

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-UFQFN Exposed Pad
Supplier Device Package	36-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev64gm103t-i-m5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-25: OP AMP/COMPARATOR REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0A80	PSIDL		_	C5EVT	C4EVT	C3EVT	C2EVT	C1EVT	_		_	C5OUT	C4OUT	C3OUT	C2OUT	C1OUT	0000
CVR1CON	0A82	CVREN	CVROE	_	_	CVRSS	VREFSEL	—	—	_	CVR6	CVR5	CVR4	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	0A84	CON	COE	CPOL	_	_	OPAEN	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM1MSKSRC	0A86	—	_	_	_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM1MSKCON	0A88	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM1FLTR	0A8A	—	_	_	_	_	_	_	_	_	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM2CON	0A8C	CON	COE	CPOL	_	_	OPAEN	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM2MSKSRC	0A8E	—	_	_	_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM2MSKCON	0A90	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM2FLTR	0A92		—			_	_	—			CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM3CON	0A94	CON	COE	CPOL	l	_	OPAEN	CEVT	COUT	EVPOL1	EVPOL0	—	CREF			CCH1	CCH0	0000
CM3MSKSRC	0A96		—		l	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM3MSKCON	0A98	HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM3FLTR	0A9A		—		l	_		—			CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM4CON	0A9C	CON	COE	CPOL	l	_		CEVT	COUT	EVPOL1	EVPOL0	—	CREF			CCH1	CCH0	0000
CM4MSKSRC	0A9E		_		l	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM4MSKCON	0AA0	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM4FLTR	0AA2		_		l	_		—			CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM5CON	0AA4	CON	COE	CPOL	l	_	OPAEN	CEVT	COUT	EVPOL1	EVPOL0	—	CREF			CCH1	CCH0	0000
CM5MSKSRC	0AA6		—		_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM5MSKCON	0AA8	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM5FLTR	0AAA	_	—	—	_	—	_	—	_	_	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CVR2CON	0AB4	CVREN	CVROE ⁽¹⁾	_	_	CVRSS	VREFSEL	—	_	_	CVR6	CVR5	CVR4	CVR3	CVR2	CVR1	CVR0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: CVROE (CVR2CON<14>) is not available on 28-pin devices.

TABLE 4-29: PWM GENERATOR 2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON2	0C40	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	_	_	CAM	XPRES	IUE	0000
IOCON2	0C42	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON2	0C44	—	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC2	0C46								PDC2	2<15:0>								0000
PHASE2	0C48				PHASE2<15:0> 000						0000							
DTR2	0C4A	—	-		DTR2<13:0>						0000							
ALTDTR2	0C4C	—	-							ALTDTF	2<13:0>							0000
TRIG2	0C52								TRGC	/IP<15:0>								0000
TRGCON2	0C54	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	_	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP2	0C58				PWMCAP2<15:0> (0000							
LEBCON2	0C5A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY2	0C5C	—	-	_	_	LEB<11:0>						0000						
AUXCON2	0C5E	—	—	—	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	—	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: PWM GENERATOR 3 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON3	0C60	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	—	—	CAM	XPRES	IUE	0000
IOCON3	0C62	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON3	0C64	_	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC3	0C66								PDC	3<15:0>								0000
PHASE3	0C68				PHASE3<15:0> 0000													
DTR3	0C6A	_	_		DTR3<13:0> 00/						0000							
ALTDTR3	0C6C	_	_							ALTDTF	3<13:0>							0000
TRIG3	0C72								TRGC	MP<15:0>								0000
TRGCON3	0C74	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	_	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP3	0C78								PWMC	AP3<15:0>								0000
LEBCON3	0C7A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	—		BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY3	0C7C	_	_	_	_	LEB<11:0> 00						0000						
AUXCON3	0C7E	_	_	—	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	—	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/ 10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Flash Programming" (DS70609) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EVXXXGM00X/10X family devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

The Flash memory can be programmed in the following three ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows for a dsPIC33EVXXXGM00X/10X family device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (PGECx/PGEDx) lines, and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed

devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

Enhanced ICSP uses an on-board bootloader, known as the Program Executive (PE), to manage the programming process. Using an SPI data frame format, the Program Executive can erase, program and verify program memory. For more information on Enhanced ICSP, refer to the specific device programming specification.

RTSP is accomplished using the TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data as a double program memory word, a row of 64 instructions (192 bytes) and erase program memory in blocks of 512 instruction words (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

The Flash memory read and the double-word programming operations make use of the TBLRD and TBLWT instructions, respectively. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of the program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of the program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

© 2013-2016 Microchip Technology Inc.

REGISTER 5-2: NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	—	—	—	—
bit 15		· · · ·					bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMADF	RU<23:16>			
bit 7							bit 0
Legend:							
R = Readable h	hit	M = Mritable bit		II = I Inimplem	nented hit read	as 'O'	

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
			40 0

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADRU<23:16>:** NVM Memory Upper Write Address bits Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

REGISTER 5-3: NVMADR: NONVOLATILE MEMORY LOWER ADDRESS REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMAD	R<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMAE)R<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 NVMADR<15:0>: NVM Memory Lower Write Address bits

Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

Figure 8-2 illustrates the DMA Controller block diagram.

8.1 DMAC Controller Registers

Each DMAC Channel x (where x = 0 to 3) contains the following registers:

- 16-Bit DMA Channel x Control Register (DMAxCON)
- 16-Bit DMA Channel x IRQ Select Register (DMAxREQ)
- 32-Bit DMA Channel x Start Address Register A High/Low (DMAxSTAH/L)
- 32-Bit DMA Channel x Start Address Register B High/Low (DMAxSTBH/L)
- 16-Bit DMA Channel x Peripheral Address Register (DMAxPAD)
- 14-Bit DMA Channel x Transfer Count Register (DMAxCNT)

Additional status registers (DMAPWC, DMARQC, DMAPPS, DMALCA and DSADRH/L) are common to all DMAC channels. These status registers provide information on write and request collisions, as well as on last address and channel access information.

The DMA Interrupt Flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding DMA Interrupt Enable bits (DMAxIE) are located in an IECx register in the interrupt controller and the corresponding DMA Interrupt Priority bits (DMAxIP) are located in an IPCx register in the interrupt controller.

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<7:0>
External Interrupt 2	INT2	RPINR1	INT2R<7:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<7:0>
Input Capture 1	IC1	RPINR7	IC1R<7:0>
Input Capture 2	IC2	RPINR7	IC2R<7:0>
Input Capture 3	IC3	RPINR8	IC3R<7:0>
Input Capture 4	IC4	RPINR8	IC4R<7:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<7:0>
PWM Fault 1	FLT1	RPINR12	FLT1R<7:0>
PWM Fault 2	FLT2	RPINR12	FLT2R<7:0>
UART1 Receive	U1RX	RPINR18	U1RXR<7:0>
UART2 Receive	U2RX	RPINR19	U2RXR<7:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<7:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<7:0>
SPI2 Slave Select	SS2	RPINR23	SS2R<7:0>
CAN1 Receive	C1RX	RPINR26	C1RXR<7:0>
PWM Sync Input 1	SYNCI1	RPINR37	SYNCI1R<7:0>
PWM Dead-Time Compensation 1	DTCMP1	RPINR38	DTCMP1R<7:0>
PWM Dead-Time Compensation 2	DTCMP2	RPINR39	DTCMP2R<7:0>
PWM Dead-Time Compensation 3	DTCMP3	RPINR39	DTCMP3R<7:0>
SENT1 Input	SENT1R	RPINR44	SENT1R<7:0>
SENT2 Input	SENT2R	RPINR45	SENT2R<7:0>

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

REGISTER 11-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			T2CK	R<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **T2CKR<7:0>:** Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 •

• 00000001 = Input tied to CMP1 00000000 = Input tied to Vss

12.1 Timer1 Control Register

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON ⁽¹⁾	—	TSIDL	—	—	—	—	_				
bit 15		·	·		·		bit 8				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
_	TGATE	TCKPS1	TCKPS0		TSYNC ⁽¹⁾	TCS ⁽¹⁾	_				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own				
bit 15	bit 15 TON: Timer1 On bit ⁽¹⁾ 1 = Starts 16-bit Timer1 0 = Stops 16-bit Timer1										
bit 14	Unimplemen	ted: Read as '	כ'								
bit 13	TSIDL: Timer	1 Stop in Idle N	lode bit								
	1 = Discontinu 0 = Continues	 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode 									
bit 12-7	Unimplemen	Unimplemented: Read as '0'									
bit 6	TGATE: Time	r1 Gated Time	Accumulation	n Enable bit							
	When TCS = This bit is igno	<u>1:</u> pred.									
	When TCS = 1 = Gated tim 0 = Gated tim	0: e accumulatior e accumulatior	n is enabled n is disabled								
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Prescal	e Select bits							
	11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1										
bit 3	Unimplemen	ted: Read as '	כי								
bit 2	TSYNC: Time	er1 External Clo	ock Input Synd	chronization Se	elect bit ⁽¹⁾						
	<u>When TCS =</u> 1 = External c	<u>1:</u> clock input is sy	nchronized								
	0 = External c	lock input is no	ot synchronize	ed							
	When TCS =	<u>0:</u>									
hit 1		Dreu. Claak Sauraa S	Coloct hit(1)								
	1 IUD: IMENI CLOCK Source Select DIV''										
	1 - External clock is from pin, if tex (on the fishing edge)0 = Internal clock (FP)										
bit 0	Unimplemen	ted: Read as '	כי								
Note 1: W	Note 1: When Timer1 is enabled in External Synchronous Counter mode (TCS = 1, TSYNC = 1, TON = 1), any attempts by user software to write to the TMR1 register are ignored.										

17.1.2 WRITE-PROTECTED REGISTERS

On dsPIC33EVXXXGM00X/10X family devices, write protection is implemented for the IOCONx and FCLCONx registers. The write protection feature prevents any inadvertent writes to these registers. This protection feature can be controlled by the PWMLOCK Configuration bit (FDEVOPT<0>). The default state of the write protection feature is enabled (PWMLOCK = 1). The write protection feature can be disabled by configuring PWMLOCK = 0. To gain write access to these locked registers, the user application must write two consecutive values (0xABCD and 0x4321) to the PWMKEY register to perform the unlock operation. The write access to the IOCONx or FCLCONx registers must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access. To write to both the IOCONx and FCLCONx registers requires two unlock operations.

The correct unlocking sequence is described in Example 17-1.

EXAMPLE 17-1: PWM1 WRITE-PROTECTED REGISTER UNLOCK SEQUENCE

; FLT32 pin must be p	ulled low externally in order to clear and disable the fault
; Writing to FCLCON1	register requires unlock sequence
<pre>mov #0xabcd, w10 mov #0x4321, w11 mov #0x0000, w0 mov w10, PWMKEY mov w11, PWMKEY mov w0, FCLCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of FCLCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to FCLCON1 register</pre>
; Set PWM ownership a	nd polarity using the IOCON1 register
; Writing to IOCON1 r	egister requires unlock sequence
<pre>mov #0xabcd, w10 mov #0x4321, w11 mov #0xF000, w0 mov w10, PWMKEY mov w11, PWMKEY mov w0, IOCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of IOCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to IOCON1 register</pre>

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 22-1: CANX MODULE BLOCK DIAGRAM

22.2 Modes of Operation

The CANx module can operate in one of several operation modes selected by the user. These modes include:

- · Initialization mode
- Disable mode
- Normal Operation mode
- · Listen Only mode
- Listen All Messages mode
- · Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CxCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CxCTRL1<7:5>). The module does not change the mode and the OPMODEx bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

22.3 CAN Control Registers

REGISTER 22-1: CxCTRL1: CANx CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	
—	—	CSIDL	ABAT	CANCKS	REQOP2	REQOP1	REQOP0	
bit 15 bit 3								
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0	
OPMODE2	OPMODE1	OPMODE0	_	CANCAP	—	—	WIN	
bit 7				•			bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	CSIDL: CANx Stop in Idle Mode bit
	1 = Discontinues module operation when the device enters Idle mode
	0 = Continues module operation in Idle mode
bit 12	ABAT: Abort All Pending Transmissions bit
	 1 = Signals all transmit buffers to abort transmission 0 = Module will clear this bit when all transmissions are aborted
bit 11	CANCKS: CANx Module Clock (FCAN) Source Select bit
	1 = FCAN is equal to 2 * FP 0 = FCAN is equal to FP
bit 10-8	REQOP<2:0>: Request Operation Mode bits
	111 = Sets Listen All Messages mode
	110 = Reserved
	101 = Reserved
	011 = Sets Listen Only mode
	010 = Sets Loopback mode
	001 = Sets Disable mode
	000 = Sets Normal Operation mode
bit 7-5	OPMODE<2:0>: Operation Mode bits
	111 = Module is in Listen All Messages mode
	101 = Reserved
	100 = Module is in Configuration mode
	011 = Module is in Listen Only mode
	010 = Module is in Loopback mode
	001 = Module is in Disable mode
bit 4	Unimplemented: Read as '0'
bit 3	CANCAP: CANx Message Receive Timer Capture Event Enable bit
Site	1 = Enables input capture based on CAN message receive
	0 = Disables CAN capture
bit 2-1	Unimplemented: Read as '0'
bit 0	WIN: SFR Map Window Select bit
	1 = Uses filter window
	0 = Uses buffer window

REGISTER 22-11: CxFEN1: CANx ACCEPTANCE FILTER ENABLE REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			FLTE	N<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			FLTE	N<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit	t	W = Writable bit	:	U = Unimplei	mented bit, read	i as '0'	

'0' = Bit is cleared

bit 15-0

-n = Value at POR

FLTEN<15:0>: Enable Filter n to Accept Messages bits

'1' = Bit is set

1 = Enables Filter n

0 = Disables Filter n

REGISTER 22-12: CxBUFPNT1: CANx FILTERS 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F3BP3	F3BP2	F3BP1	F3BP0	F2BP3	F2BP2	F2BP1	F2BP0		
bit 15	·				•		bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F1BP3	F1BP2	F1BP1	F1BP0	F0BP3	F0BP2	F0BP1	F0BP0		
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable bit		U = Unimple	mented bit, read	d as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-12	F3BP<3:0>:	RX Buffer Mas	k for Filter 3 b	oits					
	1111 = Filter	hits received in	n RX FIFO bu	Iffer					
	1110 = Filter	hits received in	n RX Buffer 1	4					
	•								
	•								
	0001 = Filter	hits received in	n RX Buffer 1						
	0000 = Filter	hits received in	n RX Buffer 0						
bit 11-8	F2BP<3:0>:	RX Buffer Mas	k for Filter 2 b	oits (same value	es as bits 15-12	2)			
bit 7-4	F1BP<3:0>:	RX Buffer Mas	k for Filter 1 b	oits (same value	es as bits 15-12	2)			
bit 3-0	F0BP<3:0>:	F0BP<3:0>: RX Buffer Mask for Filter 0 bits (same values as bits 15-12)							

x = Bit is unknown

22.4 CAN Message Buffers

CAN Message Buffers are part of RAM memory. They are not CAN Special Function Registers. The user application must directly write into the RAM area that is configured for CAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 22-1: CANx MESSAGE BUFFER WORD 0

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
—	—	—	SID10	SID9	SID8	SID7	SID6		
bit 15							bit 8		
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
SID5	SID4	SID3	SID2	SID1	SID0	SRR	IDE		
bit 7							bit 0		
Legend:	Legend:								
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared		ared	x = Bit is unkr	iown		
bit 15-13	Unimplement	ted: Read as '	כ'						
bit 12-2	SID<10:0>: S	tandard Identif	ier bits						
bit 1	SRR: Substitu	ite Remote Re	quest bit						
	When IDE = 0) <u>:</u>							
	1 = Message	will request rer	note transmis	sion					
	0 = Normal m	essage							
	$\frac{\text{When IDE} = 1}{\text{The SRR bit r}}$	<u>.:</u> nust be set to '	1'.						
bit 0	IDE: Extended	d Identifier bit							
	1 = Message 0 = Message	will transmit an will transmit a s	Extended Ide Standard Ider	entifier ntifier					

BUFFER 22-2: CANx MESSAGE BUFFER WORD 1

R/W-x R/W-x	R/W-x	R/W-x	U-0	U-0	U-0	U-0
<17:14>	EID<				_	_
bit 8						bit 15
R/W-x R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
		13:6>	EID<			
bit 0						bit 7
						Legend:
ad as '0'	nented bit, rea	U = Unimplem	oit	W = Writable I	oit	R = Readable b
x = Bit is unknown	Value at POR $(1)^2$ = Bit is set $(0)^2$ = Bit is cleared x = Bit is unknow			-n = Value at P		
ad as '0' x = Bit is unknown	nented bit, rea ared	U = Unimplem '0' = Bit is clea	pit	W = Writable I '1' = Bit is set	oit OR	Legend: R = Readable t -n = Value at P

bit 11-0 **EID<17:6>:** Extended Identifier bits

© 2013-2016 Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
	—	—	_	_	—	—	ADDMAEN			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
—	—	—	—	—	DMABL2	DMABL1	DMABL0			
bit 7							bit 0			
Legend:	Legend:									
R = Readable	e bit	W = Writable b	bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown			
bit 15-9	Unimplemen	ted: Read as '0)'							
bit 8	ADDMAEN: A	ADCx DMA Ena	ible bit							
	1 = Conversio	on results are st	ored in the AD	DC1BUF0 regi	ster for transfer	to RAM using	DMA			
	0 = Conversio	n results are sto	red in the ADC	C1BUF0 throug	h ADC1BUFF re	gisters; DMA v	vill not be used			
bit 7-3	Unimplemen	ted: Read as '0)'							
bit 2-0	DMABL<2:0>	Selects Number Selects Number	per of DMA Bu	uffer Locations	per Analog Inpu	ut bits				
	111 = Allocat	es 128 words o	f buffer to eac	h analog input						
	110 = Allocat	es 64 words of	buffer to each	analog input						
	101 = Allocat	es 32 words of	buffer to each	analog input						
	100 = Allocat	es 16 words of	buffer to each	analog input						
		es & words of b	uner to each a	analog input						
	010 = Allocates 4 words of buffer to each analog input									

REGISTER 24-4: ADxCON4: ADCx CONTROL REGISTER 4

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 30-2: EXTERNAL CLOCK TIMING Q1 Q2 Q3 Q4 Q1 Q2 ı, Q3 Q4 OSC1 **OS20** OS30 **OS30** 0531 0531 **OS25** CLKO OS41 OS40

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Sym	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	—	40	MHz	EC	
		Oscillator Crystal Frequency	3.5 10	_	10 25	MHz MHz	XT HS	
OS20	Tosc	Tosc = 1/Fosc	12.5	_	DC	ns	TA = +125°C	
OS25	TCY	Instruction Cycle Time ⁽²⁾	25	_	DC	ns	TA = +125°C	
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	—	0.625 x Tosc	ns	EC	
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	—	20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽³⁾	—	5.2	—	ns		
OS41	TckF	CLKO Fall Time ⁽³⁾	—	5.2	—	ns		
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	—	12		mA/V	HS, VDD = 5.0V, TA = +25°C	
			—	6	—	mA/V	XT, VDD = 5.0V, TA = +25°C	

TABLE 30-17: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.

3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.

4: This parameter is characterized but not tested in manufacturing.

TABLE 30-31: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

АС СНА	RACTERIST	$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK2 Frequency	_		15	MHz	See Note 3
SP20	TscF	SCK2 Output Fall Time	—	-	—	ns	See Parameter DO32 and Note 4
SP21	TscR	SCK2 Output Rise Time	—	-	—	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDO2 Data Output Fall Time	—	—	—	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDO2 Data Output Rise Time	—	-	—	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdiV2scH, TdiV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

FIGURE 30-23: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$									
Param No.	Symbol	Characteristic	Min.	Тур. ⁽⁴⁾	Max.	Units	Conditions					
Clock Parameters												
AD50	TAD	ADC Clock Period	75	_	_	ns						
AD51	tRC	ADC Internal RC Oscillator Period	—	250	-	ns						
		Con	version F	Rate								
AD55	tCONV	Conversion Time	—	12		TAD						
AD56	FCNV	Throughput Rate	—	_	1.1	Msps	Using simultaneous sampling					
AD57a	TSAMP	Sample Time When Sampling Any ANx Input	2			TAD						
AD57b	TSAMP	Sample Time When Sampling the Op Amp Outputs	4	_		Tad						
		Timir	ng Param	eters								
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2	_	3	Tad	Auto-convert trigger is not selected					
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2	_	3	TAD						
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾		0.5		TAD						
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽²⁾		—	20	μs	See Note 3					

TABLE 30-58: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

- **2:** Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
- **3:** The parameter, tDPU, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (ADxCON1<15>) = 1). During this time, the ADC result is indeterminate.
- 4: These parameters are characterized but not tested in manufacturing.

TABLE 30-59: DMA MODULE TIMING REQUIREMENTS

АС СН	ARACTERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions		
DM1	DMA Byte/Word Transfer Latency	1 Tcy (2)			ns			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because DMA transfers use the CPU data bus, this time is dependent on other functions on the bus.

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 33-19: TYPICAL LPRC ACCURACY vs. TEMPERATURE (5.5V VDD)

33.7 Leakage Current

33.19 ADC Gain Offset Error

