

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev64gm102-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Digital Signal Controllers	17
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	83
6.0	Resets	
7.0	Interrupt Controller	
8.0	Direct Memory Access (DMA)	109
9.0	Oscillator Configuration	123
10.0	Power-Saving Features	133
11.0	I/O Ports	143
12.0	Timer1	173
13.0	Timer2/3 and Timer4/5	175
14.0	Deadman Timer (DMT)	181
15.0	Input Capture	189
16.0	Output Compare	193
17.0	High-Speed PWM Module	199
18.0		221
19.0		
20.0	Single-Edge Nibble Transmission (SENT)	237
21.0	Universal Asynchronous Receiver Transmitter (UART)	
22.0	Controller Area Network (CAN) Module (dsPIC33EVXXXGM10X Devices Only)	253
23.0	Charge Time Measurement Unit (CTMU)	279
24.0	10-Bit/12-Bit Analog-to-Digital Converter (ADC)	
25.0	Op Amp/Comparator Module	301
26.0	Comparator Voltage Reference	313
	Special Features	
28.0	Instruction Set Summary	327
29.0		
	High-Temperature Electrical Characteristics	
	Characteristics for Industrial/Extended Temperature Devices (-40°C to +125°C)	
33.0	Characteristics for High-Temperature Devices (+150°C)	439
	Packaging Information	
	endix A: Revision History	
	Χ	
	Microchip Web Site	
	omer Change Notification Service	
	omer Support	
Produ	luct Identification System	497

4.2.5 X AND Y DATA SPACES

The dsPIC33EVXXXGM00X/10X family core has two Data Spaces: X and Y. These Data Spaces can be considered either separate (for some DSP instructions) or as one unified, linear address range (for MCU instructions). The Data Spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X DS is used by all instructions and supports all addressing modes. The X DS has separate read and write data buses. The X read data bus is the read data path for all instructions that view the DS as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class). The Y DS is used in concert with the X DS by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y Data Spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to the X Data Space.

All data memory writes, including in DSP instructions, view Data Space as combined X and Y address space. The boundary between the X and Y Data Spaces is device-dependent and is not user-programmable.

4.3 Special Function Register Maps

TABLE 4-1: CPU CORE REGISTER MAP

IADLL 4	- • •																	
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset s
W0	0000								W0 (W	REG)								0000
W1	0002								Ŵ									0000
W2	0004								W	2								0000
W3	0006								W	3								0000
W4	0008		W4 0000															
W5	000A								W	5								0000
W6	000C								We	6								0000
W7	000E								W	7								0000
W8	0010								W	8								0000
W9	0012		W9 0000															
W10	0014		W10 0000															
W11	0016								W1	1								0000
W12	0018		W12 0000															
W13	001A								W1	3								0000
W14	001C								W1	4								0000
W15	001E								W1	5								0800
SPLIM	0020								SPL	IM								xxxx
ACCAL	0022								ACC	AL								xxxx
ACCAH	0024								ACC	AH								xxxx
ACCAU	0026			Sig	n Extension	of ACCA<3	9>						ACC	CAU				xxxx
ACCBL	0028								ACC	BL								xxxx
ACCBH	002A								ACC	BH								xxxx
ACCBU	002C			Sig	n Extension	of ACCB<3	9>						ACC	CBU				xxxx
PCL	002E						Pro	ogram Cou	nter Low We	ord Register	r						_	0000
PCH	0030	_	_	_	_	_	_	_	_	_		F	Program Cou	inter High W	ord Registe	r		0000
DSRPAG	0032	_	_	_	_	_	_				Dat	a Space Re	ad Page Reg	gister				0001
DSWPAG	0034	—	_			_	_	_				Data Spa	ce Write Pag	e Register				0001
RCOUNT	0036							REPEAT LC	op Counter	Register							0	xxxx
DCOUNT	0038							DC	OUNT<15:1	>							0	xxxx
DOSTARTL	003A							DOS	TARTL<15	:1>							0	xxxx
DOSTARTH	003C	_	_		_	_		_	_	_	_			DOSTART	H<5:0>			00xx
DOENDL	003E	DOENDL<15:1> — XXXX																
Lanandi			in value on Depart. — a unimplemented, read as (s). Depart values are shown in heurodoximal															

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: NVM REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0728	WR	WREN	WRERR	NVMSIDL	_	_	RPDF	URERR	_	—	_	_	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000
NVMADR	072A				NVMADR<15:0> 0000													
NVMADRU	072C	_	_	_	_		_	_	_				NVMAD	RU<23:16>				0000
NVMKEY	072E	_	_	_	_		_	_	_				NVMK	EY<7:0>				0000
NVMSRCADRL	0730			NVMSRCADR<15:1> 0 0000														
NVMSRCADRH	0732	_	_	_	_		_	_	_				NVMSRC	ADR<23:16>				0000
Lanand	Levende – unimplemented reading (of Desetuation are shown in heredoging)																	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: SYSTEM CONTROL REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR		_	VREGSF		СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	_	_	OSWEN	Note 2
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	FRCDIV2	FRCDIV1	FRCDIV0	PLLPOST1	PLLPOST0	_	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0	0000
PLLFBD	0746	-	—		—	_	_	—				PL	LDIV<8:0>					0000
OSCTUN	0748	-	—		—	_	_	—		_	_			TUN	<5:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the Configuration fuses.

TABLE 4-21: REFERENCE CLOCK REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
REFOCON	074E	ROON	-	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	_	_	—	_	_	_	—	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/ 10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Flash Programming" (DS70609) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EVXXXGM00X/10X family devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

The Flash memory can be programmed in the following three ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows for a dsPIC33EVXXXGM00X/10X family device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (PGECx/PGEDx) lines, and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed

devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

Enhanced ICSP uses an on-board bootloader, known as the Program Executive (PE), to manage the programming process. Using an SPI data frame format, the Program Executive can erase, program and verify program memory. For more information on Enhanced ICSP, refer to the specific device programming specification.

RTSP is accomplished using the TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data as a double program memory word, a row of 64 instructions (192 bytes) and erase program memory in blocks of 512 instruction words (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

The Flash memory read and the double-word programming operations make use of the TBLRD and TBLWT instructions, respectively. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of the program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of the program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

© 2013-2016 Microchip Technology Inc.

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset
 - Illegal Address Mode Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this device data sheet for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR and BOR bits (RCON<1:0>) that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in the other sections of this device data sheet.

Note: The status bits in the RCON register should be cleared after they are read. Therefore, the next RCON register value after a device Reset is meaningful.

Note: In all types of Resets, to select the device clock source, the contents of OSCCON are initialized from the FNOSCx Configuration bits in the FOSCSEL Configuration register.

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y		
_	COSC2	COSC1	COSC0	—	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSCO ⁽²⁾		
bit 15							bit 8		
R/W-0	R/W-0	R-0	U-0	R/C-0	U-0	U-0	R/W-0		
CLKLOCK	IOLOCK	LOCK	—	CF			OSWEN		
bit 7							bit (
Legend:		C = Clearable	hit	v = Value set	from Configura	tion hits on PO	R		
R = Readab	le hit	W = Writable		,	mented bit, read				
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	าดพุท		
							IOWIT		
bit 15	Unimplemen	ted: Read as '	0'						
bit 14-12	-	Current Oscilla		bits (read-only	()				
		C Oscillator (F		· · ·	,				
	110 = Fast R	C Oscillator (F	RC) with Divid						
		ower RC Oscill							
		p FRC Oscillator y Oscillator (X ⁻		ыры					
		y Oscillator (X		II PLL					
		C Oscillator (F	,	y N and PLL					
		C Oscillator (F		,					
bit 11	-	ted: Read as '							
bit 10-8	NOSC<2:0>:	New Oscillator	r Selection bits	_S (2)					
		C Oscillator (F							
			cillator (FRC) with Divide-by-16 RC Oscillator (LPRC)						
	101 = Low-P								
		y Oscillator (X ⁻	Г, HS, EC) wit	h PLL					
		y Oscillator (X							
		C Oscillator (F		y N and PLL					
hit 7		C Oscillator (F	,						
bit 7		Clock Lock Ena		onfigurations a	re locked; if FCk	(SM0 = 0 then)	clock and Pl		
		ations may be r							
				ked, configurat	ions may be mo	odified			
bit 6	IOLOCK: I/O	Lock Enable b	oit						
	1 = I/O lock is								
	0 = I/O lock is								
bit 5		ock Status bit							
		that PLL is in that PLL is ou			satisfied progress or PLL	is disabled			
					-				
	Vrites to this regis dsPIC33/PIC24 F						ils.		
	irect clock switch	-	-		-	-			
te	ed. This applies to	o clock switche	s in either dire	ection. In these	instances, the				
	RC mode as a tra				L modes.				
	his register reset	-							
4 : C	OSC<2:0> bits w	viii be set to '0k	DIOU when H	to fails.					

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

5: User cannot write '0b100' to NOSC<2:0>. COSC<2:0> will be set to '0b100' (BFRC) when the FRC fails.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1					
ROI	DOZE2 ⁽³⁾	DOZE1 ⁽³⁾	DOZE0 ⁽³⁾	DOZEN ^(1,4)	FRCDIV2	FRCDIV1	FRCDIV0					
bit 15		•	-	-		•	bit 8					
			DAMO	D/M/ 0		R/W-0	DAMA					
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		R/W-0					
PLLPOST1	PLLPOST0	—	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0					
bit 7							bit C					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15		on Interrupt b	i+									
		will clear the E										
		have no effect		N bit								
bit 14-12	•	Processor Clo										
	111 = FCY div											
	110 = FCY div											
	101 = FCY div											
	100 = FCY div 011 = FCY div											
	010 = FCY div											
	001 = Fcy divided by 2 000 = Fcy divided by 1 (default)											
		• ·										
bit 11		e Mode Enable										
				tween the peri atio are forced		nd the process	or clocks					
bit 10-8	FRCDIV<2:0>	. Internal Fast	RC Oscillator	Postscaler bit	S							
	111 = FRC d i	vided by 256										
	110 = FRC di											
	101 = FRC di	•										
	100 = FRC di 011 = FRC di											
	010 = FRC di											
		vided by 2 (de	fault)									
	000 = FRC di	•										
bit 7-6	PLLPOST<1:	0>: PLL VCO	Output Divide	r Select bits (al	so denoted as	'N2', PLL posts	caler)					
	11 = Output d											
	10 = Reserve 01 = Output d											
	00 = Output d											
bit 5		ted: Read as '	0'									
Note 1: Th	is bit is cleared v	when the ROI	bit is set and a	an interrupt occ	urs.							
2: Th	is register resets	s only on a Pov	wer-on Reset	(POR).								
)ZE<2:0> bits ca)ZE<2:0> are igi		en to when th	e DOZEN bit is	clear. If DOZE	N = 1, any wri	tes to					
	o DOZEN bit cou		075-2.05 -		$2 \cdot 0 > - 0 = 0 = 0$	attempt by up	or ooftwara to					

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾

4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

11.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports" (DS7000598) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Many of the device pins are shared among the peripherals and the Parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity. All the pins in the device are 5V tolerant pins.

11.1 Parallel I/O (PIO) Ports

Generally, a Parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have eight registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the Data Direction register bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch; writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device are disabled. This means that the corresponding LATx and TRISx registers, and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port, because there is no other competing source of output.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

© 2013-2016 Microchip Technology Inc.

REGISTER 17-8: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER

		DAMA		D/14/ 0		D 444 0	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	x<15:8>			
bit 15							bit 8
]
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	\$x<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 PDCx<15:0>: PWMx Generator Duty Cycle Value bits

REGISTER 17-9: PHASEx: PWMx PRIMARY PHASE-SHIFT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at P	-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 PHASEx<15:0>: PWMx Phase-Shift Value or Independent Time Base Period for the PWM Generator bits

Note 1: If ITB (PWMCONx<9>) = 0, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output modes (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs.

 If ITB (PWMCONx<9>) = 1, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output modes (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Independent Time Base period value for PWMxH and PWMxL.

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
DMABS2	DMABS1	DMABS0	_	—	_	_	—			
pit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
		FSA5	FSA4	FSA3	FSA2	FSA1	FSA0			
oit 7							bit (
Legend:										
R = Readable	e bit	W = Writable t	oit	U = Unimplen	nented bit, rea	id as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 12-6	101 = 24 buff 100 = 16 buff 011 = 12 buff 010 = 8 buffe 001 = 6 buffe 000 = 4 buffe	fers in RAM fers in RAM ers in RAM ers in RAM	7,							
bit 5-0	-			oits						
	FSA<5:0>: FIFO Area Starts with Buffer bits 11111 = Receive Buffer RB31 11110 = Receive Buffer RB30 • • • • • • • • • • • • •									

REGISTER 22-4: CxFCTRL: CANx FIFO CONTROL REGISTER

REGISTER 22-6: CxINTF: CANx INTERRUPT FLAG REGISTER (CONTINUED)

bit 1	RBIF: RX Buffer Interrupt Flag bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	TBIF: TX Buffer Interrupt Flag bit

- 1 = Interrupt request has occurred
- 0 = Interrupt request has not occurred

REGISTER 22-7: CxINTE: CANx INTERRUPT ENABLE REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	—	—	—			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
IVRIE	WAKIE ERRIE —		FIFOIE	RBOVIE	RBIE	TBIE				
bit 7							bit 0			
Legend:	L.:4		. : 4			(0)				
R = Readable bit		W = Writable bit		•	nented bit, read					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 15-8	Unimplement	ted: Read as '0	۱'							
bit 7	=	Message Inter		it						
Sit 1		request is enabl	•							
	0 = Interrupt request is not enabled									
bit 6 WAKIE: Bus Wake-up Activity Interrupt Enable bit										
	1 = Interrupt request is enabled									
	•	equest is not e								
bit 5 ERRIE: Error Interrupt Enable bit										
	 Interrupt request is enabled Interrupt request is not enabled 									
bit 4	Unimplemented: Read as '0'									
bit 3	FIFOIE: FIFO Almost Full Interrupt Enable bit									
		1 = Interrupt request is enabled								
	0 = Interrupt request is not enabled									
bit 2	RBOVIE: RX Buffer Overflow Interrupt Enable bit									
	1 = Interrupt request is enabled									
0 = Interrupt request is not enabledbit 1 RBIE: RX Buffer Interrupt Enable bit										
	1 = Interrupt request is enabled									
		equest is not e								
bit 0	TBIE: TX Buffer Interrupt Enable bit									
	1 = Interrupt request is enabled									
	0 = Interrupt r	equest is not e	nabled							

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F15MSK1	F15MSK0	F14MSK1	F14MSK0	F13MSK'	F13MSK0	F12MSK1	F12MSK0		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F11MSK1	F11MSK0	F10MSK1	F10MSK0	F9MSK1	F9MSK0	F8MSK1	F8MSK0		
bit 7							bit C		
Legend:									
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-14	F15MSK<1:0>: Mask Source for Filter 15 bit 11 = Reserved 10 = Acceptance Mask 2 registers contain the mask 01 = Acceptance Mask 1 registers contain the mask 00 = Acceptance Mask 0 registers contain the mask								
bit 13-12	F14MSK<1:0>: Mask Source for Filter 14 bit (same values as bits 15-14)								
bit 11-10	F13MSK<1:0>: Mask Source for Filter 13 bit (same values as bits 15-14)								
bit 9-8	F12MSK<1:0>: Mask Source for Filter 12 bit (same values as bits 15-14)								
bit 7-6	F11MSK<1:0>: Mask Source for Filter 11 bit (same values as bits 15-14)								
bit 5-4	F10MSK<1:0>: Mask Source for Filter 10 bit (same values as bits 15-14)								
bit 3-2	F9MSK<1:0>: Mask Source for Filter 9 bit (same values as bits 15-14)								

REGISTER 22-19: CxFMSKSEL2: CANx FILTERS 15-8 MASK SELECTION REGISTER 2

bit 1-0 **F8MSK<1:0>:** Mask Source for Filter 8 bit (same values as bits 15-14)

dsPIC33EVXXXGM00X/10X FAMILY

27.6 In-Circuit Serial Programming

The dsPIC33EVXXXGM00X/10X family devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to "dsPIC33EVXXXGM00X/10X Families Flash Programming Specification" (DS70005137) for details about In-Circuit Serial Programming[™] (ICSP[™]).

Any of the following three pairs of programming clock/ data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

27.7 In-Circuit Debugger

When MPLAB[®] ICD 3 or REAL ICETM is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB X IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the following three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, Vss and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGECx and PGEDx).

27.8 Code Protection and CodeGuard™ Security

The dsPIC33EVXXXGM00X/10X family devices offer Intermediate CodeGuard Security that supports General Segment (GS) security, Boot Segment (BS) security and Configuration Segment (CS) security. This feature helps protect individual Intellectual Properties.

Note:	Refer to "CodeGuard™ Intermediate
	Security" (DS70005182) in the "dsPIC33/
	PIC24 Family Reference Manual" for
	further information on usage, configuration
	and operation of CodeGuard Security.

FIGURE 30-15: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING

Note: Refer to Figure 30-1 for load conditions.

SP40 SP41

TABLE 30-33: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol Characteristic ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK2 Frequency	_	—	9	MHz	-40°C to +125°C and see Note 3	
SP20	TscF	SCK2 Output Fall Time	—	—	—	ns	See Parameter DO32 and Note 4	
SP21	TscR	SCK2 Output Rise Time	—	—	—	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDO2 Data Output Fall Time	—	—	—	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDO2 Data Output Rise Time	—	—	—	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	—	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	—	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—		ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

- 3: The minimum clock period for SCK2 is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI2 pins.

FIGURE 30-16: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

NOTES:

FIGURE 32-33: TYPICAL Vol 4x DRIVER PINS vs. Iol (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

32.11 VREG

FIGURE 32-34: TYPICAL REGULATOR VOLTAGE vs. TEMPERATURE

© 2013-2016 Microchip Technology Inc.

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 33-4: TYPICAL IDD vs. VDD (EC MODE, 40 MIPS)