

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev64gm102-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R/W-0	U-0	R/W-0	R/W-0	EGISTER	R-0	R-0	R-0
VAR	0-0	US1	US0	EDT ⁽¹⁾	DL2	DL1	R-0 DL0
pit 15	_	031	030	EDI	DL2		bLU
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7	SAID	SAIDW	ACCOAL	IF LOV /	SFA	RIND	bit
Legend:		C = Clearable	- bit				
R = Readable	bit	W = Writable		U = Unimplem	onted hit rea	d as '0'	
-n = Value at F		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	
	-						
bit 15	1 = Variable e	exception proce	ocessing Later essing latency	is enabled			
L:4 4 4			sing latency is	enabled			
bit 14 bit 13-12	•	ted: Read as '	0 igned/Signed (Control hito			
	01 = DSP eng 00 = DSP eng	gine multiplies gine multiplies gine multiplies	are signed				
bit 11			ation Control bi e DO loop at th	e end of the cu	rrent loop iter	ation	
bit 10-8	111 = 7 DO lo	ops are active		ts			
bit 7		Saturation En					
		ator A saturatio ator A saturatio					
bit 6	1 = Accumula	Saturation En ator B saturatio ator B saturatio	n is enabled				
bit 5	1 = Data Space	ce write satura	from DSP Engi tion is enabled tion is disabled		Enable bit		
bit 4	-	cumulator Satu	ration Mode S				

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

11.4 Slew Rate Selection

The slew rate selection feature allows the device to have control over the slew rate selection on the required I/O pin which supports this feature. For this purpose, for each I/O port, there are two registers: SR1x and SR0x, which configure the selection of the slew rate. The register outputs are directly connected to the associated I/O pins, which support the slew rate selection function. The SR1x register specifies the MSb and the SR0x register provides the LSb of the 2-bit field that selects the desired slew rate. For example, slew rate selections for PORTA are as follows:

EXAMPLE 11-2: SLEW RATE SELECTIONS FOR PORTA

SR1Ax, SR0Ax = 00 = Fastest Slew rate SR1Ax, SR0Ax = 01 = 4x slower Slew rate SR1Ax, SR0Ax = 10 = 8x slower Slew rate SR1Ax, SR0Ax = 11 = 16x slower Slew rate

11.5 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

The Peripheral Pin Select (PPS) configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The PPS configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping after it has been established.

11.5.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the PPS feature include the designation, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

11.5.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and Interrupt-on-Change (IOC) inputs.

In comparison, some digital only peripheral modules are never included in the PPS feature, because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C and the PWM. A similar requirement excludes all modules with analog inputs, such as the ADC Converter.

A key difference between the remappable and nonremappable peripherals is that the remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, the non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all the other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.5.3 CONTROLLING PERIPHERAL PIN SELECT

The PPS features are controlled through two sets of SFRs: one to map the peripheral inputs and the other to map the outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

11.5.4 INPUT MAPPING

The inputs of the PPS options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Table 11-1 and Register 11-1 through Register 11-17). Each register contains sets of 8-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 8-bit value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selects supported by the device.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP70R5	RP70R4	RP70R3	RP70R2	RP70R1	RP70R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP69R5	RP69R4	RP69R3	RP69R2	RP69R1	RP69R0
bit 7							bit 0

REGISTER 11-26: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP70R<5:0>: Peripheral Output Function is Assigned to RP70 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP69R<5:0>: Peripheral Output Function is Assigned to RP69 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: This register is present in dsPIC33EVXXXGM004/104/006/106 devices only.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP118R5	RP118R4	RP118R3	RP118R2	RP118R1	RP118R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	RP97R5	RP97R4	RP97R3	RP97R2	RP97R1	RP97R0
bit 7							bit 0

REGISTER 11-27: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8**RP118R<5:0>:** Peripheral Output Function is Assigned to RP118 Output Pin bits
(see Table 11-3 for peripheral function numbers)bit 7-6**Unimplemented:** Read as '0'

bit 5-0 **RP97R<5:0>:** Peripheral Output Function is Assigned to RP97 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: This register is present in dsPIC33EVXXXGM004/106 devices only.

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
FRMEN	SPIFSD	FRMPOL	_	—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
_					_	FRMDLY	SPIBEN		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	FRMEN: Fran	med SPIx Supp	ort bit						
				pin is used as	the Frame Sy	nc pulse input/o	utput)		
		SPIx support is							
bit 14		x Frame Sync F		n Control bit					
		/nc pulse input							
h:+ 40	-	/nc pulse outpu	. ,						
bit 13		ame Sync Pulse	5						
		/nc pulse is acti /nc pulse is acti							
bit 12-2	-	ited: Read as '							
bit 1	•			hit					
	FRMDLY: Frame Sync Pulse Edge Select bit 1 = Frame Sync pulse coincides with the first bit clock								
	0 = Frame Sync pulse precedes the first bit clock								
bit 0	SPIBEN: SPI	x Enhanced Bu	iffer Enable b	it					
	1 = Enhance	d buffer is enab	led						
	0 = Enhance	d buffer is disab	led (Standard	d mode)					

REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2

R-0, HSC	R-0, HSC	R-0, HSC	U-0	U-0	R/C-0, HSC	R-0, HSC	R-0, HSC				
ACKSTAT	TRSTAT	ACKTIM	—	_	BCL	GCSTAT	ADD10				
bit 15							bit 8				
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC				
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF				
bit 7 bit 0											
1		O Ola anali	I.a. Ia :4	LICO Llaratur		velete le it					
Legend: R = Readabl	a h:t	C = Clearab			are Settable/Clear						
		W = Writabl		0 = Unimpien	ented bit, read a	HS = Hardware	Cottoble bit				
-n = Value at	PUR	'1' = Bit is s	51		areu		Settable bit				
bit 15	ACKSTAT: A	Acknowledge	Status bit (up	dated in all Ma	ster and Slave m	odes)					
		edge was not				,					
	0 = Acknowl	edge was rec	eived from sla	ave							
bit 14				-	naster; applicable	e to master trans	mit operation)				
		ransmit is in p ransmit is not		ts + ACK)							
bit 13	ACKTIM: Ad	cknowledge T	ime Status bit	t (valid in I ² C Sl	ave mode only)						
						g edge of SCLx o	lock				
		-	-	eared on 9 ¹¹ risi	ng edge of SCL>	(clock					
bit 12-11	-	nted: Read a			1 1 20						
bit 10						nodule is disable	d, 12CEN = 0)				
		ision has not l			or slave transm	it operation					
bit 9				ed after Stop de	etection)						
		call address v		·	,						
bit 8				red after Stop o	detection)						
bit o		dress was m									
		dress was no									
bit 7	IWCOL: Wri	te Collision D	etect bit								
			the I2CxTRN	I register failed	because the I ² C	module is busy;	must be cleared				
	In softw	are n has not occi	irred								
bit 6		Receive Ove		ł							
bit o			-		s still holding the	previous byte; 12	2COV is a "don't				
	care" in	Transmit mod	de, must be c	leared in softwa	-						
		w has not occ									
bit 5				g as I ² C slave)							
		s that the last s that the last			was an address	i					
bit 4	P: I2Cx Stop				-						
	1 = Indicates	s that a Stop b		letected last	d when the I ² C r	nodule is disable	ed, I2CEN = 0.				

REGISTER 19-3: I2CxSTAT: I2Cx STATUS REGISTER

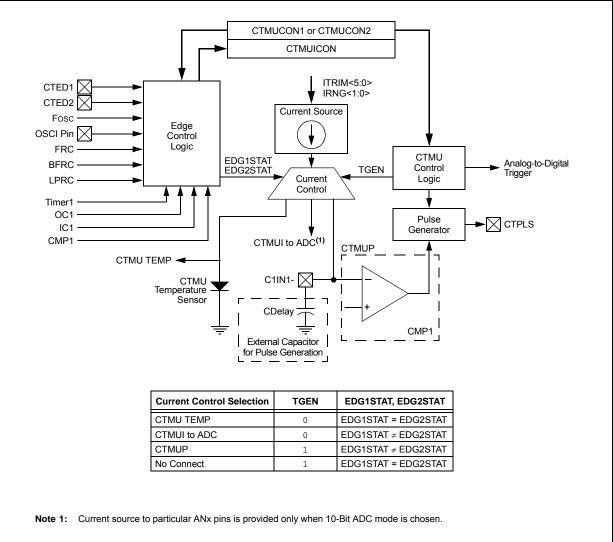
U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x			
—	WAKFIL		—		SEG2PH2	SEG2PH1	SEG2PH0			
bit 15							bit 8			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
-										
bit 15	Unimplemer	nted: Read as '	כי							
bit 14	WAKFIL: Sel	lect CAN Bus L	ine Filter for V	Vake-up bit						
		N bus line filter								
1.11.4.0.44		line filter is not		e-up						
bit 13-11	•	nted: Read as '								
bit 10-8	SEG2PH<2:0>: Phase Segment 2 bits 111 = Length is 8 x TQ									
	•									
	•									
	•	·								
L:1 7	000 = Length			-1 1-11						
bit 7		Phase Segmer	nt 2 Time Sele	ect bit						
	1 = Freely pro 0 = Maximum	n of SEG1PH<2	::0> bits or Inf	ormation Proce	essing Time (IP	T), whichever i	s greater			
bit 6	SAM: Sample	e of the CAN B	us Line bit							
		s sampled three s sampled once								
bit 5-3		0>: Phase Segr	-	•						
	111 = Length	-								
	•									
	•									
	000 = Length	n is 1 x Tq								
bit 2-0	-	>: Propagation	Time Segmen	t bits						
	111 = Length		Ū							
	•									
	•									
	000 = Length	n is 1 x Tq								
	- 3-									

REGISTER 22-10: CxCFG2: CANx BAUD RATE CONFIGURATION REGISTER 2

REGISTER 22-16: CxRXFnSID: CANx ACCEPTANCE FILTER n STANDARD IDENTIFIER REGISTER (n = 0-15)

		-	•				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0		EXIDE		EID17	EID16
bit 7							bit C
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			Iown
bit 15-5	SID<10:0>: S	Standard Identif	ier bits				
	0		•	1' to match filte			
	0	-		0' to match filte	er		
bit 4	Unimplemen	ted: Read as '	0'				
bit 3	EXIDE: Exter	nded Identifier I	Enable bit				
	If MIDE = 1:						
		, ,		ed Identifier add			
	0 = Matches	only messages	with Standar	d Identifier add	resses		
	Ignores EXID)E bit.					
bit 2	•	ted: Read as '	0'				
bit 1-0	•	Extended Iden					
				1' to match filte	er		
	0		•	0' to match filte			
	0						

REGISTER 22-17: CxRXFnEID: CANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTER (n = 0-15)


R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID)<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-0	EID<15:0>:	Extended Identifie	er bits				

1 = Message address bit, EIDx, must be '1' to match filter

0 = Message address bit, EIDx, must be '0' to match filter

dsPIC33EVXXXGM00X/10X FAMILY

REGISTER 23-2: CTMUCON2: CTMU CONTROL REGISTER 2 (CONTINUED)

- bit 5-2 EDG2SEL<3:0>: Edge 2 Source Select bits
 - 1111 = Fosc
 - 1110 = OSCI pin
 - 1101 = FRC Oscillator
 - 1100 = BFRC Oscillator
 - 1011 = Internal LPRC Oscillator
 - 1010 = Reserved
 - 1001 = Reserved
 - 1000 = Reserved 0111 = Reserved
 - 0111 = Reserved
 - 0101 = Reserved
 - 0100 = CMP1 module
 - 0011 = CTED2 pin
 - 0010 = CTED1 pin
 - 0001 = OCMP1 module
 - 0000 = IC1 module
- bit 1-0 Unimplemented: Read as '0'

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1 ⁽²⁾	IRNG0 ⁽²⁾		
bit 15	- 1			1	1		bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	—	—		
bit 7							bit (
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'			
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown		
	000001 = Mir 000000 = No 111111 = Mir 111110 = Mir •	nimum positive minal current o nimum negative nimum negative	change from r output specified e change from e change from	nominal current nominal current d by IRNG<1:0> nominal curren nominal curren	+ 2% t – 2% t – 4%				
	100010 = Maximum negative change from nominal current – 60% 100001 = Maximum negative change from nominal current – 62%								
bit 9-8	11 = 100 × Ba 10 = 10 × Bas 01 = Base Cu 00 = 1000 × B	se Current Irrent Level Base Current ⁽¹⁾)	bits ⁽²⁾					
bit 7-0	Unimplemen	ted: Read as '	0'						
	This current range Refer to the CTML				-				

REGISTER 23-3: CTMUICON: CTMU CURRENT CONTROL REGISTER⁽³⁾

for the current range selection values.3: Current sources are not generated when 12-Bit ADC mode is chosen. Current sources are active only when 10-Bit ADC mode is chosen.

REGISTER 25-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT **CONTROL REGISTER**

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	RW-0
—	—	_	—	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SELSRCB3 | SELSRCB2 | SELSRCB1 | SELSRCB0 | SELSRCA3 | SELSRCA2 | SELSRCA1 | SELSRCA0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

s '0'
;

bit 15-12	Unimplemented: Read as '0'
bit 11-8	SELSRCC<3:0>: Mask C Input Select bits
	1111 = FLT4
	1110 = FLT2
	1101 = Reserved
	1100 = Reserved
	1011 = Reserved
	1010 = Reserved
	1001 = Reserved
	1000 = Reserved
	0111 = Reserved 0110 = Reserved
	0110 = Reserved 0101 = PWM3H
	0100 = PWM3L
	0011 = PWM2H
	0010 = PWM2L
	0001 = PWM1H
	0000 = PWM1L
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits
	1111 = FLT4
	1110 = FLT2
	1101 = Reserved
	1100 = Reserved
	1011 = Reserved
	1010 = Reserved
	1001 = Reserved
	1000 = Reserved 0111 = Reserved
	0111 - Reserved
	0110 = PWM3H
	0100 = PWM3L
	0011 = PWM2H
	0010 = PWM2L
	0001 = PWM1H
	0000 = PWM1L

Bit Field	Register	Description
OSCIOFNC	FOSC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is the clock output 0 = OSC2 is the general purpose digital I/O pin
IOL1WAY	FOSC	Peripheral Pin Select Configuration bit 1 = Allows only one reconfiguration 0 = Allows multiple reconfigurations
FCKSM<1:0>	FOSC	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
PLLKEN	FOSC	PLL Lock Wait Enable bit 1 = Clock switches to the PLL source; will wait until the PLL lock signal is valid 0 = Clock switch will not wait for PLL lock
WDTPS<3:0>	FWDT	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • • • • • • • • • • •
WDTPRE	FWDT	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32
FWDTEN<1:0>	FWDT	 Watchdog Timer Enable bits 11 = WDT is enabled in hardware 10 = WDT is controlled through the SWDTEN bit 01 = WDT is enabled only while device is active and disabled in Sleep; the SWDTEN bit is disabled 00 = WDT and the SWDTEN bit are disabled
WINDIS	FWDT	Watchdog Timer Window Enable bit 1 = Watchdog Timer is in Non-Window mode 0 = Watchdog Timer is in Window mode
WDTWIN<1:0>	FWDT	Watchdog Timer Window Select bits 11 = WDT window is 25% of WDT period 10 = WDT window is 37.5% of WDT period 01 = WDT window is 50% of WDT period 00 = WDT window is 75% of WDT period
BOREN	FPOR	Brown-out Reset (BOR) Detection Enable bit 1 = BOR is enabled 0 = BOR is disabled
ICS<1:0>	FICD	ICD Communication Channel Select bits 11 = Communicates on PGEC1 and PGED1 10 = Communicates on PGEC2 and PGED2 01 = Communicates on PGEC3 and PGED3 00 = Reserved, do not use
DMTIVT<15:0>	FDMTINTVL	Lower 16 Bits of 32-Bit Field that Configures the DMT Window Interval bits
DMTIVT<31:16>	FDMTINTVH	Upper 16 Bits of 32-Bit Field that Configures the DMT Window Interval bits
DMTCNT<15:0>	FDMTCNTL	Lower 16 Bits of 32-Bit Field that Configures the DMT Instruction Count Time-out Value bits

TABLE 27-2:	dsPIC33EVXXXGM00X/10X CONFIGURATION BITS DESCRIPTION (CONTINUED)
-------------	--

Bit Field	Register	Description
DMTCNT<31:16>	FDMCNTH	Upper 16 Bits of 32-Bit Field that Configures the DMT Instruction Count Time-out Value bits
DMTEN	FDMT	Deadman Timer Enable bit 1 = Deadman Timer is enabled and cannot be disabled by software 0 = Deadman Timer is disabled and can be enabled by software
PWMLOCK	FDEVOPT	PWM Lock Enable bit 1 = Certain PWM registers may only be written after a key sequence 0 = PWM registers may be written without a key sequence
ALTI2C1	FDEVOPT	Alternate I ² C Pins for I2C1 bit 1 = I2C1 is mapped to the SDA1/SCL1 pins 0 = I2C1 is mapped to the ASDA1/ASCL1 pins
CTXT1<2:0>	FALTREG	Specifies the Alternate Working Register Set 1 Association with Interrupt Priority Level (IPL) bits 111 = Not assigned 110 = Alternate Register Set 1 is assigned to IPL Level 6 101 = Alternate Register Set 1 is assigned to IPL Level 5 100 = Alternate Register Set 1 is assigned to IPL Level 4 011 = Alternate Register Set 1 is assigned to IPL Level 3 010 = Alternate Register Set 1 is assigned to IPL Level 2 001 = Alternate Register Set 1 is assigned to IPL Level 2 001 = Alternate Register Set 1 is assigned to IPL Level 1
CTXT2<2:0>	FALTREG	Specifies the Alternate Working Register Set 2 Association with Interrupt Priority Level (IPL) bits 111 = Not assigned 110 = Alternate Register Set 2 is assigned to IPL Level 6 101 = Alternate Register Set 2 is assigned to IPL Level 5 100 = Alternate Register Set 2 is assigned to IPL Level 4 011 = Alternate Register Set 2 is assigned to IPL Level 3 010 = Alternate Register Set 2 is assigned to IPL Level 3 010 = Alternate Register Set 2 is assigned to IPL Level 2 001 = Alternate Register Set 2 is assigned to IPL Level 1

TABLE 27-2: dsPIC33EVXXXGM00X/10X CONFIGURATION BITS DESCRIPTION (CONTINUED)

R	R	R		R 23:16> ⁽¹⁾	R	R	R
			DEVID	23.10/			
bit 23							bit 16
R	R	R	R	R	R	R	R
			DEVID<	<15:8> (1)			
bit 15							bit 8
R	R	R	R	R	R	R	R
			DEVID	<7:0> ⁽¹⁾			
bit 7							bit 0
Legend:	gend: R = Read-Only bit U = Unimplemented bit						

REGISTER 27-1: DEVID: DEVICE ID REGISTER

bit 23-0 **DEVID<23:0>:** Device Identifier bits⁽¹⁾

Note 1: Refer to "*dsPIC33EVXXXGM00X/10X Families Flash Programming Specification*" (DS70005137) for the list of Device ID values.

REGISTER 27-2: DEVREV: DEVICE REVISION REGISTER

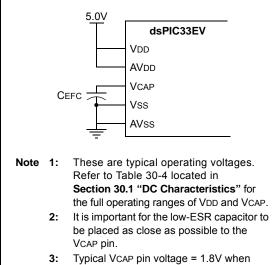
Legend:	R = Read-only bit			U = Unimplen	nented bit		
bit 7							bit 0
			DEVRE	/<7:0> ⁽¹⁾			
R	R	R	R	R	R	R	R
bit 15							bit 8
			DEVREV	<15:8> ⁽¹⁾			
R	R	R	R	R	R	R	R
bit 23							bit 16
			DEVREV<	<23:16> ⁽¹⁾			
R	R	R	R	R	R	R	R

bit 23-0 **DEVREV<23:0>:** Device Revision bits⁽¹⁾

Note 1: Refer to "*dsPIC33EVXXXGM00X/10X Families Flash Programming Specification*" (DS70005137) for the list of device revision values.

27.2 User OTP Memory

Locations, 800F80h-800FFEh, are a One-Time-Programmable (OTP) memory area. The user OTP words can be used for storing product information, such as serial numbers, system manufacturing dates, manufacturing lot numbers and other application-specific information.


27.3 On-Chip Voltage Regulator

All of the dsPIC33EVXXXGM00X/10X family devices power their core digital logic at a nominal 1.8V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 5.0V. To simplify system design, all devices in the dsPIC33EVXXXGM00X/10X family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohm) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (see Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 30-5, located in **Section 30.0 "Electrical Characteristics"**.

Note: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin.

FIGURE 27-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

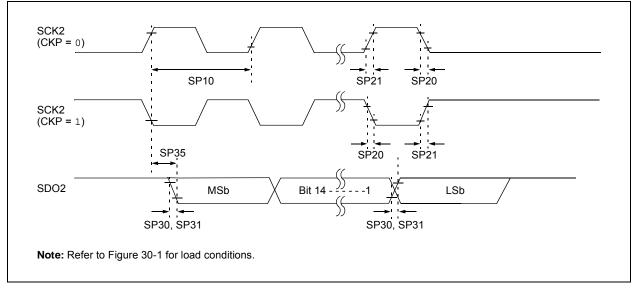
3: Typical VCAP pin voltage = 1.8V when VDD ≥ VDDMIN.

27.4 Brown-out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.


Concurrently, the Power-up Timer (PWRT) Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to Parameter SY35 in Table 30-22 of **Section 30.0 "Electrical Characteristics"** for specific TFSCM values.

The BOR status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle mode and resets the device should VDD fall below the BOR threshold voltage.

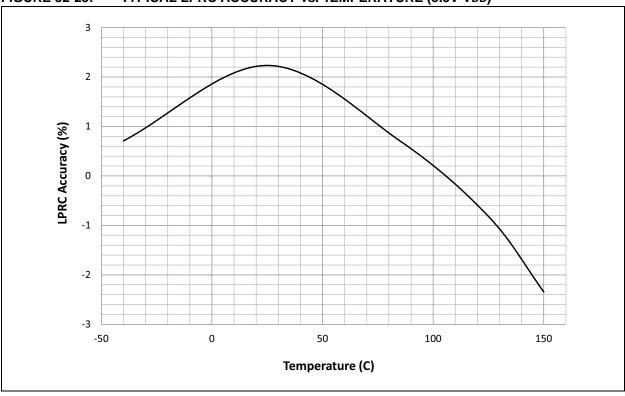
TABLE 30-30: SPI2 MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industr} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Exterm} \end{array}$				
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	СКЕ	СКР	SMP	
15 MHz	Table 30-31			0,1	0,1	0,1	
9 MHz	_	Table 30-32	—	1	0,1	1	
9 MHz	_	Table 30-33	—	0	0,1	1	
15 MHz	—	—	Table 30-34	1	0	0	
11 MHz	—	—	Table 30-35	1	1	0	
15 MHz	_	—	Table 30-36	0	1	0	
11 MHz	_	_	Table 30-37	0	0	0	

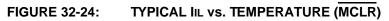
FIGURE 30-12: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

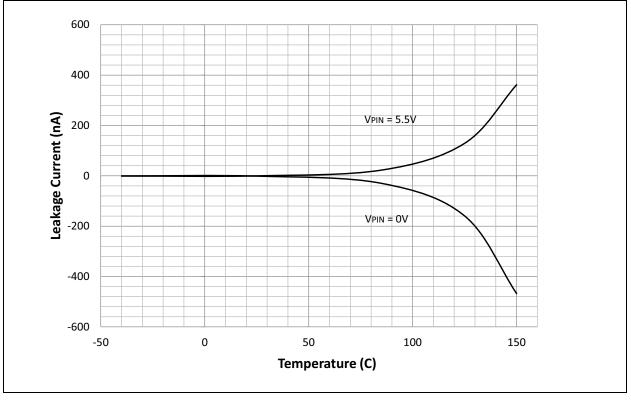
TABLE 30-34:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK2 Input Frequency	—	—	15	MHz	See Note 3
SP72	TscF	SCK2 Input Fall Time		—	_	ns	See Parameter DO32 and Note 4
SP73	TscR	SCK2 Input Rise Time	—	_	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDO2 Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDO2 Data Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	-	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	SS2 ↓ to SCK2 ↑ or SCK2 ↓ Input	120	-	—	ns	
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 TCY + 40	—	_	ns	See Note 4
SP60	TssL2doV	SDO2 Data Output Valid after	—	_	50	ns	

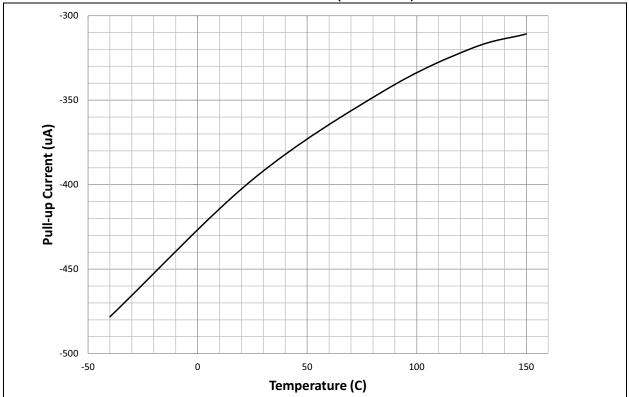

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

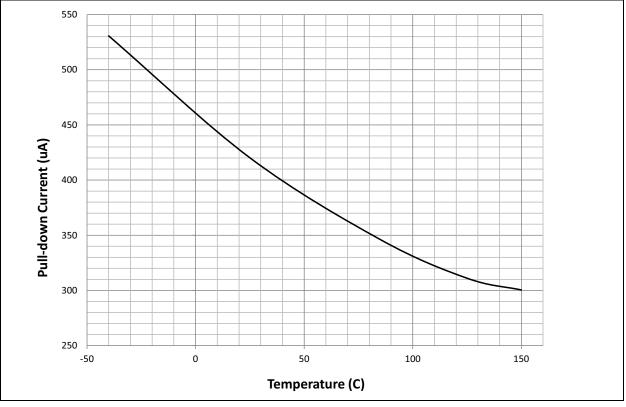

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.


4: Assumes 50 pF load on all SPI2 pins.

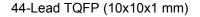
dsPIC33EVXXXGM00X/10X FAMILY

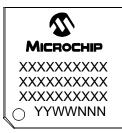


32.7 Leakage Current

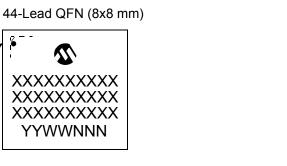


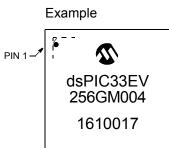
33.8 Pull-up/Pull-Down Current





34.1 Package Marking Information (Continued)





PIN 1-

Example

Example

64-Lead QFN (9x9x0.9 mm)

64-Lead TQFP (10x10x1 mm)

