

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev64gm102t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-4:

FIGURE 4-6: DATA MEMORY MAP FOR 32-Kbyte DEVICES⁽¹⁾

FIGURE 4-7: DATA MEMORY MAP FOR 64-Kbyte/128-Kbyte DEVICES⁽¹⁾

4.3.1 PAGED MEMORY SCHEME

The dsPIC33EVXXXGM00X/10X family architecture extends the available DS through a paging scheme, which allows the available DS to be accessed using MOV instructions in a linear fashion for pre- and post-modified Effective Addresses (EAs). The upper half of the Base Data Space address is used in conjunction with the Data Space Page registers, the 10-bit Data Space Read Page register (DSRPAG) or the 9-bit Data Space Write Page register (DSWPAG), to form an EDS address, or Program Space Visibility (PSV) address.

The Data Space Page registers are located in the SFR space. Construction of the EDS address is shown in Figure 4-9 and Figure 4-10. When DSRPAG<9> = 0 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS read address. Similarly, when the base address bit, EA<15> = 1, the DSWPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS read address. Similarly, when the base address bit, EA<15> = 1, the DSWPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS write address.

FIGURE 4-9: EXTENDED DATA SPACE (EDS) READ ADDRESS GENERATION

4.3.2 EXTENDED X DATA SPACE

The lower portion of the base address space range, between 0x0000 and 0x2FFF, is always accessible regardless of the contents of the Data Space Page registers; it is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x002FFF with the base address bit, EA<15> = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of Base Data Space, in combination with DSRPAG = 0x000 or DSWPAG = 0x000. Consequently, the DSRPAG and DSWPAG registers are initialized to 0x001 at Reset.

- Note 1: DSxPAG should not be used to access Page 0. An EDS access with DSxPAG set to 0x000 will generate an address error trap.
 - 2: Clearing the DSxPAG in software has no effect.

FIGURE 4-12: EDS MEMORY MAP

The remaining pages, including both EDS and PSV pages, are only accessible using the DSRPAG or DSWPAG registers in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where the base address bit, EA<15> = 1.

For example, when DSRPAG = 0x001 or DSWPAG = 0x001, accesses to the upper 32 Kbytes, 0x8000 to 0xFFFF of the Data Space, will map to the EDS address range of 0x008000 to 0x00FFFF. When DSRPAG = 0x002 or DSWPAG = 0x002, accesses to the upper 32 Kbytes of the Data Space will map to the EDS address range of 0x010000 to 0x017FFF and so on, as shown in the EDS memory map in Figure 4-12.

For more information on the PSV page access using Data Space Page registers, refer to **Section 5.0 "Program Space Visibility from Data Space"** in **"dsPIC33E/PIC24E Program Memory"** (DS70000613) of the *"dsPIC33/PIC24 Family Reference Manual"*.

11.5.5.1 Mapping Limitations

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn pins is possible. This includes both many-to-one, and one-to-many mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

Function	RPnR<5:0>	Output Name
Default Port	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U2TX	000011	RPn tied to UART2 Transmit
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Slave Select
C1TX	001110	RPn tied to CAN1 Transmit
OC1	010000	RPn tied to Output Compare 1 Output
OC2	010001	RPn tied to Output Compare 2 Output
OC3	010010	RPn tied to Output Compare 3 Output
OC4	010011	RPn tied to Output Compare 4 Output
C1OUT	011000	RPn tied to Comparator Output 1
C2OUT	011001	RPn tied to Comparator Output 2
C3OUT	011010	RPn tied to Comparator Output 3
SYNCO1	101101	RPn tied to PWM Primary Time Base Sync Output
REFCLKO	110001	RPn tied to Reference Clock Output
C4OUT	110010	RPn tied to Comparator Output 4
C5OUT	110011	RPn tied to Comparator Output 5
SENT1	111001	RPn tied to SENT Out 1
SENT2	111010	RPn tied to SENT Out 2

· · ·	TABLE 11-3:	OUTPUT SELECTION FOR REMAPPABLE PINS (RP	'n)
-------	-------------	---	-----

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC2R7	IC2R6	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC1R7	IC1R6	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-8 bit 7-0	IC2R<7:0>: A (see Table 11 10110101 = 00000001 = 00000000 = IC1R<7:0>: A (see Table 11 10110101 = 00000001 = 00000001 =	Assign Input Ca -2 for input pin Input tied to CI Input tied to CI Input tied to Vs Assign Input Ca -2 for input pin Input tied to CI Input tied to CI Input tied to Vs	apture 2 (IC2) selection nur PI181 MP1 SS apture 1 (IC1) selection nur PI181 MP1 SS	to the Corresp mbers) to the Corresp mbers)	onding RPn Piı	n bits	

REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

13.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

These modules are 32-bit timers, which can also be configured as four independent, 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3 and Timer4/5 operate in the following three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare Modules
- ADC1 Event Trigger (Timer2/3 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1. The T3CON and T5CON registers are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw). Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, the T3CON and T5CON control bits are ignored. Only the T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

Block diagrams for the Type B and Type C timers are shown in Figure 13-1 and Figure 13-2, respectively.

A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 13-3.

Note: Only Timer2, Timer3, Timer4 and Timer5 can trigger a DMA data transfer.

13.1 Timer2/3 and Timer4/5 Control Registers

REGISTER 13-1: TxCON (T2CON AND T4CON) CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON	_	TSIDL	_	_	—		_			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0			
—	TGATE	TCKPS1	TCKPS0	T32	—	TCS ⁽¹⁾	—			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'				
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own			
bit 15	When T32 = 1 1 = Starts 32-1 0 = Stops 32-1 When T32 = 0 1 = Starts 16-1 0 = Stops 16-1	On bit <u>.:</u> bit Timerx/y bit Timerx/y) <u>:</u> bit Timerx bit Timerx								
bit 14	Unimplemented: Read as '0'									
bit 13	TSIDL: Timer	x Stop in Idle M	lode bit							
	1 = Discontinu 0 = Continues	ues module opera	eration when t tion in Idle mo	the device ente	ers Idle mode					
bit 12-7	Unimplement	ted: Read as ')'							
bit 6	TGATE: Time	rx Gated Time	Accumulation	Enable bit						
	When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled									
bit 5-4	TCKPS<1:0>	: Timerx Input (Clock Prescal	e Select bits						
	11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1									
bit 3	T32: 32-Bit Ti	mer Mode Sele	ect bit							
	 1 = Timerx and Timery form a single 32-bit timer 0 = Timerx and Timery act as two 16-bit timers 									
bit 2	Unimplement	ted: Read as ')'							
bit 1	TCS: Timerx (Clock Source S	Select bit ⁽¹⁾							
	1 = External c 0 = Internal cl	lock is from pir ock (FP)	n, TxCK (on th	ne rising edge)						
bit 0	Unimplement	ted: Read as ')'							

Note 1: The TxCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

20.3 Receive Mode

The module can be configured for receive operation by setting the RCVEN (SENTxCON1<11>) bit. The time between each falling edge is compared to SYNCMIN<15:0> (SENTxCON3<15:0>) and SYNCMAX<15:0> (SENTxCON2<15:0>), and if the measured time lies between the minimum and maximum limits, the module begins to receive data. The validated Sync time is captured in the SENTxSYNC register and the tick time is calculated. Subsequent falling edges are verified to be within the valid data width and the data is stored in the SENTxDATH/L register. An interrupt event is generated at the completion of the message and the user software should read the SENTx Data register before the reception of the next nibble. The equation for SYNCMIN<15:0> and SYNCMAX<15:0> is shown in Equation 20-3.

EQUATION 20-3: SYNCMIN<15:0> AND SYNCMAX<15:0> CALCULATIONS

 $TTICK = TCLK \bullet (TICKTIME < 15:0 > + 1)$

FRAMETIME<15:0> = TTICK/TFRAME

SyncCount = 8 x FRCV x TTICK

SYNCMIN<15:0> = 0.8 x SyncCount

SYNCMAX<15:0> = 1.2 x SyncCount

 $FRAMETIME < 15:0 \ge 122 + 27N$

 $FRAMETIME < 15:0 \ge 848 + 12N$

Where:

 T_{FRAME} = Total time of the message from ms N = The number of data nibbles in message, 1-6 F_{RCV} = FCY x prescaler T_{CLK} = FCY/Prescaler

For TTICK = 3.0 μ s and FCLK = 4 MHz, SYNCMIN<15:0> = 76.

Note:	To ensure a Sync period can be identified,
	the value written to SYNCMIN<15:0>
	must be less than the value written to SYNCMAX<15:0>.

20.3.1 RECEIVE MODE CONFIGURATION

20.3.1.1 Initializing the SENTx Module:

Perform the following steps to initialize the module:

- 1. Write RCVEN (SENTxCON1<11>) = 1 for Receive mode.
- 2. Write NIBCNT<2:0> (SENTxCON1<2:0>) for the desired data frame length.
- 3. Write CRCEN (SENTxCON1<8>) for hardware or software CRC validation.
- 4. Write PPP (SENTxCON1<7>) = 1 if pause pulse is present.
- 5. Write SENTxCON2 with the value of SYNCMAXx (Nominal Sync Period + 20%).
- Write SENTxCON3 with the value of SYNCMINx (Nominal Sync Period – 20%).
- 7. Enable interrupts and set interrupt priority.
- 8. Set the SNTEN (SENTxCON1<15>) bit to enable the module.

The data should be read from the SENTxDATH/L register after the completion of the CRC and before the next message frame's status nibble. The recommended method is to use the message frame completion interrupt trigger.

REGISTER 22-22: CxRXFUL1: CANx RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFL	IL<15:8>			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	JL<7:0>			
bit 7							bit 0
Legend:		C = Writable I	bit, but only '()' can be writter	to clear the b	bit	
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0 RXFUL<15:0>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 22-23: CxRXFUL2: CANx RECEIVE BUFFER FULL REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFUI	_<31:24>			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFUI	_<23:16>			
bit 7							bit 0
Legend:		C = Writable I	bit, but only 'C)' can be writter	to clear the b	it	
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	id as '0'	
-n = Value at POR (1' = Bit is set (0' = Bit is cleared					ared	x = Bit is unkr	nown

bit 15-0 RXFUL<31:16>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1 ⁽²⁾	IRNG0 ⁽²⁾
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—			_	_	—	—
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
	011111 = Ma 011110 = Ma • • • • • • • • • • • • • • • • • • •	aximum positive aximum positive nimum positive minal current o nimum negative nimum negative aximum negative	change from r change from r change from r output specified change from change from change from	nominal curren nominal current nominal current by IRNG<1:0> nominal curren nominal curren nominal curren	t + 62% t + 60% + 4% + 2% t - 2% t - 2% t - 4% t - 60% nt - 62%		
bit 9-8	IRNG<1:0>: 0 11 = 100 × Ba 10 = 10 × Bas 01 = Base Cu 00 = 1000 × B	Current Source ase Current se Current urrent Level Base Current ⁽¹⁾	Range Select	bits ⁽²⁾			
bit 7-0	Unimplemen	ted: Read as '	0'				
Note 1: 2:	This current range Refer to the CTML	e is not availab J Current Sourc	le for use with	the internal ten s (Table 30-53) i	nperature meas in Section 30.0	surement diode	aracteristics"

REGISTER 23-3: CTMUICON: CTMU CURRENT CONTROL REGISTER⁽³⁾

for the current range selection values.3: Current sources are not generated when 12-Bit ADC mode is chosen. Current sources are active only when 10-Bit ADC mode is chosen.

Figure 25-2, shows the user-programmable blanking function block diagram.

FIGURE 25-2: USER-PROGRAMMABLE BLANKING FUNCTION BLOCK DIAGRAM

Figure 25-3, shows the digital filter interconnect block diagram.

FIGURE 25-3: DIGITAL FILTER INTERCONNECT BLOCK DIAGRAM

FIGURE 30-15: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING

Note: Refer to Figure 30-1 for load conditions.

SP40 SP41

TABLE 30-33: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK2 Frequency	—	—	9	MHz	-40°C to +125°C and see Note 3	
SP20	TscF	SCK2 Output Fall Time	_			ns	See Parameter DO32 and Note 4	
SP21	TscR	SCK2 Output Rise Time	—	_	—	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDO2 Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDO2 Data Output Rise Time	—	-	—	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—		ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

- 3: The minimum clock period for SCK2 is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI2 pins.

31.1 High-Temperature DC Characteristics

TABLE 31-1: OPERATING MIPS vs. VOLTAGE

Charactoristic	VDD Range	Temperature Range	Max MIPS		
Characteristic	(in Volts)	(in °C)	dsPIC33EVXXXGM00X/10X Family		
HDC5	4.5V to 5.5V ^(1,2)	-40°C to +150°C	40		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules, such as the ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Device functionality is tested but is not characterized. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

2: When BOR is enabled, the device will work from 4.7V to 5.5V.

TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
High-Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+155	°C
Operating Ambient Temperature Range	TA	-40	—	+150	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	PINT + PI/O		W	
Maximum Allowed Power Dissipation	PDMAX	(ΓJ — TA)/θJ	IA	W

TABLE 31-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$					
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
Operati	ng Voltag	9						
HDC10	Vdd	Supply Voltage ⁽³⁾	VBOR		5.5	V		
HDC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	—	—	V		
HDC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	—	—	Vss	V		
HDC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	1.0	_		V/ms	0V-5.0V in 5 ms	
HDC18	VCORE	VDD Core Internal Regulator Voltage	1.62	1.8	1.98	V	Voltage is dependent on load, temperature and VDD	

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

2: This is the limit to which VDD may be lowered without losing RAM data.

3: VDD voltage must remain at Vss for a minimum of 200 μ s to ensure POR.

DC CHARACT	ERISTICS		Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature			
Parameter Typical Max			Units			Conditions
Power-Down (Current (IPD)					
HDC60e	1300	2500	μA	+150°C 5V Base Power-Down Current		
HDC61c	10	50	μA	+150°C	5V	Watchdog Timer Current: ΔIWDT

TABLE 31-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARAG	CTERISTICS		Standard Ope Operating tem	rating Condition perature -40°C	s: 4.5V to 5.5V C ≤ TA ≤ +150°C	(unless otherwise stated) for High Temperature	
Parameter No.	Typical	Max	Units	Conditions			
HDC40e	2.6	5.0	mA	+150°C	5V	10 MIPS	
HDC42e	3.6	7.0	mA	+150°C	5V	20 MIPS	

TABLE 31-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARA	CTERISTICS		Standard Ope Operating terr	erating Condition perature -40°	ons: 4.5V to 5.5° $C \le TA \le +150^{\circ}$	V (unless otherwise stated) C for High Temperature	
Parameter No.	Typical	Max	Units	Conditions			
HDC20e	5.9	8.0	mA	+150°C	5V	10 MIPS	
HDC22e	10.3	15.0	mA	+150°C	5V	20 MIPS	
HDC23e	19.0	25.0	mA	+150°C	5V	40 MIPS	

TABLE 31-7: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARA	CTERISTICS		Standard O Operating te	perating C emperature	Conditions: 4. $= -40^{\circ}C \le TA$	5V to 5.5V (u √≤ +150°C fo	nless otherwise stated) r High Temperature
Parameter No.	Typical	Max	Doze Ratio	Units	Conditions		
HDC73a	18.5	22.0	1:2	mA	+150°C	5)/	
HDC73g	8.35	12.0	1:128	mA	+150 C	50	40 WIF 5

FIGURE 32-29: TYPICAL VIH/VIL vs. TEMPERATURE (GENERAL PURPOSE I/Os)

32.10 Voltage Output Low (VOL) – Voltage Output High (VOH)

FIGURE 33-29: TYPICAL Vol 4x DRIVER PINS vs. Iol (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

33.11 VREG

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	ILLIMETER	s	
Dimension	MIN	NOM	MAX		
Number of Pins	N		28		
Pitch	е		0.65 BSC		
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E		6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.70	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.70	
Terminal Width	b	0.23	0.30	0.35	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed Pad	K	0.20	-	_	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124C Sheet 2 of 2

CxFMSKSEL1 (CANx Filters 7-0 Mask
Selection 1)269
CxFMSKSEL2 (CANx Filters 15-8 Mask
Selection 2)
CXINTE (CANX Interrupt Enable)
CXINTF (CANX Interrupt Flag)
CXRXFnEID (CANX Acceptance Filter n
Extended Identifier)
Standard Identifier)
CvRXEIII 1 (CANy Receive Buffer Full 1) 272
CVRXFUL 2 (CANV Receive Buffer Full 2) 272
CxRXMnEID (CANx Accentance Filter Mask n
Extended Identifier) 271
CxRXMnSID (CANx Acceptance Filter Mask n
Standard Identifier)
CxRXOVF1 (CANx Receive Buffer
Overflow 1)
CxRXOVF2 (CANx Receive Buffer
Overflow 2)273
CxTRmnCON (CANx TX/RX Buffer mn Control) 274
CxVEC (CANx Interrupt Code)257
DEVID (Device ID)
DEVREV (Device Revision)
DMALCA (DMA Last Channel Active Status) 120
DMAPPS (DMA Ping-Pong Status) 121
DMAPWC (DMA Peripheral Write
Collision Status)118
DMARQC (DMA Request Collision Status) 119
DMAxCNT (DMA Channel x Transfer Count)
DMAXCON (DMA Channel X Control)
DMAXPAD (DMA Channel X
DMAyREO (DMA Channel y IRO Select) 113
DMAXEEQ (DMA Channel x IEQ Select)
Start Address & High) 114
DMAxSTAL (DMA Channel x
Start Address A Low) 114
DMAxSTBH (DMA Channel x
Start Address B, High) 115
DMAxSTBL (DMA Channel x
Start Address B, Low)115
DMTCLR (Deadman Timer Clear) 183
DMTCNTH (Deadman Timer Count High)185
DMTCNTL (Deadman Timer Count Low) 185
DMTCON (Deadman Timer Control) 182
DMTHOLDREG (DMT Hold) 188
DMTPRECLR (Deadman Timer Preclear)
DMTPSCNTH (DMT Post Configure Count
Status High)
DMTPSCNTL (DMT Post Configure Count
Status Low)
Statua High)
DMTDSINTVI (DMT Dest Configure Interval
Status Low) 187
DMTSTAT (Deadman Timer Status) 184
DSADRH (DMA Most Recent RAM
High Address) 117
DSADRL (DMA Most Recent RAM
Low Address)
DTRx (PWMx Dead-Time)
FCLCONx (PWMx Fault Current-Limit Control)215
I2CxCON1 (I2Cx Control 1)
I2CxCON2 (I2Cx Control 2)
, , , , , , , , , , , , , , , , , , ,

I2CxMSK (I2Cx Slave Mode Address Mask)	235
I2CxSTAT (I2Cx Status)	234
ICxCON1 (Input Capture x Control 1)	190
ICxCON2 (Input Capture x Control 2)	191
INTCON1 (Interrupt Control 1)	103
INTCON2 (Interrupt Control 2)	105
INTCON3 (Interrupt Control 3)	106
INTCON4 (Interrupt Control 4)	107
INTTREG (Interrupt Control and Status)	108
IOCONx (PWMx I/O Control)	213
LEBCONx (PWMx Leading-Edge Blanking	
Control)	217
LEBDLYx (PWMx Leading-Edge Blanking	
Delay)	218
MDC (PWMx Master Duty Cycle)	207
NVMADR (NVM Lower Address)	. 88
NVMADRU (NVM Upper Address)	. 88
NVMCON (NVM Control)	. 86
NVMKEY (NVM Key)	. 89
NVMSRCADRH (NVM Data Memory	
Upper Address)	. 90
NVMSRCADRL (NVM Data Memory	
Lower Address)	. 90
OCxCON1 (Output Compare x Control 1)	194
OCxCON2 (Output Compare x Control 2)	196
OSCCON (Oscillator Control)	126
OSCTUN (FRC Oscillator Tuning)	131
PDCx (PWMx Generator Duty Cycle)	210
PHASEx (PWMx Primary Phase-Shift)	210
PLLEBD (PLL Feedback Divisor)	130
PMD1 (Peripheral Module Disable Control 1)	136
PMD2 (Peripheral Module Disable Control 2)	137
PMD3 (Peripheral Module Disable Control 3)	138
PMD4 (Peripheral Module Disable Control 4)	138
PMD6 (Peripheral Module Disable Control 6)	139
PMD7 (Peripheral Module Disable Control 7)	140
PMD8 (Peripheral Module Disable Control 8)	141
PTCON (PWMx Time Base Control)	204
PTCON2 (PWMx Primary Master Clock	-01
Divider Select)	205
PTPER (PWMx Primary Master Time Base	200
Period)	206
PWMCONx (PWMx Control)	208
RCON (Reset Control)	93
REFOCON (Reference Oscillator Control)	132
RPINR0 (Perinheral Pin Select Input 0)	153
RPINR1 (Peripheral Pin Select Input 1)	153
RPINR11 (Perinheral Pin Select Input 11)	157
RPINR12 (Perinheral Pin Select Input 12)	158
RPINR18 (Perinheral Pin Select Input 18)	150
RPINR19 (Perinheral Pin Select Input 19)	150
RPINR22 (Perinheral Pin Select Input 22)	160
RPINR23 (Perinheral Pin Select Input 23)	161
RPINR26 (Perinheral Pin Select Input 26)	161
RDIND3 (Perinheral Din Select Input 3)	15/
RPINR37 (Perinheral Pin Select Input 37)	162
PDIND38 (Derinheral Pin Select Input 38)	162
RPINR30 (Perinheral Pin Select Input 30)	162
PDIND44 (Peripheral Pin Select Input 59)	164
RPINR45 (Perinheral Din Select Input 45)	164
PDIND7 (Derinheral Din Scloet Input 7)	155
PDINDS (Derinheral Din Solast Input 9)	100
PDOP0 (Peripheral Pin Select Output 0)	100
	166
DDOD1 (Derinhard Die Calact Outsuit 1)	165
RPOR1 (Peripheral Pin Select Output 1)	165