

Welcome to E-XFL.COM

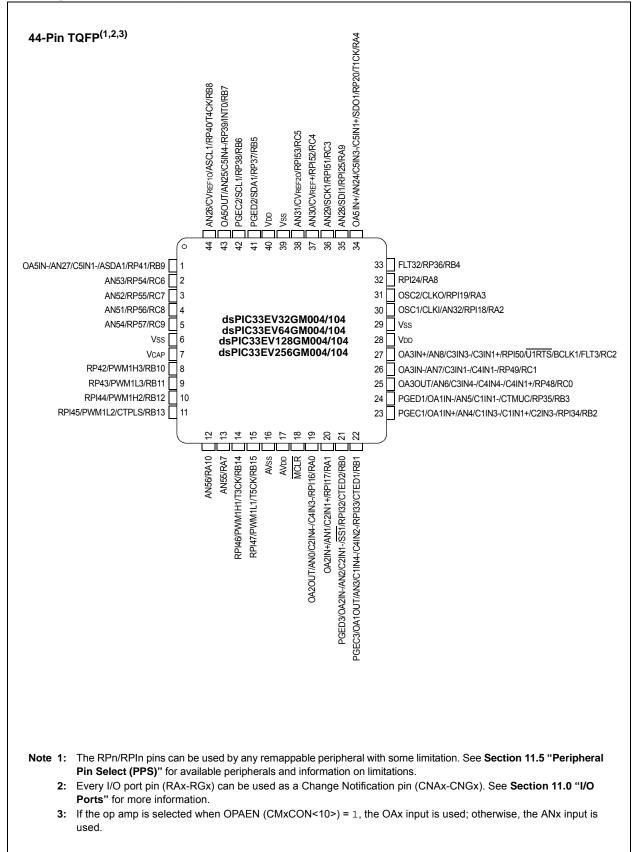
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI


Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev64gm102-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EVXXXGM00X/10X FAMILY

Pin Diagrams (Continued)

NOTES:

	••		•															
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Tim	ner1 Registe	r							0000
PR1	0102								Peri	od Register	1							FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	—	0000
TMR2	0106								Tim	ner2 Registe	r							0000
TMR3HLD	0108						Time	er3 Holdin	ig Register	· (For 32-bit	timer operat	tions only)						0000
TMR3	010A								Tim	ner3 Registe	r							0000
PR2	010C								Peri	od Register	2							FFFF
PR3	010E								Peri	od Register	3							FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	—	0000
T3CON	0112	TON	_	TSIDL	_	_	_	_	—	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000
TMR4	0114								Tim	ner4 Registe	r							0000
TMR5HLD	0116						Т	imer5 Hol	ding Regis	ster (For 32-	bit operation	ns only)						0000
TMR5	0118								Tim	ner5 Registe	r							0000
PR4	011A								Peri	od Register	4							FFFF
PR5	011C								Peri	od Register	5							FFFF
T4CON	011E	TON	_	TSIDL	—	—	—	—	—	—	TGATE	TCKPS1	TCKPS0	T32	—	TCS	—	0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000
Lonondi		nlamantad	1 1-															

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 5-2: NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—	_	—	—		—
bit 15		· · ·					bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMADF	RU<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit	ł	W = Writable bit		U = Unimplem	ented bit, read	as '0'	

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADRU<23:16>:** NVM Memory Upper Write Address bits Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

REGISTER 5-3: NVMADR: NONVOLATILE MEMORY LOWER ADDRESS REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
		NVMAD	R<15:8>			
						bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
		NVMAD)R<7:0>			
						bit 0
			NVMAD R/W-x R/W-x R/W-x	NVMADR<15:8>	NVMADR<15:8> R/W-x R/W-x R/W-x R/W-x	NVMADR<15:8> R/W-x R/W-x R/W-x R/W-x R/W-x

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 NVMADR<15:0>: NVM Memory Lower Write Address bits

Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

REGISTER 5-5: NVMSRCADRH: NVM DATA MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	_	_	—	_	—	—
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMSRCAD)R<23:16>			
bit 7							bit 0
Legend:							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMSRCADRH<23:16>: Data Memory Upper Address bits

REGISTER 5-6: NVMSRCADRL: NVM DATA MEMORY LOWER ADDRESS REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMSRC	CADR<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	r-0
		NV	MSRCADR<	7:1>			—
bit 7							bit C
Legend:		r = Reserved	bit				
R = Readable b	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-1 NVMSRCADRL<15:1>: Data Memory Lower Address bits

bit 0 Reserved: Maintain as '0'

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
_	COSC2	COSC1	COSC0	—	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSCO ⁽²⁾
bit 15							bit 8
R/W-0	R/W-0	R-0	U-0	R/C-0	U-0	U-0	R/W-0
CLKLOCK	IOLOCK	LOCK	—	CF			OSWEN
bit 7							bit (
Legend:		C = Clearable	hit	v = Value set	from Configura	tion hits on PO	R
R = Readab	le hit	W = Writable		,	mented bit, read		
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	าดพุท
							IOWIT
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	-	Current Oscilla		bits (read-only	()		
		C Oscillator (F		· · ·	,		
	110 = Fast R	C Oscillator (F	RC) with Divid				
		ower RC Oscill					
		p FRC Oscillator y Oscillator (X ⁻		ыры			
		y Oscillator (X		II PLL			
		C Oscillator (F	,	y N and PLL			
		C Oscillator (F		,			
bit 11	-	ted: Read as '					
bit 10-8	NOSC<2:0>:	New Oscillator	r Selection bits	_S (2)			
		C Oscillator (F					
		C Oscillator (F		le-by-16			
	101 = Low-P	ower RC Oscill _{/ed} (5)					
		y Oscillator (X ⁻	Г, HS, EC) wit	h PLL			
		y Oscillator (X					
		C Oscillator (F		y N and PLL			
hit 7		C Oscillator (F	,				
bit 7		Clock Lock Ena		onfigurations a	re locked; if FCk	(SM0 = 0 then)	clock and Pl
		ations may be r					
				ked, configurat	ions may be mo	odified	
bit 6	IOLOCK: I/O	Lock Enable b	oit				
	1 = I/O lock is						
	0 = I/O lock is						
bit 5		ock Status bit					
		that PLL is in that PLL is ou			satisfied progress or PLL	is disabled	
					-		
	Vrites to this regis dsPIC33/PIC24 F						ils.
	irect clock switch	-	-		-	-	
te	ed. This applies to	o clock switche	s in either dire	ection. In these	instances, the		
	RC mode as a tra				L modes.		
	his register reset	-					
4 : C	OSC<2:0> bits w	viii be set to '0k	DIOU when H	to fails.			

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

5: User cannot write '0b100' to NOSC<2:0>. COSC<2:0> will be set to '0b100' (BFRC) when the FRC fails.

Periphera Select II Register	nput	Input/ Output	Pin Assignment
00	000	I	Vss
00	001	I	CMP1 ⁽¹⁾
0 0	010	Ι	CMP2 ⁽¹⁾
000 00	011	Ι	CMP3 ⁽¹⁾
000 01	100	Ι	CMP4 ⁽¹⁾
000 01	101	—	—
000 11	100	Ι	CMP5 ⁽¹⁾
000 11	101	_	_
000 11	110	_	
000 11	111	_	_
001 00	000	Ι	RPI16
001 00	001	I	RPI17
001 00	010	I	RPI18
001 00	011	Ι	RPI19
001 01	100	I/O	RP20
001 01	101	_	
001 01	110	_	_
001 01	111	_	_
001 10	000	I	RPI24
001 10	001	I	RPI25
001 10	010	_	—
001 10	011	I	RPI27
001 11	100	Ι	RPI28
001 11	101		_
001 11	110		_
001 11	111		_
010 00		Ι	RPI32
010 00		Ι	RPI33
010 00		I	RPI34
010 00		I/O	RP35
010 01		I/O	RP36
010 01		I/O	RP37
010 01		I/O	RP38
010 01		1/O	RP39
010 10		I/O	
010 10		1/U	RPI44
010 11		-	RPI45
010 11			RPI46
010 11		1	RPI47
		I/O	
011 00		-	RP48 the PPS Input register

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES

Legend: Shaded rows indicate the PPS Input register values that are unimplemented.

Note 1: These are virtual pins. See Section 11.5.4.1 "Virtual Connections" for more information on selecting this pin assignment.

REGISTER 11-11:	RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23
-----------------	---

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	_	—	—	—	_	
bit 15							bit 8	
				=				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			SS2I	R<7:0>				
bit 7							bit C	
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'		
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cleared x = Bit is unknown			nown	
bit 15-8	Unimpleme	nted: Read as	ʻ0'					
bit 7-0	SS2R<7:0>: Assign SPI2 Slave Select ($\overline{SS2}$) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)							
	10110101 =	Input tied to R	PI181					
	•							
	•							
	-	Input tied to C	MP1					
	0000001 -							

00000000 = Input tied to Vss

REGISTER 11-12: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			C1RX	(R<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
			x = Bit is unkr	nown			

bit 15-8	Unimplemented: Read as '0'
bit 7-0	C1RXR<7:0>: Assign CAN1 RX Input (C1RX) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
	10110101 = Input tied to RPI181
	•
	•
	•
	00000001 = Input tied to CMP1 00000000 = Input tied to Vss

REGISTER 19-3: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	 S: I2Cx Start bit Updated when Start, Reset or Stop is detected; cleared when the I²C module is disabled, I2CEN = 0. 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Indicates that a Start bit was not detected last
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	 = Read: Indicates that the data transfer is output from the slave = Write: Indicates that the data transfer is input to the slave
bit 1	RBF: Receive Buffer Full Status bit
	 = Receive is complete, the I2CxRCV bit is full = Receive is not complete, the I2CxRCV bit is empty
bit 0	TBF: Transmit Buffer Full Status bit
	 1 = Transmit is in progress, I2CxTRN is full (8 bits of data) 0 = Transmit is complete, I2CxTRN is empty

REGISTER 19-4: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
—	—	—	—	—	—	MSK<9:8>		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
MSK<7:0>								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 7

bit 9-0 MSK<9:0>: I2Cx Mask for Address Bit x Select bits

1 = Enables masking for bit x of the incoming message address; bit match is not required in this position

0 = Disables masking for bit x; bit match is required in this position

bit 0

B 8 4 4 4							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7MSK1	F7MSK0	F6MSK1	F6MSK0	F5MSK1	F5MSK0	F4MSK1	F4MSK0
bit 15							bit 8
		-			5444.6	5444.6	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3MSK1	F3MSK0	F2MSK1	F2MSK0	F1MSK1	F1MSK0	F0MSK1	F0MSK0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, reac	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta	nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg	gisters contain gisters contain gisters contain	the mask the mask the mask			
bit 13-12	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0>	d nce Mask 2 re nce Mask 1 re nce Mask 0 re : Mask Source	gisters contain gisters contain gisters contain e for Filter 6 bit	the mask the mask the mask (same values			
bit 13-12 bit 11-10	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0>	ed nce Mask 2 re nce Mask 1 re nce Mask 0 re : Mask Source : Mask Source	gisters contain gisters contain gisters contain e for Filter 6 bit e for Filter 5 bit	the mask the mask the mask (same values (same values	as bits 15-14)		
bit 13-12 bit 11-10 bit 9-8	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0> F5MSK<1:0> F4MSK<1:0>	ed nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg : Mask Source : Mask Source : Mask Source	gisters contain gisters contain gisters contain e for Filter 6 bit e for Filter 5 bit e for Filter 4 bit	the mask the mask the mask (same values (same values (same values	as bits 15-14) as bits 15-14)		
bit 13-12 bit 11-10	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0> F5MSK<1:0> F4MSK<1:0>	ed nce Mask 2 re nce Mask 1 re nce Mask 0 re : Mask Source : Mask Source	gisters contain gisters contain gisters contain e for Filter 6 bit e for Filter 5 bit e for Filter 4 bit	the mask the mask the mask (same values (same values (same values	as bits 15-14) as bits 15-14)		
bit 13-12 bit 11-10 bit 9-8	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0> F5MSK<1:0> F4MSK<1:0> F3MSK<1:0>	ed nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg : Mask Source : Mask Source : Mask Source	gisters contain gisters contain gisters contain e for Filter 6 bit e for Filter 5 bit e for Filter 4 bit e for Filter 3 bit	the mask the mask the mask (same values (same values (same values (same values	as bits 15-14) as bits 15-14) as bits 15-14)		
bit 13-12 bit 11-10 bit 9-8 bit 7-6	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0> F5MSK<1:0> F4MSK<1:0> F3MSK<1:0> F3MSK<1:0>	ed nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg : Mask Source : Mask Source : Mask Source : Mask Source	gisters contain gisters contain gisters contain e for Filter 6 bit e for Filter 5 bit e for Filter 4 bit e for Filter 3 bit e for Filter 2 bit	the mask the mask the mask (same values (same values (same values (same values (same values	as bits 15-14) as bits 15-14) as bits 15-14) as bits 15-14)		

REGISTER 22-18: CxFMSKSEL1: CANx FILTERS 7-0 MASK SELECTION REGISTER 1

REGISTER 24-2: ADxCON2: ADCx CONTROL REGISTER 2 (CONTINUED)

bit 1	 BUFM: Buffer Fill Mode Select bit 1 = Starts buffer filling the first half of the buffer on the first interrupt and the second half of the buffer on the next interrupt 0 = Always starts filling the buffer from the Start address
bit 0	ALTS: Alternate Input Sample Mode Select bit 1 = Uses channel input selects for Sample MUX A on the first sample and Sample MUX B on the next sample 0 = Always uses channel input selects for Sample MUX A

Note 1: The ADCx VREFH Input is connected to AVDD and the VREFL input is connected to AVss.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	_	—	_	_
bit 15	-						bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0
bit 7						_	bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
	111 = T5CLK 110 = T4CLK 101 = T3CLK 100 = T2CLK 011 = Reserv 010 = SYNCC 001 = Fosc ⁽⁴ 000 = Fp ⁽⁴⁾	(2) (1) (2) /ed D1 ⁽³⁾					
bit 3	CFLTREN: Comparator x Filter Enable bit 1 = Digital filter is enabled 0 = Digital filter is disabled						
bit 2-0	•	Comparator x divide 1:128 divide 1:64 divide 1:32 divide 1:16	Filter Clock D	ivide Select bits	5		

REGISTER 25-6: CMxFLTR: COMPARATOR x FILTER CONTROL REGISTER

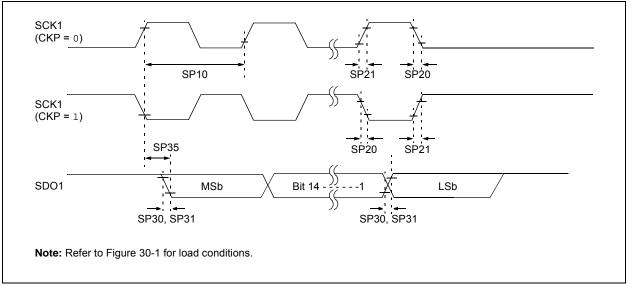
- 2: See the Type B Timer Block Diagram (Figure 13-1).
 - 3: See the High-Speed PWMx Module Register Interconnection Diagram (Figure 17-2).
 - 4: See the Oscillator System Diagram (Figure 9-1).

30.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EVXXXGM00X/10X family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33EVXXXGM00X/10X family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾


Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	0.3V to +6.0V
Voltage on VCAP with respect to Vss	1.62V to 1.98V
Maximum current out of Vss pin	350 mA
Maximum current into Vod pin ⁽²⁾	350 mA
Maximum current sunk by any I/O pin	20 mA
Maximum current sourced by I/O pin	18 mA
Maximum current sourced/sunk by all ports ⁽²⁾	200 mA

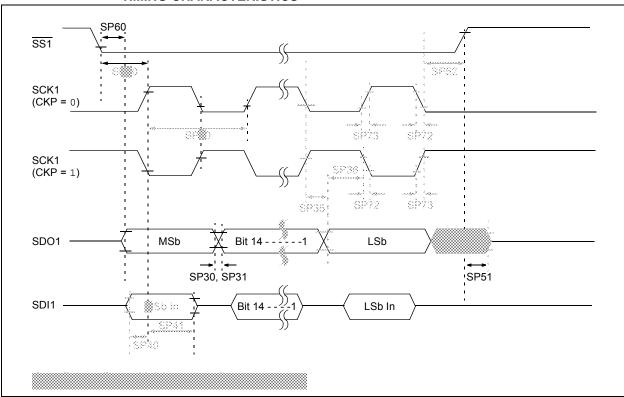

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).

TABLE 30-38: SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARACTERISTICS			Standard Operating (unless otherwise Operating temperation	stated) ure -40°C ≤ [°]	: 4.5V to 5.5V TA ≤ +85°C for TA ≤ +125°C fo	
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP
25 MHz	Table 30-39	_	_	0,1	0,1	0,1
25 MHz	—	Table 30-40	—	1	0,1	1
25 MHz	—	Table 30-41	—	0	0,1	1
25 MHz	—	—	Table 30-42	1	0	0
25 MHz	_	_	Table 30-43	1	1	0
25 MHz	_	—	Table 30-44	0	1	0
25 MHz	—	—	Table 30-45	0	0	0

FIGURE 30-20: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

FIGURE 30-24: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions			
Device Supply										
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or VBOR	_	Lesser of: VDD + 0.3 or 5.5	V				
AD02	AVss	Module Vss Supply	Vss – 0.3	_	Vss + 0.3	V				
			Refere	nce Inpu	ıts					
AD05	Vrefh	Reference Voltage High	4.5	_	5.5	V	VREFH = AVDD, VREFL = AVSS = 0			
AD06	VREFL	Reference Voltage Low	AVss		AVDD - VBORMIN	V	See Note 1			
AD06a			0	_	0	V	VREFH = AVDD, VREFL = AVSS = 0			
AD07	Vref	Absolute Reference Voltage	4.5	_	5.5	V	Vref = Vrefh – Vrefl			
AD08	IREF	Current Drain	—		10 600	μA μA	ADC off ADC on			
AD09	lad	Operating Current	_	5 2		mA mA	ADC operating in 10-bit mode (see Note 1) ADC operating in 12-bit mode (see Note 1)			
		•	Anal	og Input			•			
AD12	VINH	Input Voltage Range Vinн	VINL		VREFH	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input			
AD13	VINL	Input Voltage Range Vın∟	VREFL	_	AVss + 1V	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), negative input			
AD17	Rin	Recommended Impedance of Analog Voltage Source			200	Ω	Impedance to achieve maximum performance of ADC			

TABLE 30-54: ADC MODULE SPECIFICATIONS

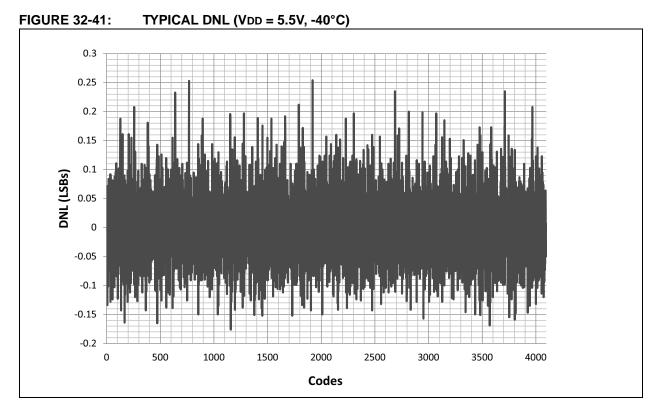
Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

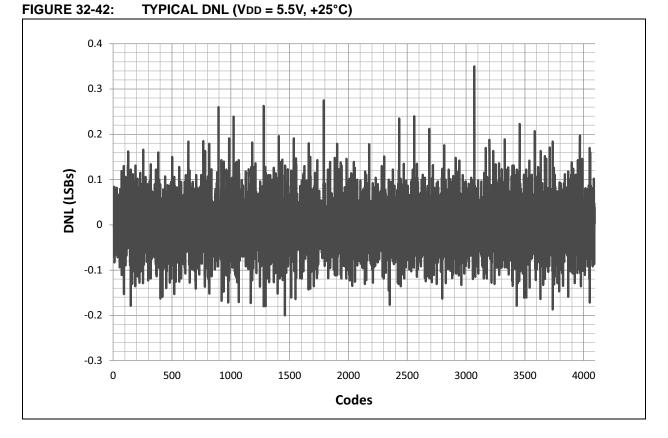
31.0 HIGH-TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of the dsPIC33EVXXXGM00X/10X family electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

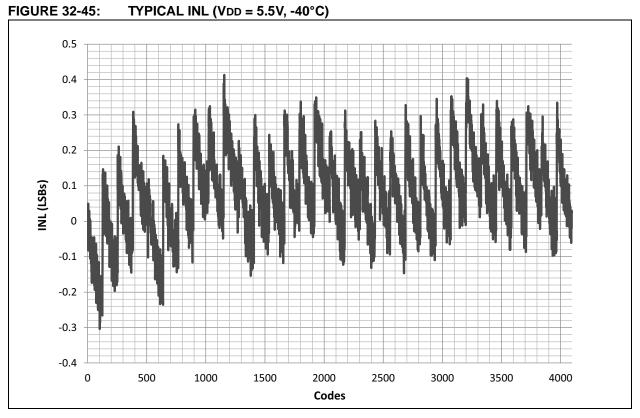
The specifications between -40° C to $+150^{\circ}$ C are identical to those shown in **Section 30.0** "**Electrical Characteristics**" for operation between -40° C to $+125^{\circ}$ C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter DC10 in **Section 30.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.


Absolute maximum ratings for the dsPIC33EVXXXGM00X/10X family high-temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.


Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias ⁽²⁾	40°C to +150°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	0.3V to +6.0V
Maximum current out of Vss pin	350 mA
Maximum current into Vod pin ⁽³⁾	350 mA
Maximum junction temperature	
Maximum current sunk by any I/O pin	20 mA
Maximum current sourced by I/O pin	18 mA
Maximum current sunk by all ports combined	200 mA
Maximum current sourced by all ports combined ⁽³⁾	200 mA


- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: AEC-Q100 reliability testing for devices intended to operate at +150°C is 1,000 hours. Any design in which the total operating time from +125°C to +150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - 3: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).

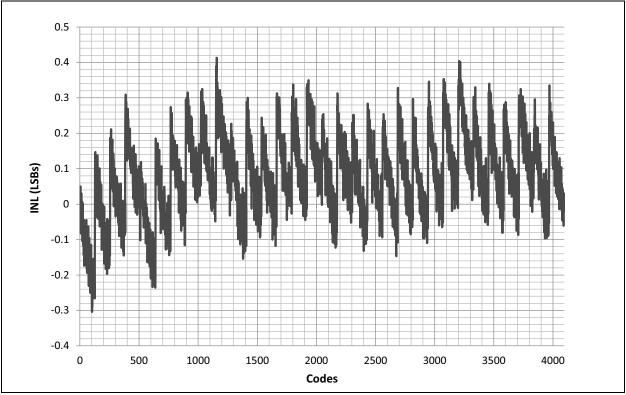
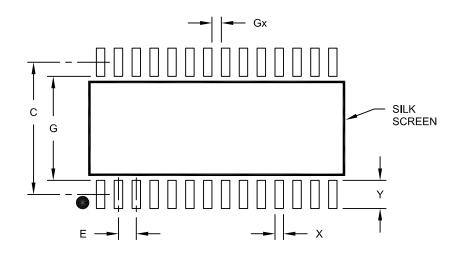



FIGURE 32-46: TYPICAL INL (VDD = 5.5V, +25°C)

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimensior	MIN	NOM	MAX	
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	Х			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A