20 REF				
Overall Width	E		6.00 BSC				
Exposed Pad Width	E2	3.65	3.70	4.70			
Overall Length	D		6.00 BSC				
Exposed Pad Length	D2	3.65	3.70	4.70			
Terminal Width	b	0.23	0.30	0.35			
Terminal Length	L	0.30	0.40	0.50			
Terminal-to-Exposed Pad	K	0.20	-	-			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124C Sheet 2 of 2

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support