

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev64gm102-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.5 **Programmer's Model**

The programmer's model for the dsPIC33EVXXXGM00X/ 10X family is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register. In addition to the registers contained in the programmer's model, the dsPIC33EVXXXGM00X/10X family devices contain control registers for Modulo Addressing and Bit-Reversed Addressing, and interrupts. These registers are described in subsequent sections of this document.

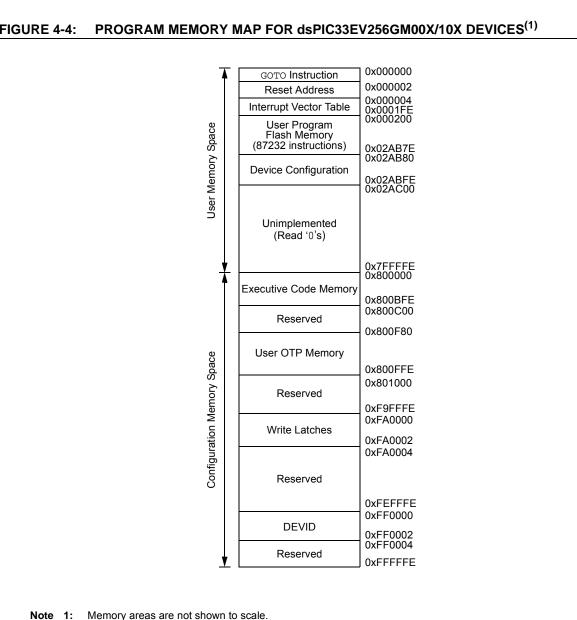

All registers associated with the programmer's model are memory-mapped, as shown in Table 4-1.

TABLE 3-1:	PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Register(s) Name	Description
W0 through W15 ⁽¹⁾	Working Register Array
W0 through W14 ⁽¹⁾	Alternate Working Register Array 1
W0 through W14 ⁽¹⁾	Alternate Working Register Array 2
ACCA, ACCB	40-Bit DSP Accumulators
PC	23-Bit Program Counter
SR	ALU and DSP Engine STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
DSRPAG	Extended Data Space (EDS) Read Page Register
RCOUNT	REPEAT Loop Counter Register
DCOUNT	DO Loop Count Register
DOSTARTH ⁽²⁾ , DOSTARTL ⁽²⁾	DO Loop Start Address Register (High and Low)
DOENDH, DOENDL	DO Loop End Address Register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

Note 1: Memory-mapped W0 through W14 represents the value of the register in the currently active CPU context.

2: The DOSTARTH and DOSTARTL registers are read-only.

FIGURE 4-4:

TABLE 4-11: CAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 FOR dsPIC33EVXXXGM10X DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E								See defin	ition when W	/IN = x							
C1BUFPNT1	0420	F3BP3	F3BP2	F3BP1	F3BP0	F2BP3	F2BP2	F2BP1	F2BP0	F1BP3	F1BP2	F1BP1	F1BP0	F0BP3	F0BP2	F0BP1	F0BP0	0000
C1BUFPNT2	0422	F7BP3	F7BP2	F7BP1	F7BP0	F6BP3	F6BP2	F6BP1	F6BP0	F5BP3	F5BP2	F5BP1	F5BP0	F4BP3	F4BP2	F4BP1	F4BP0	0000
C1BUFPNT3	0424	F11BP3	F11BP2	F11BP1	F11BP0	F10BP3	F10BP2	F10BP1	F10BP0	F9BP3	F9BP2	F9BP1	F9BP0	F8BP3	F8BP2	F8BP1	F8BP0	0000
C1BUFPNT4	0426	F15BP3	F15BP2	F15BP1	F15BP0	F14BP3	F14BP2	F14BP1	F14BP0	F13BP3	F13BP2	F13BP1	F13BP0	F12BP3	F12BP2	F12BP1	F12BP0	0000
C1RXM0SID	0430	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	MIDE	_	EID17	EID16	xxxx
C1RXM0EID	0432								E	EID<15:0>						•		xxxx
C1RXM1SID	0434	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	MIDE	_	EID17	EID16	xxxx
C1RXM1EID	0436								E	ID<15:0>						•		xxxx
C1RXM2SID	0438	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	MIDE	_	EID17	EID16	xxxx
C1RXM2EID	043A								E	EID<15:0>						•		xxxx
C1RXF0SID	0440	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF0EID	0442								E	EID<15:0>						•		xxxx
C1RXF1SID	0444	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF1EID	0446								E	EID<15:0>						•		xxxx
C1RXF2SID	0448	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	-	EXIDE	_	EID17	EID16	xxxx
C1RXF2EID	044A								E	EID<15:0>								xxxx
C1RXF3SID	044C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF3EID	044E								E	EID<15:0>						_		xxxx
C1RXF4SID	0450	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0		EXIDE	_	EID17	EID16	xxxx
C1RXF4EID	0452								E	EID<15:0>						_		xxxx
C1RXF5SID	0454	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0		EXIDE	_	EID17	EID16	xxxx
C1RXF5EID	0456								E	EID<15:0>						_		xxxx
C1RXF6SID	0458	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0		EXIDE	_	EID17	EID16	xxxx
C1RXF6EID	045A								E	ID<15:0>						_		xxxx
C1RXF7SID	045C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0		EXIDE	_	EID17	EID16	xxxx
C1RXF7EID	045E								E	ID<15:0>						_		xxxx
C1RXF8SID	0460	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF8EID	0462								E	EID<15:0>								xxxx
C1RXF9SID	0464	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	—	EID17	EID16	xxxx
C1RXF9EID	0466								E	EID<15:0>								xxxx
C1RXF10SID	0468	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	—	EID17	EID16	xxxx
C1RXF10EID	046A								E	ID<15:0>								xxxx

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

			-0.0.				(0.0.1		0					.0 (001		·)		
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11SID	046C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	EXIDE	—	EID17	EID16	xxxx
C1RXF11EID	046E		EID<15:0>										xxxx					
C1RXF12SID	0470	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF12EID	0472		EID<15:0>									xxxx						
C1RXF13SID	0474	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF13EID	0476								E	EID<15:0>								xxxx
C1RXF14SID	0478	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF14EID	047A		EID<15:0>									xxxx						
C1RXF15SID	047C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	EXIDE	_	EID17	EID16	xxxx
C1RXF15EID	047E		EID<15:0>								xxxx							

TABLE 4-11: CAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 FOR dsPIC33EVXXXGM10X DEVICES (CONTINUED)

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: SENT1 RECEIVER REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SENT1CON1	0500	SNTEN	—	SNTSIDL	_	RCVEN	TXM	TXPOL	CRCEN	PPP	SPCEN	_	PS	-	NIBCNT2	NIBCNT1	NIBCNT0	0000
SENT1CON2	0504		TICKTIME<15:0> (Transmit modes) or SYNCMAX<15:0> (Receive mode)											FFFF				
SENT1CON3	0508	FRAMETIME<15:0> (Transmit modes) or SYNCMIN<15:0> (Receive mode)										FFFF						
SENT1STAT	050C	_	_	_	_	_	_	_	_	PAUSE	NIB2	NIB1	NIB0	CRCERR	FRMERR	RXIDLE	SYNCTXEN	0000
SENT1SYNC	0510						Synchr	onization -	Time Perio	d Register	(Transmit	mode)						0000
SENT1DATL	0514		DATA4<3:0> DATA5<3:0>							DATA6<3:0> CR				CRO	C<3:0>		0000	
SENT1DATH	0516	STAT<3:0> DATA1<3:0>						DATA2<3:0> DATA3<3:0>						0000				

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: SENT2 RECEIVER REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SENT2CON1	0520	SNTEN	—	SNTSIDL		RCVEN	TXM	TXPOL	CRCEN	PPP	SPCEN	-	PS	—	NIBCNT2	NIBCNT1	NIBCNT0	0000
SENT2CON2	0524		TICKTIME<15:0> (Transmit modes) or SYNCMAX<15:0> (Receive mode)										FFFF					
SENT2CON3	0528	FRAMETIME<15:0> (Transmit modes) or SYNCMIN<15:0> (Receive mode)										FFFF						
SENT2STAT	052C	-	_	_		—		—	_	PAUSE	NIB2	NIB1	NIB0	CRCERR	FRMERR	RXIDLE	SYNCTXEN	0000
SENT2SYNC	0530		Synchronization Time Period Register (Transmit mode)							0000								
SENT2DATL	0534	DATA4<3:0> DATA5<3:0> DATA6<3:0> CRC<3:0>								0000								
SENT2DATH	0536	STAT<3:0> DATA1<3:0> DATA2<3:0> DATA3<3:0>						0000										

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70005144E-page 49

4.5 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing, since these two registers are used as the SFP and SSP, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a Bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

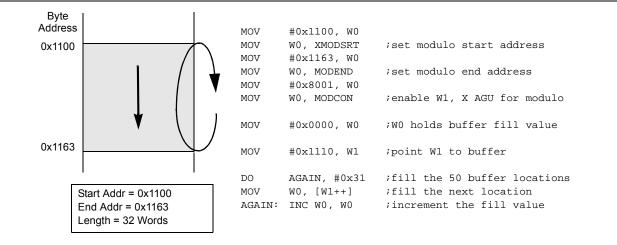
4.5.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.5.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags, as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:


- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM) to which Modulo Addressing is to be applied is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X Data Space when XWM is set to any value other than '1111' and the XMODEN bit (MODCON<15>) is set

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y Data Space when YWM is set to any value other than '1111' and the YMODEN bit (MODCON<14>) is set.

Figure 4-15 shows an example of Modulo Addressing operation.

Note: Y Data Space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear).

FIGURE 4-15: MODULO ADDRESSING OPERATION EXAMPLE

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
TRAPF	R IOPUWR		—	VREGSF		CM	VREGS
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit (
Legend:							
R = Reada		W = Writable	oit	•	nented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
6:4 <i>4 C</i>		Deast Flag bit					
bit 15		D Reset Flag bit onflict Reset ha	e occurrod				
		onflict Reset ha		ed			
bit 14	•	egal Opcode or			ess Reset Flag	a bit	
		al Opcode detec		•	-		ter used as ar
		Pointer caused		· · · · · · · · · · · ·			
		I Opcode Rese		zed W Register	Reset has not	occurred	
bit 13-12	-	nted: Read as '					
bit 11		ash Voltage Reg			o bit		
		Itage regulator i		•	ing Sleep mode	2	
bit 10		nted: Read as '	-		ing cleep mout		
bit 9	-	ration Mismatch					
	•	uration Mismatc	•	occurred.			
		uration Mismato					
bit 8	VREGS: Volt	age Regulator S	Standby Durii	ng Sleep bit			
		regulator is activ					
	•	regulator goes i		mode during Sle	еер		
bit 7		nal Reset (MCL	,				
		Clear (pin) Res Clear (pin) Res					
bit 6		are RESET (Instr					
		instruction has					
	0 = A reset	instruction has	not been exe	ecuted			
bit 5	SWDTEN: So	oftware Enable/	Disable of W	DT bit ⁽²⁾			
	1 = WDT is e						
	0 = WDT is d						
bit 4		hdog Timer Tim	-	it			
		e-out has occur e-out has not oc					
Note 1:	All of the Reset sta cause a device Re		set or cleare	a in software. S	etting one of th	ese bits in soft	ware does not
2:	If the FWDTEN<1		n hits are '1 1	' (unprogramm	ed) the WDT is	always enable	od rogardlaar

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

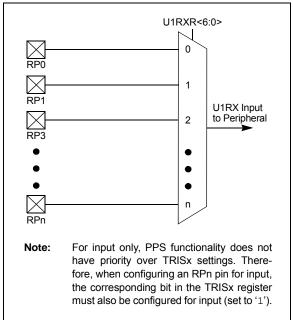
If the FWDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred
	0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	-	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0

REGISTER 8-14: DMAPPS: DMA PING-PONG STATUS REGISTER


U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	PPST3	PPST2	PPST1	PPST0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	PPST3: Channel 3 Ping-Pong Mode Status Flag bit
	1 = DMA3STB register is selected0 = DMA3STA register is selected
bit 2	PPST2: Channel 2 Ping-Pong Mode Status Flag bit
	1 = DMA2STB register is selected
	0 = DMA2STA register is selected
bit 1	PPST1: Channel 1 Ping-Pong Mode Status Flag bit
	1 = DMA1STB register is selected
	0 = DMA1STA register is selected
bit 0	PPST0: Channel 0 Ping-Pong mode Status Flag bit
	1 = DMA0STB register is selected
	0 = DMA0STA register is selected

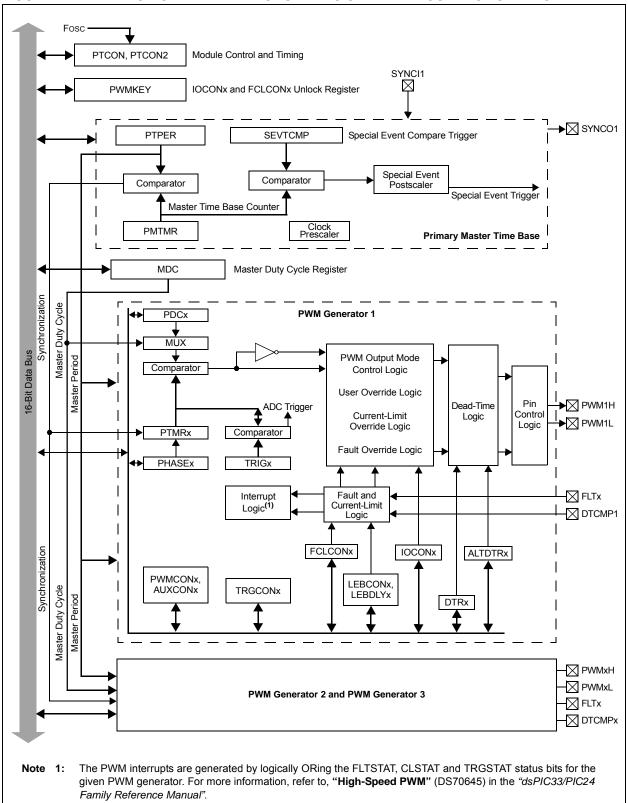
For example, Figure 11-2 shows the remappable pin selection for the U1RX input.

FIGURE 11-2: REMAPPABLE INPUT FOR U1RX

11.5.4.1 Virtual Connections

dsPIC33EVXXXGM00X/10X family devices support virtual (internal) connections to the output of the op amp/comparator module (see Figure 25-1 in Section 25.0 "Op Amp/Comparator Module").

These devices provide six virtual output pins (RPV0-RPV5) that correspond to the outputs of six peripheral pin output remapper blocks (RP176-RP181). The six virtual remapper outputs (RP176-RP181) are not connected to actual pins. The six virtual pins may be read by any of the input remappers as inputs, RP176-RP181. These virtual pins can be used to connect the internal peripherals, whose signals are of significant use to the other peripherals, but these output signals are not present on the device pin.


Virtual connections provide a simple way of interperipheral connection without utilizing a physical pin. For example, by setting the FLT1R<7:0> bits of the RPINR12 register to the value of 'b0000001', the output of the analog comparator, C1OUT, will be connected to the PWM Fault 1 input, which allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

15.1 Input Capture Control Registers

REGISTER 15-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

REGISTER	15-1: ICxCO	N1: INPUT C	CAPTURE x CO	ONTROL REG	ISTER 1					
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0			
_		ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	_			
bit 15		•					bit			
U-0	R/W-0	R/W-0	R-0, HC, HS	R-0, HC, HS	R/W-0	R/W-0	R/W-0			
_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0			
bit 7							bit			
Legend:		HC = Hardwa	re Clearable bit	HS = Hardwar	re Settable bit					
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is un	known			
bit 15-14	Unimplemen	ted: Read as '	0'							
bit 13	-		p in Idle Mode C	control bit						
		-	t in CPU Idle mod							
			tinue to operate		de					
bit 12-10			e x Timer Select							
			is the clock sour	ce of the ICx						
		110 = Reserved								
		101 = Reserved								
	100 = T1CLK is the clock source of the ICx (only the synchronous clock is supported) 011 = T5CLK is the clock source of the ICx									
		010 = T4CLK is the clock source of the ICx								
			ource of the ICx							
bit 9-7		ted: Read as '								
bit 6-5	ICI<1:0>: Nur	mber of Captur	es per Interrupt S	Select bits (this fi	eld is not used	if ICM<2:0> =	001 or 111			
	11 = Interrupt	11 = Interrupt on every fourth capture event								
		10 = Interrupt on every third capture event								
		01 = Interrupt on every second capture event								
	-	t on every cap								
bit 4	-	-	flow Status Flag							
			overflow has occu							
bit 3		-	fer Not Empty St		nlv)					
	-	-	s not empty, at le	-	• •	an be read				
		pture x buffer i								
bit 2-0	ICM<2:0>: In	put Capture x	Mode Select bits							
	111 = Input Capture x functions as an interrupt pin only in CPU Sleep and Idle modes (rising edge									
		detect only, all other control bits are not applicable)								
		 110 = Unused (module is disabled) 101 = Capture mode, every 16th rising edge (Prescaler Capture mode) 								
			/ 16th rising edge							
			/ rising edge (Sir							
			/ falling edge (Si							
		re mode, every	edge, rising and			CI<1:0>) is not	t used in th			
	,		ule is turned off							

000 = Input Capture x module is turned off

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN		_
bit 15		L		•			bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL
bit 7							bit (
Legend:							
R = Readable b	nit	W = Writable	hit	II = I Inimpler	mented bit, read	as '0'	
-n = Value at P		'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown
						X Bitle dill	
bit 15	PHR: PWMxH	Rising Edge	Trigger Enabl	e bit			
					Blanking count	ter	
	0 = Leading-E	Edge Blanking	gnores the ri	sing edge of PV	VMxH		
bit 14		I Falling Edge					
	0	0	00	e Leading-Edge alling edge of P ¹	e Blanking coun	ter	
bit 13	-	Rising Edge T	-				
DIL 15		• •			Blanking count	er	
				sing edge of PV			
bit 12	PLF: PWMxL	Falling Edge 1	rigger Enable	e bit			
					Blanking count	ter	
	•	• •	•	alling edge of P			
bit 11				anking Enable I			
				he selected Fa to the selected			
bit 10	•	• •		Edge Blanking E	•		
			-	he selected cur			
	0 = Leading-E	Edge Blanking	s not applied	to the selected	l current-limit in	put	
bit 9-6	-	ted: Read as '					
bit 5				al High Enable			
				Fault input sigr ng signal is hig	nals) when seled	cted blanking s	signal is high
bit 4		•		al Low Enable b			
		•	•••		nals) when seled	cted blanking s	signal is low
				ng signal is low		0	0
bit 3		ing in PWMxH	-				
					nals) when the F	PWMxH output	is high
h:# 0		ng when the P	-	-			
bit 2		ng in PWMxH			nals) when the F		ic low
		ng when the P				www.kirioutput	. 15 10 W
bit 1		ng in PWMxL I					
		-	-		nals) when the F	PWMxL output	is hiah
	0 = No blankii	ng when the P	WMxL output	is high			is ingli
bit 0	BPLL: Blanki	ng when the P ng in PWMxL L	ow Enable b	it			-
bit 0	BPLL: Blankii 1 = State blan	ng when the P ng in PWMxL L	ow Enable b t-limit and/or	it Fault input sigr	nals) when the F	PWMxL output	-

Note 1: The blanking signal is selected through the BLANKSEL<3:0> bits in the AUXCONx register.

21.2 UART Control Registers

REGISTER 21-1: UxMODE: UARTx MODE REGISTER

REGISTER	21-1: UxMO	DE: UARTx N		TER					
R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD		UEN1	UEN0		
bit 15				·			bit 8		
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL		
bit 7		101100	Orodity	ыкоп	TDOLLI	TDOLLO	bit (
Legend:		HC = Hardwar	e Clearable bit	t					
R = Readable	e bit	W = Writable I	oit	U = Unimple	mented bit, rea	ad as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown		
bit 15	1 = UARTx is	ARTx Enable bit s enabled; all U s disabled; all U	ARTx pins are						
	is minima								
bit 14	•	ted: Read as '0							
bit 13		Tx Stop in Idle N							
	 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode 								
bit 12	IREN: IrDA [®]	Encoder and De	ecoder Enable	bit ⁽²⁾					
		oder and decod							
bit 11		le Selection for							
	1 = UxRTS p	oin is in Simplex oin is in Flow Co	mode						
bit 10		ited: Read as '0							
bit 9-8	-	IARTx Pin Enab							
	11 = UxTX, U 10 = UxTX, U 01 = UxTX, U	JxRX and BCLK JxRX, UxCTS a JxRX and UxRT nd UxRX pins a	x p <u>ins are</u> enal nd UxRTS pins S pins are enal	are enabled a bled and used;	nd used ⁽⁴⁾ UxCTS pin is o	controlled by P	ORT latches ⁽⁴		
bit 7	WAKE: UAR	Tx Wake-up on	Start bit Detect	During Sleep	Mode Enable I	oit			
	in hardwa	ontinues to sam are on the follow is not enabled			generated on	the falling edge	, bit is cleare		
bit 6	-	RTx Loopback	Mode Select b	it					
		k mode is enab							
		k mode is disab							
"d: tra	efer to " Univers sPIC33/PIC24 F insmit operation	amily Referenc	e <i>Manual"</i> for i	nformation on e	enabling the U				
	is feature is only	-)).				
3: Th	is feature is only	s feature is only available on 44-pin and 64-pin devices.							

4: This feature is only available on 64-pin devices.

Legend: R = Readable bit W = Writable bit U = Unir -n = Value at POR '1' = Bit is set '0' = Bit bit 15 CON: Op Amp/Comparator 4 Enable bit 1 = Comparator is enabled 0 = Comparator is disabled bit 14 COE: Comparator 4 Output Enable bit 1 = Comparator output is present on the C4OUT pir 0 = Comparator output is internal only bit 13 CPOL: Comparator 4 Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted 0 = Comparator output is not inverted 0 = Comparator output is not inverted bit 12-10 Unimplemented: Read as '0' bit 9 CEVT: Comparator 4 Event bit 1 = Comparator event, according to EVPOL<1:0> interrupts until the bit is cleared 0 = Comparator event did not occur	U-0	R/W-0	R-0
R/W-0R/W-0U-0R/W-0U-0EVPOL1(2)EVPOL0(2)—CREF(1)—bit 7Legend:R = Readable bitW = Writable bitU = Unir-n = Value at POR'1' = Bit is set'0' = Bitbit 15CON: Op Amp/Comparator 4 Enable bit1 = Comparator is enabled0 = Comparator is disabledbit 14COE: Comparator 4 Output Enable bit1 = Comparator output is present on the C4OUT pir0 = Comparator output is internal onlybit 13CPOL: Comparator 4 Output Polarity Select bit1 = Comparator output is inverted0 = Comparator output is not inverted0 = Comparator output is not invertedbit 12-10Unimplemented: Read as '0'bit 9CEVT: Comparator 4 Event bit1 = Comparator event, according to EVPOL<1:0> interrupts until the bit is cleared 0 = Comparator event did not occurbit 8COUT: Comparator 4 Output bitWhen CPOL = 0 (non-inverted polarity): 1 = VIN+ < VIN- 0 = VIN+ < VIN- UN+ < VIN-	—	CEVT	COUT
EVPOL1(2)EVPOL0(2)—CREF(1)—bit 7Legend:R = Readable bitU = Unir-n = Value at POR'1' = Bit is set'0' = Bitbit 15CON: Op Amp/Comparator 4 Enable bit1 = Comparator is enabled0 = Comparator is enabled0 = Comparator is enabled0 = Comparator 4 Output Enable bit1 = Comparator output is present on the C4OUT pir0 = Comparator output is internal onlybit 13CPOL: Comparator 4 Output Polarity Select bit1 = Comparator output is inverted0 = Comparator output is not inverted0 = Comparator output is not inverted0 = Comparator event, according to EVPOL<1:0>interrupts until the bit is cleared0 = Comparator event did not occurbit 8COUT: Comparator 4 Output bitWhen CPOL = 0 (non-inverted polarity):1 = VIN+ > VIN-0 = VIN+ < VIN-			bit
bit 7 Legend: R = Readable bit W = Writable bit U = Unir -n = Value at POR '1' = Bit is set '0' = Bit bit 15 CON: Op Amp/Comparator 4 Enable bit 1 = Comparator is enabled 0 = Comparator is disabled bit 14 COE: Comparator 4 Output Enable bit 1 = Comparator output is present on the C4OUT pir 0 = Comparator output is inverted 0 = Comparator output is inverted 0 = Comparator output is not inverted bit 12-10 Unimplemented: Read as '0' bit 9 CEVT: Comparator 4 Output bit 1 = Comparator event, according to EVPOL<1:0> interrupts until the bit is cleared 0 = Comparator 4 Output bit When CPOL = 0 (non-inverted polarity): 1 = VIN+ < VIN- 0 = VIN+ < VIN- When CPOL = 1 (inverted polarity): 1 = VIN+ < VIN-	U-0	R/W-0	R/W-0
-n = Value at POR'1' = Bit is set'0' = Bitbit 15CON: Op Amp/Comparator 4 Enable bit 1 = Comparator is enabled 0 = Comparator is disabled1bit 14COE: Comparator 4 Output Enable bit 1 = Comparator output is present on the C4OUT pir 0 = Comparator output is internal onlybit 13CPOL: Comparator 4 Output Polarity Select bit 1 = Comparator output is not inverted 0 = Comparator output is not inverted 0 = Comparator output is not inverted bit 12-10bit 12-10Unimplemented: Read as '0' 1 = Comparator event, according to EVPOL<1:0> interrupts until the bit is cleared 0 = Comparator 4 Output bitbit 8COUT: Comparator 4 Output bit When CPOL = 0 (non-inverted polarity): 1 = VIN+ > VIN- 0 = VIN+ < VIN- When CPOL = 1 (inverted polarity): 1 = VIN+ < VIN-	_	CCH1 ⁽¹⁾	CCH0 ⁽¹⁾
R = Readable bitW = Writable bitU = Unit-n = Value at POR'1' = Bit is set'0' = Bitbit 15CON: Op Amp/Comparator 4 Enable bit1 = Comparator is enabled0 = Comparator is disabledbit 14COE: Comparator 4 Output Enable bit1 = Comparator output is present on the C4OUT pir0 = Comparator output is internal onlybit 13CPOL: Comparator 4 Output Polarity Select bit1 = Comparator output is inverted0 = Comparator output is not inverted0 = Comparator output is not invertedbit 12-10Unimplemented: Read as '0'bit 9CEVT: Comparator 4 Event bit1 = Comparator event, according to EVPOL<1:0> interrupts until the bit is cleared 0 = Comparator event did not occurbit 8COUT: Comparator 4 Output bitWhen CPOL = 0 (non-inverted polarity): 1 = VIN+ > VIN- 0 = VIN+ < VIN- When CPOL = 1 (inverted polarity): 1 = VIN+ < VIN-			bit
R = Readable bitW = Writable bitU = Unit-n = Value at POR'1' = Bit is set'0' = Bitbit 15CON: Op Amp/Comparator 4 Enable bit1 = Comparator is enabled0 = Comparator is disabledbit 14COE: Comparator 4 Output Enable bit1 = Comparator output is present on the C4OUT pir0 = Comparator output is internal onlybit 13CPOL: Comparator 4 Output Polarity Select bit1 = Comparator output is inverted0 = Comparator output is not inverted0 = Comparator output is not invertedbit 12-10Unimplemented: Read as '0'bit 9CEVT: Comparator 4 Event bit1 = Comparator event, according to EVPOL<1:0> interrupts until the bit is cleared 0 = Comparator event did not occurbit 8COUT: Comparator 4 Output bitWhen CPOL = 0 (non-inverted polarity): 1 = VIN+ > VIN- 0 = VIN+ < VIN- When CPOL = 1 (inverted polarity): 1 = VIN+ < VIN-			
-n = Value at POR'1' = Bit is set'0' = Bitbit 15CON: Op Amp/Comparator 4 Enable bit 1 = Comparator is enabled 0 = Comparator is disabled1bit 14COE: Comparator 4 Output Enable bit 1 = Comparator output is present on the C4OUT pir 0 = Comparator output is internal onlybit 13CPOL: Comparator 4 Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted 0 = Comparator output is not inverted bit 12-10bit 12-10Unimplemented: Read as '0'bit 9CEVT: Comparator 4 Event bit 1 = Comparator event, according to EVPOL<1:0> interrupts until the bit is cleared 0 = Comparator 4 Output bitbit 8COUT: Comparator 4 Output bit When CPOL = 0 (non-inverted polarity): 1 = VIN+ > VIN- 0 = VIN+ < VIN- When CPOL = 1 (inverted polarity): 1 = VIN+ < VIN-	plemented bit, rea	id as '0'	
1 = Comparator is enabled 0 = Comparator is disabledbit 14COE: Comparator 4 Output Enable bit 1 = Comparator output is present on the C4OUT pir 0 = Comparator output is internal onlybit 13CPOL: Comparator 4 Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not invertedbit 12-10Unimplemented: Read as '0'bit 9CEVT: Comparator 4 Event bit 1 = Comparator event, according to EVPOL<1:0> interrupts until the bit is cleared 0 = Comparator 4 Output bitbit 8COUT: Comparator 4 Output bit When CPOL = 0 (non-inverted polarity): 1 = VIN+ > VIN- 0 = VIN+ < VIN- When CPOL = 1 (inverted polarity): 1 = VIN+ < VIN-	s cleared	x = Bit is unkı	nown
1 = Comparator is enabled 0 = Comparator is disabledbit 14COE: Comparator 4 Output Enable bit 1 = Comparator output is present on the C4OUT pir 0 = Comparator output is internal onlybit 13CPOL: Comparator 4 Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted bit 12-10bit 12-10Unimplemented: Read as '0'bit 9CEVT: Comparator 4 Event bit 1 = Comparator event, according to EVPOL<1:0> interrupts until the bit is cleared 0 = Comparator 4 Output bitbit 8COUT: Comparator 4 Output bit When CPOL = 0 (non-inverted polarity): 1 = VIN+ > VIN- 0 = VIN+ < VIN- UN-When CPOL = 1 (inverted polarity): 1 = VIN+ < VIN-			
0 = Comparator is disabled bit 14 COE: Comparator 4 Output Enable bit 1 = Comparator output is present on the C4OUT pir 0 = Comparator output is internal only bit 13 CPOL: Comparator 4 Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is inverted 0 = Comparator output is not inverted bit 12-10 Unimplemented: Read as '0' bit 9 CEVT: Comparator 4 Event bit 1 = Comparator event, according to EVPOL<1:0> interrupts until the bit is cleared 0 = Comparator event did not occur bit 8 COUT: Comparator 4 Output bit When CPOL = 0 (non-inverted polarity): 1 = VIN+ > VIN- 0 = VIN+ < VIN-			
bit 14 COE: Comparator 4 Output Enable bit 1 = Comparator output is present on the C4OUT pin 0 = Comparator output is internal only bit 13 CPOL: Comparator 4 Output Polarity Select bit $1 = Comparator output is inverted0 = Comparator output is not invertedbit 12-10Unimplemented: Read as '0'CEVT: Comparator 4 Event bit1 = Comparator event, according to EVPOL<1:0>interrupts until the bit is cleared0 = Comparator event did not occurbit 8COUT: Comparator 4 Output bitWhen CPOL = 0 (non-inverted polarity):1 = VIN+ > VIN-0 = VIN+ < VIN-When CPOL = 1 (inverted polarity):1 = VIN+ < VIN-$			
1 = Comparator output is present on the C4OUT pir 0 = Comparator output is internal onlybit 13CPOL: Comparator 4 Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not invertedbit 12-10Unimplemented: Read as '0'bit 9CEVT: Comparator 4 Event bit 1 = Comparator event, according to EVPOL<1:0> interrupts until the bit is cleared 0 = Comparator 4 Output bitbit 8COUT: Comparator 4 Output bit When CPOL = 0 (non-inverted polarity): 1 = VIN+ < VIN- 0 = VIN+ < VIN-			
0 = Comparator output is internal only bit 13 CPOL: Comparator 4 Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted bit 12-10 Unimplemented: Read as '0' bit 9 CEVT: Comparator 4 Event bit 1 = Comparator event, according to EVPOL<1:0> interrupts until the bit is cleared 0 = Comparator event did not occur bit 8 COUT: Comparator 4 Output bit When CPOL = 0 (non-inverted polarity): 1 = VIN+ > VIN- 0 = VIN+ < VIN-			
1 = Comparator output is inverted 0 = Comparator output is not inverted bit 12-10 Unimplemented: Read as '0' EEVT: Comparator 4 Event bit 1 = Comparator event, according to EVPOL<1:0> interrupts until the bit is cleared 0 = Comparator event did not occur bit 8 COUT: Comparator 4 Output bit When CPOL = 0 (non-inverted polarity): 1 = VIN+ > VIN- 0 = VIN+ < VIN-			
0 = Comparator output is not inverted bit 12-10 Unimplemented: Read as '0' bit 9 CEVT: Comparator 4 Event bit 1 = Comparator event, according to EVPOL<1:0> interrupts until the bit is cleared 0 = Comparator event did not occur bit 8 COUT: Comparator 4 Output bit When CPOL = 0 (non-inverted polarity): 1 = VIN+ > VIN- 0 = VIN+ < VIN- When CPOL = 1 (inverted polarity): 1 = VIN+ < VIN-			
bit 12-10 bit 9 CEVT: Comparator 4 Event bit 1 = Comparator event, according to EVPOL<1:0> interrupts until the bit is cleared 0 = Comparator event did not occur bit 8 COUT: Comparator 4 Output bit <u>When CPOL = 0 (non-inverted polarity)</u> : 1 = VIN+ > VIN- 0 = VIN+ < VIN- <u>When CPOL = 1 (inverted polarity)</u> : 1 = VIN+ < VIN-			
bit 9 CEVT: Comparator 4 Event bit 1 = Comparator event, according to EVPOL<1:0> interrupts until the bit is cleared 0 = Comparator event did not occur bit 8 COUT: Comparator 4 Output bit <u>When CPOL = 0 (non-inverted polarity):</u> 1 = VIN+ > VIN- 0 = VIN+ < VIN- <u>When CPOL = 1 (inverted polarity):</u> 1 = VIN+ < VIN-			
1 = Comparator event, according to EVPOL<1:0> interrupts until the bit is cleared 0 = Comparator event did not occur bit 8 COUT: Comparator 4 Output bit When CPOL = 0 (non-inverted polarity): 1 = VIN+ > VIN- 0 = VIN+ < VIN-			
interrupts until the bit is cleared 0 = Comparator event did not occur bit 8 COUT: Comparator 4 Output bit <u>When CPOL = 0 (non-inverted polarity):</u> 1 = VIN+ > VIN- 0 = VIN+ < VIN- <u>When CPOL = 1 (inverted polarity):</u> 1 = VIN+ < VIN-			
bit 8 COUT: Comparator 4 Output bit When CPOL = 0 (non-inverted polarity): 1 = VIN+ > VIN- 0 = VIN+ < VIN-	settings, occurred	l; disables futur	e triggers an
When CPOL = 0 (non-inverted polarity): 1 = VIN+ > VIN- 0 = VIN+ < VIN- When CPOL = 1 (inverted polarity): 1 = VIN+ < VIN-			
1 = VIN+ > VIN- $0 = VIN+ < VIN-$ When CPOL = 1 (inverted polarity): 1 = VIN+ < VIN-			
When CPOL = 1 (inverted polarity): 1 = VIN+ < VIN-			
1 = VIN+ < VIN-			
$\cap = V[N] + > V[N]$			

REGISTER 25-3: CM4CON: COMPARATOR 4 CONTROL REGISTER

2: After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the comparator Event bit, CEVT (CMxCON<9>), and the Comparator Combined Interrupt Flag, CMPIF (IFS1<2>), must be cleared before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

Bit Field	Register	Description
BWRP	FSEC	Boot Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
BSS<1:0>	FSEC	Boot Segment Code Flash Protection Level bits 11 = No protection (other than BWRP write protection) 10 = Standard security 0x = High security
BSEN	FSEC	Boot Segment Control bit 1 = No Boot Segment 0 = Boot Segment size is determined by BSLIM<12:0>
GWRP	FSEC	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
GSS<1:0>	FSEC	General Segment Code Flash Protection Level bits 11 = No protection (other than GWRP write protection) 10 = Standard security 0x = High security
CWRP	FSEC	Configuration Segment Write-Protect bit 1 = Configuration Segment is not write-protected 0 = Configuration Segment is write-protected
CSS<2:0>	FSEC	Configuration Segment Code Flash Protection Level bits 111 = No protection (other than CWRP write protection) 110 = Standard security 10x = Enhanced security 0xx = High security
AIVTDIS	FSEC	Alternate Interrupt Vector Table Disable bit 1 = Disables AIVT 0 = Enables AIVT
BSLIM<12:0>	FBSLIM	Boot Segment Code Flash Page Address Limit bits Contains the page address of the first active General Segment page. The value to be programmed is the inverted page address, such that programming additional '0's can only increase the Boot Segment size. For example, 0x1FFD = 2 pages or 1024 instruction words.
FNOSC<2:0>	FOSCSEL	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) Oscillator with Postscaler 110 = Internal Fast RC (FRC) Oscillator with Divide-by-16 101 = LPRC Oscillator 100 = Reserved 011 = Primary (XT, HS, EC) Oscillator with PLL 010 = Primary (XT, HS, EC) Oscillator 001 = Internal Fast RC (FRC) Oscillator with PLL 000 = FRC Oscillator
ĪĒSO	FOSCSEL	 Two-Speed Oscillator Start-up Enable bit 1 = Starts up device with FRC, then automatically switches to the user-selected oscillator source when ready 0 = Starts up device with user-selected oscillator source
POSCMD<1:0>	FOSC	Primary Oscillator Mode Select bits 11 = Primary Oscillator is disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode

TABLE 27-2: dsPIC33EVXXXGM00X/10X CONFIGURATION BITS DESCRIPTION

TABLE 30-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)	
---	--

DC CHARACT	ERISTICS		(unless oth	perating Conditio erwise stated) emperature -40°C -40°C		Industrial
Param.	Typ. ⁽²⁾	Max.	Units		Condition	S
Operating Cu	rrent (IDD) ⁽¹⁾					
DC20d	4.5	5.5	mA	-40°C		
DC20a	4.65	5.6	mA	+25°C	5.0V	10 MIPS
DC20b	4.85	6.0	mA	+85°C	5.00	10 101195
DC20c	5.6	7.2	mA	+125°C		
DC22d	8.6	10.6	mA	-40°C		
DC22a	8.8	10.8	mA	+25°C	5.0V	20 MIPS
DC22b	9.1	11.1	mA	+85°C	5.00	20 101195
DC22c	9.8	12.6	mA	+125°C		
DC23d	16.8	18.5	mA	-40°C		
DC23a	17.2	19.0	mA	+25°C	5.0V	40 MIPS
DC23b	17.55	19.2	mA	+85°C	5.00	40 101195
DC23c	18.3	21.0	mA	+125°C		
DC24d	25.15	28.0	mA	-40°C		
DC24a	25.5	28.0	mA	+25°C	5.0V	60 MIPS
DC24b	25.5	28.0	mA	+85°C	5.00	
DC24c	25.55	28.5	mA	+125°C		
DC25d	29.0	31.0	mA	-40°C		
DC25a	28.5	31.0	mA	+25°C	5.0V	70 MIPS
DC25b	28.3	31.0	mA	+85°C		

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

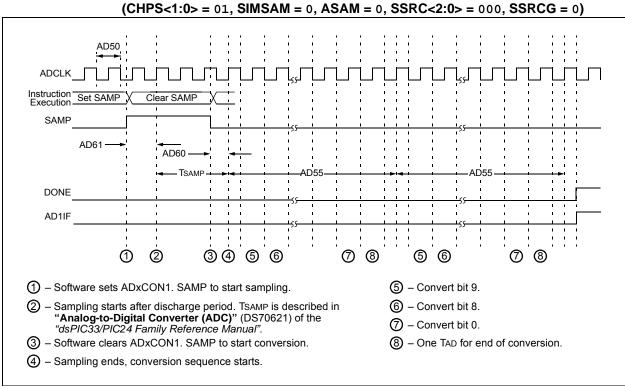
 Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- CPU executing
 - while(1)

```
{
NOP();
```

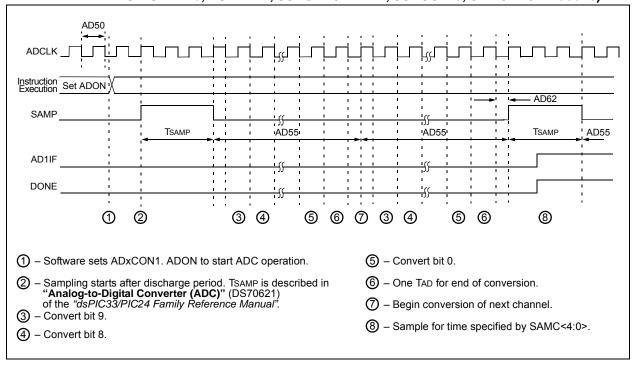
```
NOP ( )
```

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.


TABLE 30-22:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SY00	Tpu	Power-up Period	_	400	600	μs	
SY10	Tost	Oscillator Start-up Time	—	1024 Tos C	—	—	Tosc = OSC1 period
SY11	TPWRT	Power-up Timer Period	—	1	—	ms	Using LPRC parameters indicated in F21a/F21b (see Table 30-20)
SY12	Тwdt	Watchdog Timer Time-out Period	0.8	_	1.2	ms	WDTPRE = 0, WDTPS<3:0> = 0000, using LPRC tolerances indicated in F21a/F21b (see Table 30-20) at +85°C
			3.2	_	4.8	ms	WDTPRE = 1, WDTPS<3:0> = 0000, using LPRC tolerances indicated in F21a/F21b (see Table 30-20) at +85°C
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs	
SY20	TMCLR	MCLR Pulse Width (low)	2	—	-	μs	
SY30	TBOR	BOR Pulse Width (low)	1	—	_	ms	
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	500	900	μs	-40°C to +85°C
SY36	TVREG	Voltage Regulator Standby-to-Active mode Transition Time	—	_	30	μs	
SY37	TOSCDFRC	FRC Oscillator Start-up Delay	46	48	54	μs	
SY38	TOSCDLPRC	LPRC Oscillator Start-up Delay	—	—	70	μs	

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 30-35: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS

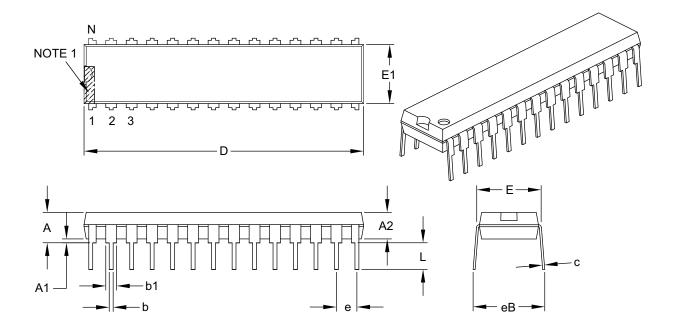
FIGURE 30-36: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SSRCG = 0, SAMC<4:0> = 00010)

DC CH	DC CHARACTERISTICS			Standard Operating Conditions: 4.5V to 5.5V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature				
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
	VIL	Input Low Voltage						
DI10		Any I/O Pins	Vss	—	0.2 Vdd	V		
	Vih	Input High Voltage						
DI20		I/O Pins	0.75 VDD	—	5.5	V		
DI30	ICNPU	Change Notification Pull-up Current	200	375	600	μA	VDD = 5.0V, VPIN = VSS	
DI31	ICNPD	Change Notification Pull-Down Current ⁽⁷⁾	175	400	625	μΑ	VDD = 5.0V, VPIN = VDD	
	lı∟	Input Leakage Current ^(2,3)						
DI50		I/O Pins	-200	_	200	nA	$\label{eq:VSS} \begin{split} VSS \leq V PIN \leq V DD, \\ \text{pin at high-impedance} \end{split}$	
DI55		MCLR	-1.5	_	1.5	μA	$VSS \leq VPIN \leq VDD$	
DI56		OSC1	-300	—	300	nA	$\label{eq:VSS} \begin{split} &VSS \leq V\text{PIN} \leq V\text{DD}, \\ &XT \text{ and }HS \text{ modes} \end{split}$	
Dl60a	licl	Input Low Injection Current	0	—	_5 ^(4,6)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP and RB7	
DI60b	Іісн	Input High Injection Current	0	_	+5(5,6)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB7 and all 5V tolerant pins ⁽⁵⁾	
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	₋₂₀ (7)	_	+20 ⁽⁷⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT	

TABLE 31-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.
- **3:** Negative current is defined as current sourced by the pin.
- 4: VIL source < (VSS 0.3). Characterized but not tested.
- 5: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 6: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.


7: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

34.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		.100 BSC	
Top to Seating Plane	A	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	_
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	-	.430

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B