

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 36x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev64gm006t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

bit 3	IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾
	1 = CPU Interrupt Priority Level is greater than 7
	0 = CPU Interrupt Priority Level is 7 or less
bit 2	SFA: Stack Frame Active Status bit
	1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and DSWPAG values
	0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space
bit 1	RND: Rounding Mode Select bit
	1 = Biased (conventional) rounding is enabled
	0 = Unbiased (convergent) rounding is enabled
bit 0	IF: Integer or Fractional Multiplier Mode Select bit
	1 = Integer mode is enabled for DSP multiply
	0 = Fractional mode is enabled for DSP multiply

Note 1: This bit is always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—	—	
bit 15	•						bit 8	
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	
			NVMKE	Y<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY<7:0>: NVM Key Register bits (write-only)

REGISTER 8-7: DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAI)<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, rea				mented bit, rea	d as '0'		
-n = Value at P	POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-0 PAD<15:0>: DMA Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-8: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—		CNT<13:8> ⁽²⁾							
bit 15							bit 8			

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CNT<7:0> ⁽²⁾										
bit 7							bit 0			

Legend:				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-0 CNT<13:0>: DMA Transfer Count Register bits⁽²⁾

- **Note 1:** If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.
 - **2:** The number of DMA transfers = CNT<13:0> + 1.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	—	—	—	—	—	
bit 15							bit	
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
_	—	—	—	PWCOL3	PWCOL2	PWCOL1	PWCOL0	
bit 7							bit	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-4	Unimplemen	ted: Read as '	0'					
bit 3		annel 3 Periph		Ilision Flag bit				
	$\perp = vvrite col$	ision is detecte	a					

REGISTER 8-11: DMAPWC: DMA PERIPHERAL WRITE COLLISION STATUS REGISTER

1 = Write collision is detected
0 = Write collision is not detected

0 = Write collision is not detected

1 = Write collision is detected0 = Write collision is not detected

PWCOL2: Channel 2 Peripheral Write Collision Flag bit

PWCOL1: Channel 1 Peripheral Write Collision Flag bit

bit 0 PWCOL0: Channel 0 Peripheral Write Collision Flag bit

- 1 = Write collision is detected
 - 0 = Write collision is not detected

bit 2

bit 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN		_
bit 15		L					bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL
bit 7							bit (
Legend:							
R = Readable b	nit	W = Writable	hit	II = I Inimpler	mented bit, read	as '0'	
-n = Value at P		'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown
						X Bitle dill	
bit 15	PHR: PWMxH	Rising Edge	Trigger Enabl	e bit			
					Blanking count	ter	
	0 = Leading-E	Edge Blanking	gnores the ri	sing edge of PV	VMxH		
bit 14		I Falling Edge					
	0	0	00	e Leading-Edge alling edge of P ¹	e Blanking coun	ter	
bit 13	-	Rising Edge T	-				
DIL 15		• •			Blanking count	er	
				sing edge of PV			
bit 12	PLF: PWMxL	Falling Edge 1	rigger Enable	e bit			
					Blanking count	ter	
	•	• •	•	alling edge of P			
bit 11				anking Enable I			
				he selected Fa to the selected			
bit 10	•	• •		Edge Blanking E	•		
			-	he selected cur			
	0 = Leading-E	Edge Blanking	s not applied	to the selected	l current-limit in	put	
bit 9-6	-	ted: Read as '					
bit 5				al High Enable			
				Fault input sigr ng signal is hig	nals) when seled	cted blanking s	signal is high
bit 4		•		al Low Enable b			
		•	•••		nals) when seled	cted blanking s	signal is low
				ng signal is low		0	5
bit 3		ing in PWMxH	-				
					nals) when the F	PWMxH output	is high
h:# 0		ng when the P	-	-			
bit 2		ng in PWMxH			nals) when the F		ic low
		ng when the P				www.kirioutput	. 15 10 W
bit 1		ng in PWMxL I					
		-	-		nals) when the F	PWMxL output	is hiah
	0 = No blankii	ng when the P	WMxL output	is high			
bit 0	BPLL: Blanki	ng when the P ng in PWMxL L	ow Enable b	it			-
bit 0	BPLL: Blankii 1 = State blan	ng when the P ng in PWMxL L	ow Enable b t-limit and/or	it Fault input sigr	nals) when the F	PWMxL output	-

Note 1: The blanking signal is selected through the BLANKSEL<3:0> bits in the AUXCONx register.

18.2 SPI Control Registers

REGISTER 18-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
SPIEN	_	SPISIDL		_	SPIBEC2	SPIBEC1	SPIBEC0			
bit 15							bit 8			
R/W-0	R/C-0, HS	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HS, HC	R-0, HS, HC			
SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF			
bit 7							bit C			
Legend:		HC = Hardware	e Clearable bit		are Settable b					
R = Readable		W = Writable b	pit	U = Unimple	mented bit, re	ead as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	C = Clearable	e bit			
bit 15	SPIEN: SPIX	Enable bit								
bit 10		he SPIx module	and configure	s SCKx SDO	c SDIx and \overline{S}	<u>Sx</u> as serial po	rt pins			
		the SPIx module	•				it pino			
bit 14	Unimplemen	ted: Read as '0	,							
bit 13	SPISIDL: SP	Ix Stop in Idle M	ode bit							
		ues the SPIx mo s the SPIx modu			vice enters Idl	e mode				
bit 12-11		ted: Read as '0	-							
bit 10-8	SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode)									
	Master mode			,						
	Slave mode:	Plx transfers are								
bit 7	SRMPT: SPIX	Shift Register	(SPIxSR) Empt	ty bit (valid in E	Enhanced But	fer mode)				
	1 = The SPIx	Shift register is Shift register is	empty and rea	•		-				
bit 6		x Receive Over								
	1 = A new b previous	yte/word is com data in the SPI	pletely receive BUF register	ed and discard	led; the user	application ha	s not read the			
L:4 F		has not occurre		lid in Enhance		-)				
bit 5	SRXMPT: SPIx Receive FIFO Empty bit (valid in Enhanced Buffer mode) 1 = RX FIFO is empty									
	1 = RX FIFO 0 = RX FIFO									
bit 4-2		SPIx Buffer Inte	errupt Mode bit	s (valid in Enh	anced Buffer	mode)				
		pt when the SP	-			/				
	110 = Interrupt when the last bit is shifted into SPIxSR, and as a result, the TX FIFO is empty									
	100 = Interru	pt when the las pt when one da								
		ry location pt when the SP	ly receive buffe	er is full (SPIRI	RF hit is set)					
		pt when the SP								
	001 = Interru	pt when data is	available in the	e SPIx receive	buffer (SRM					
	000 = Interru									

21.1 UART Helpful Tips

- In multi-node direct connect UART networks, UART receive inputs react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the Idle state, the default of which is logic high (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a Start bit detection and will cause the first byte received, after the device has been initialized, to be invalid. To avoid this situation, the user should use a pullup or pull-down resistor on the RX pin, depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.

2. The first character received on wake-up from Sleep mode, caused by activity on the UxRX pin of the UART module, will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock, relative to the incoming UxRX bit timing, is no longer synchronized, resulting in the first character being invalid. This is to be expected.

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
_	WAKFIL	_	_	_	SEG2PH2	SEG2PH1	SEG2PH0
bit 15						•	bit 8
	5444		5 444			—	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemer	nted: Read as '	o'				
bit 14	WAKFIL: Sel	lect CAN Bus Li	ine Filter for V	Vake-up bit			
		N bus line filter line filter is not					
bit 13-11		ine litter is not ited: Read as '		e-up			
bit 10-8	•	D>: Phase Segn					
DIL 10-0	111 = Length	-					
	•						
	•						
	• 000 = Length	is 1 x To					
bit 7	•	Phase Segmer	nt 2 Time Sele	ect bit			
	1 = Freely pr	-			essing Time (IP	T), whichever i	s greater
bit 6	SAM: Sample	e of the CAN Bu	us Line bit				
		s sampled three s sampled once					
bit 5-3)>: Phase Segr	-				
	111 = Length	-					
	•						
	•						
	000 = Length	n is 1 x Tq					
bit 2-0	PRSEG<2:0	- Propagation	Time Segmen	t bits			
	111 = Length	n is 8 x Tq					
	•						
	•						

REGISTER 22-10: CxCFG2: CANx BAUD RATE CONFIGURATION REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F15MSK1	F15MSK0	F14MSK1	F14MSK0	F13MSK'	F13MSK0	F12MSK1	F12MSK0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F11MSK1	F11MSK0	F10MSK1	F10MSK0	F9MSK1	F9MSK0	F8MSK1	F8MSK0	
bit 7							bit C	
Legend:								
R = Readable	bit	W = Writable bit		U = Unimpler	mented bit, read	l as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-14	5-14 F15MSK<1:0>: Mask Source for Filter 15 bit 11 = Reserved 10 = Acceptance Mask 2 registers contain the mask 01 = Acceptance Mask 1 registers contain the mask 00 = Acceptance Mask 0 registers contain the mask							
bit 13-12				,	es as bits 15-14	,		
bit 11-10								
bit 9-8	F12MSK<1:0>: Mask Source for Filter 12 bit (same values as bits 15-14)							
bit 7-6	F11MSK<1:0>: Mask Source for Filter 11 bit (same values as bits 15-14)							
bit 5-4	F10MSK<1:0	>: Mask Sourc	e for Filter 10	bit (same valu	es as bits 15-14	+)		
bit 3-2	F9MSK<1:0>: Mask Source for Filter 9 bit (same values as bits 15-14)							

REGISTER 22-19: CxFMSKSEL2: CANx FILTERS 15-8 MASK SELECTION REGISTER 2

bit 1-0 **F8MSK<1:0>:** Mask Source for Filter 8 bit (same values as bits 15-14)

REGISTER 24-1: ADxCON1: ADCx CONTROL REGISTER 1 (CONTINUED)

bit 7-5	SSRC<2:0>: Sample Clock Source Select bits
	If SSRCG = 1:
	111 = Reserved 110 = Reserved
	101 = Reserved
	100 = Reserved
	011 = Reserved
	010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion
	001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion
	000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion
	If SSRCG = 0:
	111 = Internal counter ends sampling and starts conversion (auto-convert)
	110 = CTMU ends sampling and starts conversion
	101 = Reserved
	100 = Timer5 compare ends sampling and starts conversion
	011 = PWM primary Special Event Trigger ends sampling and starts conversion 010 = Timer3 compare ends sampling and starts conversion
	001 = Active transition on the INTO pin ends sampling and starts conversion
	000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)
bit 4	SSRCG: Sample Trigger Source Group bit
511 4	See SSRC<2:0> for details.
1.1.0	
bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)
	In 12-Bit Mode (AD12B = 1), SIMSAM is Unimplemented and is Read as '0': 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x) or samples CH0 and CH1
	simultaneously (when CHPS<1:0> = 01)
	0 = Samples multiple channels individually in sequence
bit 2	ASAM: ADCx Sample Auto-Start bit
	1 = Sampling begins immediately after last conversion; SAMP bit is auto-set
	0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADCx Sample Enable bit
	1 = ADCx Sample-and-Hold amplifiers are sampling
	0 = ADCx Sample-and-Hold amplifiers are holding
	If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If
	SSRC<2:0> = 000, software can write '0' to end sampling and start conversion. If SSRC<2:0> \neq 000,
	automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADCx Conversion Status bit ⁽¹⁾
	1 = ADCx conversion cycle is completed.
	0 = ADCx conversion has not started or is in progress
	Automatically set by hardware when conversion is complete. Software can write '0' to clear DONE bit
	status (software not allowed to write '1'). Clearing this bit does NOT affect any operation in progress.
	Automatically cleared by hardware at the start of a new conversion.

Note 1: Do not clear the DONE bit in software if auto-sample is enabled (ASAM = 1).

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 30-34: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000, SSRCG = 0)

TABLE 31-13: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS		Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
HOS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	_	8.0	MHz	ECPLL, XTPLL modes
HOS51	Fsys	On-Chip VCO System Frequency	120	—	340	MHz	
HOS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	ms	
HOS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%	

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

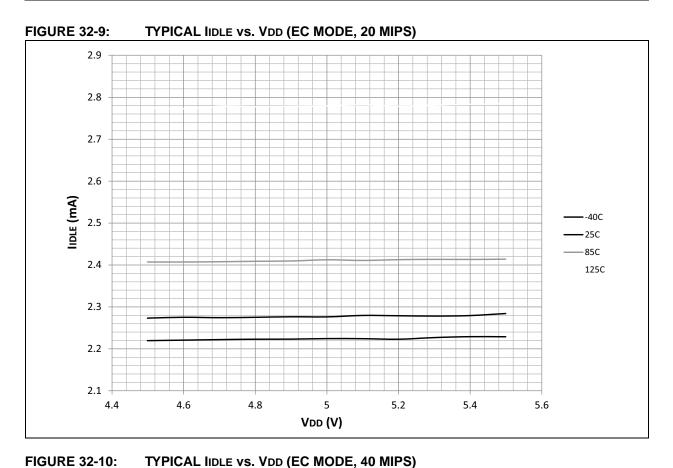
2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases or communication clocks used by the application, use the following formula:

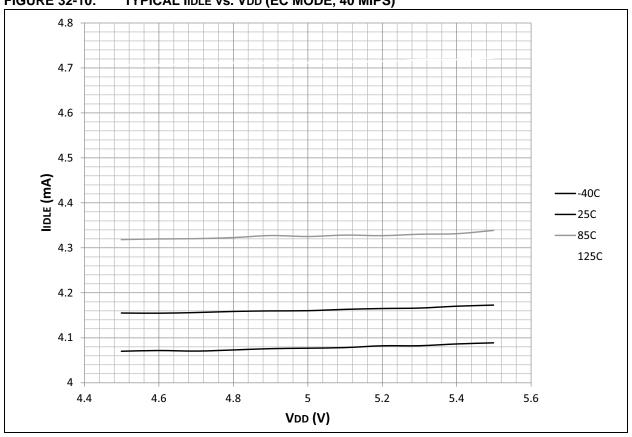
$$Effective Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{\sqrt{Time Base or Communication Clock}}}}$$

For example, if Fosc = 120 MHz and the SPI bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 31-14: INTERNAL FRC ACCURACY


AC CHA	Standard Operating Conditions: 4.5V to 5.5V (unless otherwise Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$							
Param No.	Characteristic	Min	Тур	Max	Units	Conditions		
Internal FRC Accuracy @ FRC Frequency = 7.3728 MHz								
HF20C	FRC	-3	1	+3	%	$-40^{\circ}C \leq TA \leq +150^{\circ}C VDD = 4.5V \text{ to } 5.5V$		


TABLE 31-15: INTERNAL LPRC ACCURACY

AC CHARACTERISTICSStandard Operating Conditions: 4.5V to 5.5V (unless otherwise state Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$						otherwise stated)	
Param No.	Characteristic	Min	Тур	Max	Units	Conditions	
LPRC @ 32.768 kHz ^(1,2)							
HF21C	LPRC	-30	10	+30	%	$-40^{\circ}C \leq TA \leq +150^{\circ}C$	VDD = 4.5V to 5.5V

Note 1: Change of LPRC frequency as VDD changes.

2: LPRC accuracy impacts the Watchdog Timer Time-out Period (TWDT1). See Section 27.5 "Watchdog Timer (WDT)" for more information.

© 2013-2016 Microchip Technology Inc.

dsPIC33EVXXXGM00X/10X FAMILY

32.3 IDOZE

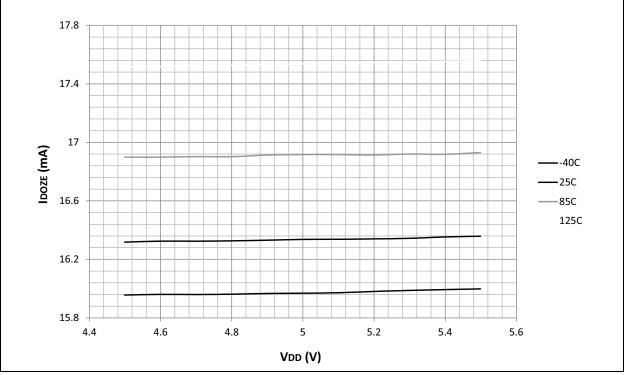
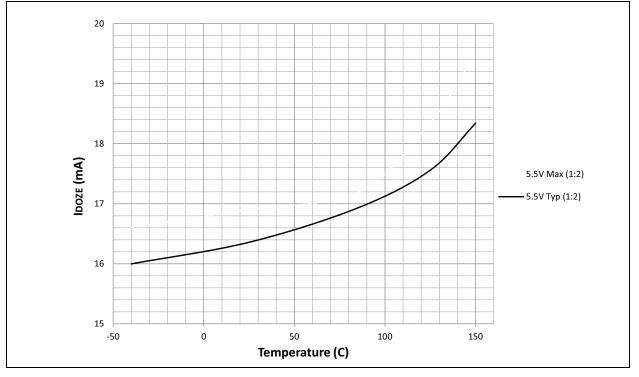
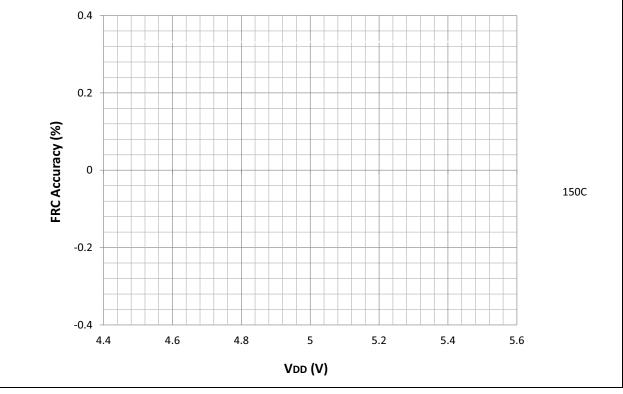



FIGURE 32-13: TYPICAL IDOZE vs. VDD (DOZE 1:2, 70 MIPS)

FIGURE 32-14: TYPICAL/MAXIMUM IDOZE vs. TEMPERATURE (DOZE 1:2, 70 MIPS)



dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 33-15: **TYPICAL/MAXIMUM** ∆IwDT vs. **TEMPERATURE** 12 10 8 IPD (NA) 6 5.5V Max - 5.5V Typ 4 2 0 -50 0 50 100 150 **Temperature (C)**

33.5 FRC

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

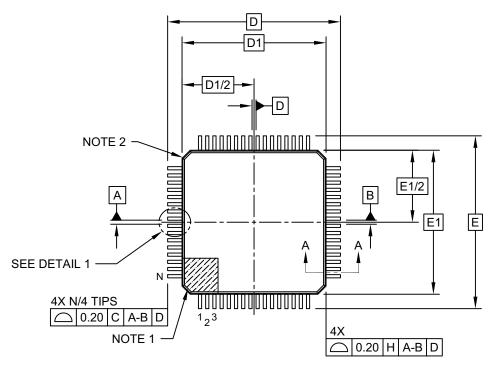
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	MILLIMETERS		
Dimension	Dimension Limits		NOM	MAX
Number of Leads	Ν		44	
Lead Pitch	е		0.80 BSC	
Overall Height	Α	-	-	1.20
Standoff	A1	0.05	-	0.15
Molded Package Thickness	A2	0.95	1.00	1.05
Overall Width	Е	12.00 BSC		
Molded Package Width	E1	10.00 BSC		
Overall Length	D	12.00 BSC		
Molded Package Length	D1		10.00 BSC	
Lead Width	b	0.30	0.37	0.45
Lead Thickness	С	0.09	-	0.20
Lead Length	L	0.45 0.60 0.75		0.75
Footprint	L1	1.00 REF		
Foot Angle	θ	0°	3.5°	7°

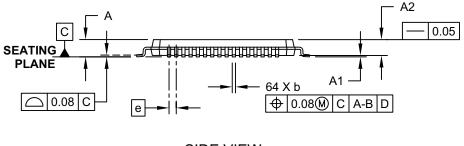
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.


3. Dimensioning and tolerancing per ASME Y14.5M

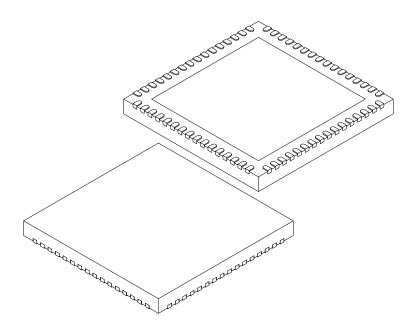
BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.


Microchip Technology Drawing C04-076C Sheet 2 of 2

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW



SIDE VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2

64-Lead Very Thin Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [VQFN] With 7.15 x 7.15 Exposed Pad [Also called QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			S	
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		64		
Pitch	е		0.50 BSC		
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3		0.20 REF		
Overall Width	E		9.00 BSC		
Exposed Pad Width	E2	7.05	7.15	7.25	
Overall Length	D		9.00 BSC		
Exposed Pad Length	D2	7.05	7.15	7.25	
Contact Width	b	0.18	0.25	0.30	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149D [MR] Sheet 2 of 2

CxFMSKSEL1 (CANx Filters 7-0 Mask
Selection 1)269
CxFMSKSEL2 (CANx Filters 15-8 Mask
Selection 2)
CxINTE (CANx Interrupt Enable)
CxINTF (CANx Interrupt Flag)
CxRXFnEID (CANx Acceptance Filter n
Extended Identifier)
CxRXFnSID (CANx Acceptance Filter n Standard Identifier)
CxRXFUL1 (CANx Receive Buffer Full 1)272
CxRXFUL2 (CANx Receive Buffer Full 2)
CxRXMnEID (CANx Acceptance Filter Mask n
Extended Identifier)
CxRXMnSID (CANx Acceptance Filter Mask n
Standard Identifier)
CxRXOVF1 (CANx Receive Buffer
Overflow 1)
CxRXOVF2 (CANx Receive Buffer
Overflow 2)
CxTRmnCON (CANx TX/RX Buffer mn Control) 274
CxVEC (CANx Interrupt Code)257
DEVID (Device ID)
DEVREV (Device Revision)
DMALCA (DMA Last Channel Active Status) 120
DMAPPS (DMA Ping-Pong Status) 121
DMAPWC (DMA Peripheral Write
Collision Status)
DMARQC (DMA Request Collision Status) 119
DMAxCNT (DMA Channel x Transfer Count)
DMAxCON (DMA Channel x Control)
DMAxPAD (DMA Channel x Peripheral Address)
DMAxREQ (DMA Channel x IRQ Select)
DMAXELQ (DMA Channel x RQ Select)
Start Address A, High) 114
DMAxSTAL (DMA Channel x
Start Address A, Low)
DMAxSTBH (DMA Channel x
Start Address B, High)
DMAxSTBL (DMA Channel x
Start Address B, Low) 115
DMTCLR (Deadman Timer Clear) 183
DMTCNTH (Deadman Timer Count High)185
DMTCNTL (Deadman Timer Count Low) 185
DMTCON (Deadman Timer Control) 182
DMTHOLDREG (DMT Hold)188
DMTPRECLR (Deadman Timer Preclear)
DMTPSCNTH (DMT Post Configure Count
Status High)
DMTPSCNTL (DMT Post Configure Count
Status Low)
Status High)
DMTPSINTVL (DMT Post Configure Interval
Status Low)
DMTSTAT (Deadman Timer Status)
DSADRH (DMA Most Recent RAM
High Address)
DSADRL (DMA Most Recent RAM
Low Address)
DTRx (PWMx Dead-Time)
FCLCONx (PWMx Fault Current-Limit Control) 215
I2CxCON1 (I2Cx Control 1)231
I2CxCON2 (I2Cx Control 2)
, , , , , , , , , , , , , , , , , , ,

I2CxMSK (I2Cx Slave Mode Address Mask)	
I2CxSTAT (I2Cx Status)	234
ICxCON1 (Input Capture x Control 1)	
ICxCON2 (Input Capture x Control 2)	191
INTCON1 (Interrupt Control 1)	103
INTCON2 (Interrupt Control 2)	
INTCON3 (Interrupt Control 3)	106
INTCON4 (Interrupt Control 4)	107
INTTREG (Interrupt Control and Status)	108
IOCONx (PWMx I/O Control)	213
LEBCONx (PWMx Leading-Edge Blanking	
Control)	217
LEBDLYx (PWMx Leading-Edge Blanking	
Delay)	218
MDC (PWMx Master Duty Cycle)	
NVMADR (NVM Lower Address)	
NVMADRU (NVM Upper Address)	
NVMCON (NVM Control)	
NVMKEY (NVM Key)	
NVMSRCADRH (NVM Data Memory	
Upper Address)	. 90
NVMSRCADRL (NVM Data Memory	
Lower Address)	. 90
OCxCON1 (Output Compare x Control 1)	
OCxCON2 (Output Compare x Control 2)	
OSCCON (Oscillator Control)	
OSCTUN (FRC Oscillator Tuning)	
PDCx (PWMx Generator Duty Cycle)	
PHASEx (PWMx Primary Phase-Shift)	
PLLFBD (PLL Feedback Divisor)	
PMD1 (Peripheral Module Disable Control 1)	
PMD2 (Peripheral Module Disable Control 2)	
PMD3 (Peripheral Module Disable Control 3)	
PMD4 (Peripheral Module Disable Control 4)	
PMD6 (Peripheral Module Disable Control 6)	
PMD7 (Peripheral Module Disable Control 7)	
PMD8 (Peripheral Module Disable Control 8)	
PTCON (PWMx Time Base Control)	
PTCON2 (PWMx Primary Master Clock	-01
Divider Select)	205
PTPER (PWMx Primary Master Time Base	200
Period)	206
PWMCONx (PWMx Control)	
RCON (Reset Control)	
REFOCON (Reference Oscillator Control)	
RPINR0 (Peripheral Pin Select Input 0)	
RPINR1 (Peripheral Pin Select Input 1)	
RPINR11 (Peripheral Pin Select Input 1)	
RPINR12 (Peripheral Pin Select Input 12)	
RPINR18 (Peripheral Pin Select Input 12)	
RPINR19 (Peripheral Pin Select Input 19)	
RPINR22 (Peripheral Pin Select Input 19)	
RPINR23 (Peripheral Pin Select Input 23)	
RPINR26 (Peripheral Pin Select Input 26)	
RPINR3 (Peripheral Pin Select Input 20)	
RPINR37 (Peripheral Pin Select Input 37)	
RPINR38 (Peripheral Pin Select Input 38)	
RPINR39 (Peripheral Pin Select Input 39)	
RPINR44 (Peripheral Pin Select Input 44) RPINR45 (Peripheral Pin Select Input 45)	
RPINR7 (Peripheral Pin Select Input 7)	
RPINR8 (Peripheral Pin Select Input 8)	
RPOR0 (Peripheral Pin Select Output 0)	
DDOD1 (Deriphoral Dia Calant Outrant 4)	
RPOR1 (Peripheral Pin Select Output 1) RPOR10 (Peripheral Pin Select Output 10)	165

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Product Group Pin Count Tape and Reel Fla Package		Example: dsPIC33EV256GM006-I/PT: dsPIC33, Enhanced Voltage, 256-Kbyte Program Memory, 64-Pin, Industrial Temperature, TQFP Package.
Architecture:	33 = 16-Bit Digital Signal Controller	
Family:	EV = Enhanced Voltage	
Product Group:	GM = General Purpose plus Motor Control Family	
Pin Count:	02 = 28-Pin 04 = 44-Pin 06 = 64-Pin	
Temperature Range	$ \begin{array}{rcl} & = & -40^{\circ} \text{C to } +85^{\circ} \text{C (Industrial)} \\ \text{E} & = & -40^{\circ} \text{C to } +125^{\circ} \text{C (Extended)} \\ \text{H} & = & -40^{\circ} \text{C to } +150^{\circ} \text{C (High)} \end{array} $	
Package:	MM =Plastic Quad Flat, No Lead Package – (28-pin) 6x6x0.9 mm body (QFN-S)SO =Plastic Small Outline – (28-pin) 7.50 mm body (SOIC)SS =Plastic Shrink Small Outline – (28-pin) 5.30 mm body (SOP)SP =Skinny Plastic Dual In-Line – (28-pin) 300 mil body (SPDIP)ML =Plastic Quad Flat, No Lead Package – (44-pin) 8x8 mm body (QFN)MR =Plastic Quad Flat, No Lead Package – (64-pin) 9x9x0.9 mm body (QFN)PT =Plastic Thin Quad Flatpack – (44-pin) 10x10x1 mm body (TQFP)PT =Plastic Thin Quad Flatpack – (64-pin) 10x10x1 mm body (TQFP)	