

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev64gm004t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CPU Control Registers 3.6

REGISTE	R 3-1: SR: CH	PU STATUS I	REGISTER				
R/W-0) R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA ⁽³⁾	SB ⁽³⁾	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0) R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ^{(1,2}	2) IPL1 ^(1,2)	IPL0 ^(1,2)	RA	N	OV	Z	C
bit 7		-					bit 0
l ogond:		C - Clearable	hit				
R = Read	able bit	W = Writable	bit	II = I Inimpler	mented bit read	1 as '0'	
n = Value		'1' = Rit is set	Dit	0' = Bit is cle	ared	v = Bitis unkn	own
		1 - Dit 13 3et			aleu		
bit 15	OA: Accumul	ator A Overflow	v Status bit				
	1 = Accumula	tor A has over	flowed				
	0 = Accumula	tor A has not c	verflowed				
bit 14	OB: Accumula	ator B Overflow	v Status bit				
	1 = Accumula	tor B has over	flowed				
	0 = Accumula	itor B has not c	verflowed	(2)			
bit 13	SA: Accumula	ator A Saturatio	on 'Sticky' Sta	tus bit ⁽³⁾			
	1 = Accumula 0 = Accumula	itor A is saturat itor A is not sat	ed or has bee urated	en saturated at	some time		
bit 12	SB: Accumula	ator B Saturatio	on 'Sticky' Sta	tus bit ⁽³⁾			
	1 = Accumula 0 = Accumula	tor B is saturat tor B is not sat	ed or has bee urated	en saturated at	some time		
bit 11	0AB: 0A 0	B Combined A	ccumulator C	verflow Status	bit		
	1 = Accumula	tor A or B has	overflowed				
	0 = Accumula	itor A and B ha	ve not overflo	owed			
bit 10	SAB: SA SI	3 Combined A	ccumulator 'S	ticky' Status bit			
	1 = Accumula 0 = Accumula	itor A or B is sa itor A and B ha	aturated or ha	s been saturate saturated	ed at some time	9	
bit 9	DA: DO Loop	Active bit					
	1 = DO loop is 0 = DO loop is	in progress not in progres	S				
bit 8	DC: MCU AL	U Half Carry/Bo	orrow bit				
	1 = A carry-o	ut from the 4 th	low-order bit (for byte-sized of	data) or 8 th low-	order bit (for wo	rd-sized data)
	of the res 0 = No carry- data) of t	sult occurred -out from the 4 he result occur	. th low-order l red	oit (for byte-siz	ed data) or 8 th	low-order bit (f	or word-sized
Note 1:	The IPL<2:0> bits Level. The value in	are concatenat parentheses i	ed with the IF ndicates the I	PL3 bit (CORC) PL if IPL3 = 1.	ON<3>) to form User interrupts	the CPU Interrate are disabled w	upt Priority hen IPL3 = 1.
2:	The IPL<2:0> State	us bits are read	d-only when th	ne NSTDIS bit	(INTCON1<15>	•) = 1.	

3: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using the bit operations.

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2)
	<pre>111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)</pre>
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop is in progress 0 = REPEAT loop is not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = Overflow has not occurred for signed arithmetic
bit 1	Z: MCU ALU Zero bit
	 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	 1 = A carry-out from the Most Significant bit (MSb) of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1.	The IPI <2:0> hits are concatenated with the IPI 3 hit (CORCON<3>) to form the CPI I Interrupt Priority

- **Note 1:** The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL3 = 1. User interrupts are disabled when IPL3 = 1.
 - 2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
 - **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using the bit operations.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/ 10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Flash Programming" (DS70609) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EVXXXGM00X/10X family devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

The Flash memory can be programmed in the following three ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows for a dsPIC33EVXXXGM00X/10X family device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (PGECx/PGEDx) lines, and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed

devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

Enhanced ICSP uses an on-board bootloader, known as the Program Executive (PE), to manage the programming process. Using an SPI data frame format, the Program Executive can erase, program and verify program memory. For more information on Enhanced ICSP, refer to the specific device programming specification.

RTSP is accomplished using the TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data as a double program memory word, a row of 64 instructions (192 bytes) and erase program memory in blocks of 512 instruction words (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

The Flash memory read and the double-word programming operations make use of the TBLRD and TBLWT instructions, respectively. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of the program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of the program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

© 2013-2016 Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			U1RX	R<7:0>			
bit 7							bit 0
Legend:							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
----------	----------------------------

bit 7-0 U1RXR<7:0>: Assign UART1 Receive (U1RX) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 • • • • • • • • •

```
00000000 = Input tied to Vss
```

REGISTER 11-9: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—		—	—	—	—	—	—	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			U2RX	R<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-8	Unimpleme	nted: Read as '	0'					

•
U2RXR<7:0>: Assign UART2 Receive (U2RX) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
10110101 = Input tied to RPI181
•
•
•
00000001 = Input tied to CMP1 00000000 = Input tied to Vss

REGISTER 14-7: DMTPSCNTL: DMT POST CONFIGURE COUNT STATUS REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSCN	IT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSCI	NT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-0 **PSCNT<15:0>:** Lower DMT Instruction Count Value Configuration Status bits This is always the value of the FDMTCNTL Configuration register.

REGISTER 14-8: DMTPSCNTH: DMT POST CONFIGURE COUNT STATUS REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSCN	T<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSCN [®]	T<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bi		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
L							

bit 15-0 **PSCNT<31:16>:** Higher DMT Instruction Count Value Configuration Status bits This is always the value of the FDMTCNTH Configuration register.

REGISTER 16-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits 11111 = OCxRS compare event is used for synchronization 11110 = INT2 is the source for compare timer synchronization 11101 = INT1 is the source for compare timer synchronization 11100 = CTMU Trigger is the source for compare timer synchronization 11011 = ADC1 interrupt is the source for compare timer synchronization 11010 = Analog Comparator 3 is the source for compare timer synchronization 11001 = Analog Comparator 2 is the source for compare timer synchronization 11000 = Analog Comparator 1 is the source for compare timer synchronization 10111 = Analog Comparator 5 is the source for compare timer synchronization 10110 = Analog Comparator 4 is the source for compare timer synchronization 10101 = Capture timer is unsynchronized 10100 = Capture timer is unsynchronized 10011 = Input Capture 4 interrupt is the source for compare timer synchronization 10010 = Input Capture 3 interrupt is the source for compare timer synchronization 10001 = Input Capture 2 interrupt is the source for compare timer synchronization 10000 = Input Capture 1 interrupt is the source for compare timer synchronization 01111 = GP Timer5 is the source for compare timer synchronization 01110 = GP Timer4 is the source for compare timer synchronization 01101 = GP Timer3 is the source for compare timer synchronization 01100 = GP Timer2 is the source for compare timer synchronization 01011 = GP Timer1 is the source for compare timer synchronization 01010 = Compare timer is unsynchronized 01001 = Compare timer is unsynchronized 01000 = Capture timer is unsynchronized 00101 = Compare timer is unsynchronized 00100 = Output Compare 4 is the source for compare timer synchronization^(1,2) 00011 = Output Compare 3 is the source for compare timer synchronization^(1,2) 00010 = Output Compare 2 is the source for compare timer synchronization^(1,2) 00001 = Output Compare 1 is the source for compare timer synchronization^(1,2)
 - 00000 = Compare timer is unsynchronized
- **Note 1:** Do not use the OCx module as its own synchronization or trigger source.
 - 2: When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.

REGISTER 20-3:	SENTXDATL: SENTX RECEIVE DATA REGISTER LOW ⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	DATA4	<3:0>			/-0 R/W-0 R/W-0 R/ DATA5<3:0>			
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

10100	10000	10000	10000	10000	1010 0	1000 0	10000
	DATA6	<3:0>			CRC	<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	DATA4<3:0>: Data Nibble 4 Data bits
bit 11-8	DATA5<3:0>: Data Nibble 5 Data bits
bit 7-4	DATA6<3:0>: Data Nibble 6 Data bits
bit 3-0	CRC<3:0>: CRC Nibble Data bits

Note 1: Register bits are read-only in Receive mode (RCVEN = 1). In Transmit mode, the CRC<3:0> bits are read-only when automatic CRC calculation is enabled (RCVEN = 0, CRCEN = 1).

REGISTER 20-4:	SENTXDATH: SENTX RECEIVE DATA REGISTER HIGH ⁽¹⁾

N-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
DATA1<3:0>		STAT<3:0>						
bit				bit 15				
N-0 R/W-0 R/W-0 R/W-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
DATA3<3:0>		2<3:0>	DATA2					
bit				bit 7				
				Legend:				
/ritable bit U = Unimplemented bit, read as '0'	bit	W = Writable	bit	R = Readable				
it is set '0' = Bit is cleared x = Bit is unknown	-n = Value at POR (1' = Bit is set							
/ritable bit U = Unimplemented bit, read as '0' it is set '0' = Bit is cleared x = Bit is unknown	bit	W = Writable '1' = Bit is set	bit POR	Legend: R = Readable -n = Value at P				

bit 15-12 STAT<3:0>: Status Nibble Data bits

bit 11-8 **DATA1<3:0>:** Data Nibble 1 Data bits

bit 7-4 DATA2<3:0>: Data Nibble 2 Data bits

bit 3-0 DATA3<3:0>: Data Nibble 3 Data bits

Note 1: Register bits are read-only in Receive mode (RCVEN = 1). In Transmit mode, the CRC<3:0> bits are read-only when automatic CRC calculation is enabled (RCVEN = 0, CRCEN = 1).

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
_	—	—	—	—	—	—	ADDMAEN		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
—	—	—	—	—	DMABL2	DMABL1	DMABL0		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable b	bit	U = Unimple	mented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown		
bit 15-9	Unimplemen	ted: Read as '0)'						
bit 8	ADDMAEN: A	ADCx DMA Ena	able bit						
	1 = Conversio	on results are st	ored in the AD	DC1BUF0 regis	ster for transfer	to RAM using	DMA		
	0 = Conversio	n results are sto	red in the ADC	1BUF0 throug	h ADC1BUFF re	gisters; DMA v	vill not be used		
bit 7-3	Unimplemen	ted: Read as '0)'						
bit 2-0	DMABL<2:0>	Selects Numb	per of DMA Bu	Iffer Locations	per Analog Inp	ut bits			
	111 = Allocat	es 128 words o	f buffer to eac	h analog input	:				
	110 = Allocat	es 64 words of	buffer to each	analog input					
	101 = Allocat	es 32 words of	buffer to each	analog input					
	100 = Allocat	es 16 words of	buffer to each	analog input					
		es & words of b	uffer to each a	analog input					
	010 = Allocates 4 words of buffer to each analog input								

REGISTER 24-4: ADxCON4: ADCx CONTROL REGISTER 4

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

REGISTER 25-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT CONTROL REGISTER (CONTINUED)

bit 3-0 SELSRCA<3:0>: Mask A Input Select bits

1111 = FLT4 1110 = FLT2

1101 = Reserved

1100 = Reserved

1011 = Reserved

- 1010 = Reserved
- 1001 = Reserved
- 1000 = Reserved

0111 = Reserved

0110 = Reserved

0101 = PWM3H

0100 = PWM3L

0011 = PWM2H

- 0010 = PWM2L
- 0001 = PWM1H 0000 = PWM1L

File Name	Address	Device Memory Size (Kbytes)	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0																						
FSEC	005780	32																																							
	00AB80	64						0000	0001	0990		0991	0220			DOEN	DCC1	Reco																							
	015780	128	_	AIVIDIS	_	_	_	0352	6351	0350	CWRP	6551	G330	GWRP	_	BSEN	8991	B330	BVIRP																						
	02AB80	256																																							
FBSLIM	005790	32																																							
	00AB90	64											DOLIN	1-10:05																											
	015790	128	_	_	_	_							BSLIN	1<12:0>																											
	02AB90	256																																							
Reserved	005794	32																																							
	00AB94	64		D																																					
	015794	128	-	Reserved	Reserved	Keserved''	Keserved'"	Keserved'''	" —	-	-	_	_		—	—	—		—	_	_	—	—																		
	02AB94	256																																							
FOSCSEL	005798	32																																							
	00AB98	64										1500					FNOODO	FNOOOL	ENOSC0																						
	015798	128	-	_	_	_	_	_	_	_	—	IESO	—	_	—	_	FNOSC2	FNOSCI	FNOSCU																						
	02AB98	256																																							
FOSC	00579C	32																																							
	00AB9C	64																									FOWONA					00010510	DOGONIDA	DODONIDO							
	01579C	128	-	_	—	-	-		_		– PLLKEN	FCKSM1 FCKSM0	FCKSIMU	IOL1WAY —	_	- OSCIOFNC	POSCMD1	POSCMD0																							
	02AB9C	256	1																																						
FWDT	0057A0	32																																							
	00ABA0	64													WOTODE		MOTOOO		WDTD00																						
	0157A0	128	-	_	_	_	_	_	_	WD1WIN1	WDTWINU	WINDIS	FWDIEN1	FWDIENU	WDIPRE	WDTPS3	WDTPS2	WD1PS1	WD1PS0																						
	02ABA0	256																																							
FPOR	0057A4	32																																							
	00ABA4	64	1																DODEN																						
	0157A4	128	-	_	_	-	_	_	_	—	—	—	_	—	—	_	_	_	BOREN																						
	02ABA4	256																																							
FICD	0057A8	32																																							
	00ABA8	64	1									Reserved ⁽²⁾ –	2)			105.	1055																								
	0157A8	128	-	-	—	—	-	—	—	—	—			_	—	-	-	ICS1	ICS0																						
	02ABA8	256	1																																						

TABLE 27-1: CONFIGURATION WORD REGISTER MAP

Legend: — = unimplemented, read as '1'.

Note 1:This bit is reserved and must be programmed as '0'.2:This bit is reserved and must be programmed as '1'.

TABLE 28-2:	INSTRUCTION SET OVERVIEW

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA, SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA, SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f.WREG	WREG = Arithmetic Right Shift f	1	1	C.N.OV.Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C.N.OV.Z
		ASR	Wb.Wns.Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N.Z
		ASR	Wb, #lit5.Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N.Z
5	BCLR	BCLR	f.#bit4	Bit Clear f	1	1	None
Ũ	DODIC	BCLR	Ws.#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C.Expr	Branch if Carry	1	1 (4)	None
Ŭ	Didi	BRA	GE Expr	Branch if greater than or equal	1	1 (4)	None
		BRA	GEIL EXDr	Branch if unsigned greater than or equal	1	1 (4)	None
		BRA	GT Expr	Branch if greater than	1	1 (4)	None
		BRA	GTIL EXDr	Branch if unsigned greater than	1	1 (4)	None
		BRA	LE Expr	Branch if less than or equal	1	1 (4)	None
		BRA	LEIL EXDr	Branch if unsigned less than or equal	1	1 (4)	None
		BRA	LT Expr	Branch if less than	1	1 (4)	None
		BRA	LTIL Expr	Branch if unsigned less than	1	1 (4)	None
		BRA	N Evor	Branch if Negative	1	1 (4)	None
		BRA	NC Expr	Branch if Not Carry	1	1 (4)	None
		BRA	NN Evor	Branch if Not Negative	1	1 (4)	None
		BRA	NOV Expr	Branch if Not Overflow	1	1 (4)	None
		BRA	NZ Evor	Branch if Not Zero	1	1 (4)	None
		DDA		Branch if Accumulator A overflow	1	1 (4)	None
		DDA	OR Emm	Branch if Accumulator R overflow	1	1 (4)	None
		DRA	OB, EXPI	Branch if Accumulator B overnow	1	1 (4)	None
		BRA	OV, Expr	Branch if Accumulator A coturated	1	1 (4)	None
		BRA	SA, Expr	Branch II Accumulator A saturated	1	1 (4)	None
		BRA	SB, EXPr	Dranch II Accumulator & Saturated	1	1 (4)	None
		BRA	Expr		1	4	None
		BRA	4,Expr		1	1 (4)	None
-		BRA	wn		1	4	None
<i>'</i>	BSET	BSET	r,#blt4		1	1	None
		BSET	Ws,#bit4	BIT Set WS	1	1	None

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

29.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

29.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

FIGURE 30-15: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING

Note: Refer to Figure 30-1 for load conditions.

SP40 SP41

TABLE 30-33: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING REQUIREMENTS

АС СНА	RACTERIST	ICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions		
SP10	FscP	Maximum SCK2 Frequency	—	—	9	MHz	-40°C to +125°C and see Note 3		
SP20	TscF	SCK2 Output Fall Time	_			ns	See Parameter DO32 and Note 4		
SP21	TscR	SCK2 Output Rise Time	—	_	—	ns	See Parameter DO31 and Note 4		
SP30	TdoF	SDO2 Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4		
SP31	TdoR	SDO2 Data Output Rise Time	—	-	—	ns	See Parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns			
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	_	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—		ns			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

- 3: The minimum clock period for SCK2 is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI2 pins.

FIGURE 30-18: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

32.8 Pull-up and Pull-Down Current

FIGURE 32-29: TYPICAL VIH/VIL vs. TEMPERATURE (GENERAL PURPOSE I/Os)

32.10 Voltage Output Low (VOL) – Voltage Output High (VOH)

32.14 Comparator Op Amp Offset

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E		0.65 BSC		
Contact Pad Spacing	С		7.20		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	28		
Pitch	е	0.65 BSC		
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.20 REF		
Overall Width	E	6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.70
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.70
Terminal Width	b	0.23	0.30	0.35
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124C Sheet 2 of 2