

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev64gm104-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-24: OUTPUT COMPARE REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	—	ENFLTA	_	—	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV	_		-	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0904							Ou	tput Con	npare 1 Se	condary Re	gister						xxxx
OC1R	0906								Outpu	ut Compare	e 1 Register							xxxx
OC1TMR	0908							Out	put Com	pare 1 Tin	ner Value Re	gister						xxxx
OC2CON1	090A	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_		ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	090E							Ou	tput Con	npare 2 Se	condary Re	gister						xxxx
OC2R	0910								Outpu	ut Compare	e 2 Register							xxxx
OC2TMR	0912							Out	put Com	pare 2 Tin	ner Value Re	gister						xxxx
OC3CON1	0914	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_		ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	0916	FLTMD	FLTOUT	FLTTRIEN	OCINV	_		-	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC3RS	0918							Ou	tput Con	npare 3 Se	condary Re	gister						xxxx
OC3R	091A								Outpu	ut Compare	e 3 Register							xxxx
OC3TMR	091C							Out	put Com	pare 3 Tin	ner Value Re	gister						xxxx
OC4CON1	091E	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_		ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC4CON2	0920	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC4RS	0922							Ou	tput Con	npare 4 Se	condary Reg	gister						xxxx
OC4R	0924	Output Compare 4 Register										xxxx						
OC4TMR	0926	Output Compare 4 Timer Value Register xxxx										xxxx						
Logondu			-	ot: – unim		1 /-1	- · ·											<i>.</i>

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: DMAC REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0B00	CHEN	SIZE	DIR	HALF	NULLW		_	_	—	_	AMODE1	AMODE0	—	—	MODE1	MODE0	0000
DMA0REQ	0B02	FORCE	_	_	_	_	_	-	_	IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0	OOFF
DMA0STAL	0B04									STA<	15:0>							0000
DMA0STAH	0B06	_	_	_	_	_							STA<	23:16>				0000
DMA0STBL	0B08									STB<	15:0>							0000
DMA0STBH	0B0A	_	_	—	_	_		_					STB<	23:16>				0000
DMA0PAD	0B0C									PAD<	15:0>							0000
DMA0CNT	0B0E	_	_								CNT<13:0)>						0000
DMA1CON	0B10	CHEN	SIZE	DIR	HALF	NULLW	-	_	_	_	—	AMODE1	AMODE0	_	_	MODE1	MODE0	0000
DMA1REQ	0B12	FORCE	—	—	_		-	_	_	IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0	OOFF
DMA1STAL	0B14									STA<	15:0>							0000
DMA1STAH	0B16	—	—	—	_		-	_	_				STA<	23:16>				0000
DMA1STBL	0B18									STB<	15:0>							0000
DMA1STBH	0B1A	—	—	—	_		-	_	_				STB<	23:16>				0000
DMA1PAD	0B1C									PAD<	15:0>							0000
DMA1CNT	0B1E	—	—								CNT<13:0)>						0000
DMA2CON	0B20	CHEN	SIZE	DIR	HALF	NULLW	-	_	_	_	—	AMODE1	AMODE0	_	_	MODE1	MODE0	0000
DMA2REQ	0B22	FORCE	—	_	—	—	—	_	_	IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0	00FF
DMA2STAL	0B24				-					STA<	15:0>							0000
DMA2STAH	0B26	—	—		_		—	—	—				STA<	23:16>				0000
DMA2STBL	0B28									STB<	15:0>							0000
DMA2STBH	0B2A	—	—	—	_		-	_	_				STB<	23:16>				0000
DMA2PAD	0B2C									PAD<	15:0>							0000
DMA2CNT	0B2E	—	—								CNT<13:0)>						0000
DMA3CON	0B30	CHEN	SIZE	DIR	HALF	NULLW	-	_	_	_	—	AMODE1	AMODE0	_	_	MODE1	MODE0	0000
DMA3REQ	0B32	FORCE	—	—	_		-	_	_	IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0	OOFF
DMA3STAL	0B34									STA<	15:0>							0000
DMA3STAH	0B36	—	—	—	_		-	_	_				STA<	23:16>				0000
DMA3STBL	0B38									STB<	15:0>							0000
DMA3STBH	0B3A	—	—	_		_	_	—					STB<	23:16>				0000
DMA3PAD	0B3C									PAD<	15:0>							0000
DMA3CNT	0B3E	_	_								CNT<13:0)>						0000
DMAPWC	0BF0		_	_	_		_	_	_	_	_	_			PWCC)L<3:0>		0000
DMARQC	0BF2		_	_	_		_	_	_	_	_	_	_		RQCC)L<3:0>		0000
DMAPPS	0BF4	_	—	_	_	_	_	_	_	_	_	_	_		PPS	Г<3:0>		0000

dsPIC33EVXXXGM00X/10X FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

NOTES:

REGISTER 11-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			T2CK	R<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **T2CKR<7:0>:** Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 •

• 00000001 = Input tied to CMP1 00000000 = Input tied to Vss

REGISTER 17-5: CHOP: PWMx CHOP CLOCK GENERATOR REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
CHPCLKEN	—	—	—	—	—	CHOPCLK9	CHOPCLK8
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CHOPCLK7 | CHOPCLK6 | CHOPCLK5 | CHOPCLK4 | CHOPCLK3 | CHOPCLK2 | CHOPCLK1 | CHOPCLK0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CHPCLKEN: Enable Chop Clock Generator bit
	1 = Chop clock generator is enabled
	0 = Chop clock generator is disabled
bit 14-10	Unimplemented: Read as '0'
bit 9-0	CHOPCLK<9:0>: Chop Clock Divider bits
	The frequency of the chop clock signal is given by the following expression: Chop Frequency = (FP/PCLKDIV<2:0>)/(CHOPCLK<9:0> + 1)

REGISTER 17-6: MDC: PWMx MASTER DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MDC	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MD	C<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0 MDC<15:0>: PWMx Master Duty Cycle Value bits

REGISTER 17-8: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER

		DAMA		D/14/ 0		D 444 0						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
			PDC	x<15:8>								
bit 15							bit 8					
]					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
			PDC	\$x<7:0>								
bit 7							bit 0					
Legend:												
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
-n = Value at P	OR	'1' = Bit is set	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown									

bit 15-0 PDCx<15:0>: PWMx Generator Duty Cycle Value bits

REGISTER 17-9: PHASEx: PWMx PRIMARY PHASE-SHIFT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 PHASEx<15:0>: PWMx Phase-Shift Value or Independent Time Base Period for the PWM Generator bits

Note 1: If ITB (PWMCONx<9>) = 0, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output modes (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs.

 If ITB (PWMCONx<9>) = 1, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output modes (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Independent Time Base period value for PWMxH and PWMxL. NOTES:

21.2 UART Control Registers

REGISTER 21-1: UxMODE: UARTx MODE REGISTER

REGISTER	21-1: UxMO	DE: UARTx N		TER							
R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0				
UARTEN ⁽¹⁾	_	USIDL	IREN ⁽²⁾	RTSMD	_	UEN1	UEN0				
bit 15				·			bit 8				
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL				
bit 7		101100	Orodity	ыкоп	TDOLLI	TDOLLO	bit (
Legend:		HC = Hardwar	e Clearable bit	t							
R = Readable	e bit	W = Writable I	oit	U = Unimplemented bit, read as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown				
bit 15	1 = UARTx is	ARTx Enable bit s enabled; all U s disabled; all U	ARTx pins are								
	is minima										
bit 14	•	ted: Read as '0									
bit 13	USIDL: UARTx Stop in Idle Mode bit 1 = Discontinues module operation when the device enters Idle mode										
		iues module op es module opera			's Idle mode						
bit 12	IREN: IrDA [®] Encoder and Decoder Enable bit ⁽²⁾										
		oder and decod									
bit 11	0 = IrDA encoder and decoder are disabled RTSMD: Mode Selection for $\overline{\text{UxRTS}}$ Pin bit										
	1 = UxRTS p	oin is in Simplex oin is in Flow Co	mode								
bit 10	•	ited: Read as '0									
bit 9-8	-	IARTx Pin Enab									
	11 = UxTX, L 10 = UxTX, L 01 = UxTX, L	JxRX and BCLK JxRX, UxCTS a JxRX and UxRT nd UxRX pins a	x p <u>ins are</u> enal nd UxRTS pins S pins are enal	are enabled a bled and used;	i <u>nd use</u> d ⁽⁴⁾ UxCTS pin is o	controlled by P	ORT latches ⁽⁴				
bit 7	WAKE: UAR	Tx Wake-up on	Start bit Detect	During Sleep	Mode Enable I	oit					
	in hardwa	ontinues to sam are on the follow is not enabled			generated on	the falling edge	, bit is cleared				
bit 6	-	RTx Loopback	Mode Select b	it							
		k mode is enab									
	0 = Loopbac	k mode is disab	led								
"d: tra	efer to " Univers sPIC33/PIC24 F Insmit operation	amily Referenc	e <i>Manual"</i> for i	nformation on e	enabling the U						
	is feature is only	-)).						
3: Th	nis feature is only available on 44-pin and 64-pin devices.										

4: This feature is only available on 64-pin devices.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	_	—	_	—	_	—		
bit 15							bit 8		
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
_	—	— DNCNT<4:0>							
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared			x = Bit is unknown			
bit 15-5	Unimplemented: Read as '0'								
bit 4-0	DNCNT<4:0>: DeviceNet™ Filter Bit Number bits								
	10010-11111 = Invalid selection								
	10001 = Co r	mpare up to Dat	a Byte 3, bit 6	6 with EID<17>					
	•								
	•								
	•								
	00001 = Compare up to Data Byte 1, bit 7 with EID<0>								
	00000 = D0	not compare da	la bytes						

REGISTER 22-2: CxCTRL2: CANx CONTROL REGISTER 2

	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	—	_	CH123SB2	CH123SB1	CH123NB1	CH123NB0	CH123SB0				
bit 15							bit 8				
11.0	11.0	11.0	R/W-0	D/M/ 0	R/W-0						
U-0	U-0	U-0	-	R/W-0	-	R/W-0 CH123NA0	R/W-0				
							CH123SA0				
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	e bit	U = Unimpler	nented bit, read	as '0'					
-n = Value a	It POR	'1' = Bit is se	et	'0' = Bit is cle	ared	x = Bit is unknown					
bit 15-13	Unimplemen										
bit 12-11			1, 2, 3 Positive	-	-		0110				
	1xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positiv input is AN6 (Op Amp 3)										
	011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input										
	is AN25 (Op Amp 5)										
	010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3)										
	001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5										
	000 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2										
bit 10-9	CH123NB<1:0>: Channels 1, 2, 3 Negative Input Select for Sample B bits										
	11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11										
	10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative inputs are VEEU										
bit 8	0x = CH1, CH2, CH3 negative inputs are VREFL CH123SB0: Channels 1, 2, 3 Positive Input Select for Sample B bit										
DILO	See bits<12:11> for bit selections.										
bit 7-5											
bit 4-3	-										
DIL 4-3	1_{xx} = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive										
2.0 1 0	1xx = CH1p	ositive input i			-		, CH3 positiv				
	input is	s AN6 (Op An	s AN0 (Op Amp ոp 3)	2), CH2 posit	ive input is AN2	25 (Op Amp 5)					
2	input is 011 = CH1 p	AN6 (Op An ositive input is	s AN0 (Op Amp np 3) s AN3 (Op Amp 1	2), CH2 posit	ive input is AN2	25 (Op Amp 5)					
2	input is 011 = CH1 po is AN2	s AN6 (Op An ositive input is 5 (Op Amp 5)	s AN0 (Op Amp np 3) AN3 (Op Amp 1), CH2 posit	ive input is AN2 e input is AN0 (0	25 (Op Amp 5) Dp Amp 2), CH3	8 positive inp				
	input is 011 = CH1 po is AN2 010 = CH1 po is AN6	AN6 (Op An ositive input is 5 (Op Amp 5) ositive input is (Op Amp 3)	s AN0 (Op Amp np 3) AN3 (Op Amp 1 AN3 (Op Amp 1), CH2 posit	ive input is AN2 e input is AN0 (C e input is AN0 (C	25 (Op Amp 5) Dp Amp 2), CH3 Dp Amp 2), CH3	8 positive inpu				
2	input is 011 = CH1 p is AN2 010 = CH1 p is AN6 001 = CH1 p	AN6 (Op An ositive input is 5 (Op Amp 5) ositive input is (Op Amp 3) ositive input is	s AN0 (Op Amp np 3) AN3 (Op Amp 1 AN3 (Op Amp 1 AN3 (Op Amp 1 s AN3, CH2 pos	 2), CH2 positive 1), CH2 positive 1), CH2 positive 1), CH2 positive 	ive input is AN2 e input is AN0 (C e input is AN0 (C N4, CH3 positiv	25 (Op Amp 5) Op Amp 2), CH3 Op Amp 2), CH3 e input is AN5	8 positive inpu				
	input is 011 = CH1 po is AN2 010 = CH1 po is AN6 001 = CH1 po 000 = CH1 po	AN6 (Op Am positive input is 5 (Op Amp 5) positive input is (Op Amp 3) positive input is positive input is	s AN0 (Op Amp np 3) AN3 (Op Amp 1 AN3 (Op Amp 1 AN3 (Op Amp 1 s AN3, CH2 pos s AN0, CH2 pos	 2), CH2 positive 1), CH2 p	ive input is AN2 e input is AN0 (C e input is AN0 (C N4, CH3 positiv N1, CH3 positiv	25 (Op Amp 5) Op Amp 2), CH3 Op Amp 2), CH3 e input is AN5 e input is AN2	8 positive inpu				
bit 2-1	input is 011 = CH1 p is AN2 010 = CH1 p is AN6 001 = CH1 p 000 = CH1 p CH123NA<1:	AN6 (Op Ampositive input is 5 (Op Amp 5) ositive input is (Op Amp 3) ositive input is ositive input is ositive input is	s AN0 (Op Amp np 3) AN3 (Op Amp 1 AN3 (Op Amp 1 AN3 (Op Amp 1 S AN3, CH2 pos S AN0, CH2 pos S 1, 2, 3 Negative	2), CH2 posit), CH2 positive), CH2 positive itive input is Al itive input is Al e Input Select	ive input is AN2 e input is AN0 (C e input is AN0 (C N4, CH3 positiv N1, CH3 positiv for Sample A bi	25 (Op Amp 5) Op Amp 2), CH3 Op Amp 2), CH3 e input is AN5 e input is AN2 ts	3 positive inpu 3 positive inpu				
	input is 011 = CH1 p is AN2 010 = CH1 p is AN6 001 = CH1 p 000 = CH1 p CH123NA<1: 11 = CH1 neg 10 = CH1 neg	AN6 (Op Am positive input is 5 (Op Amp 5) positive input is (Op Amp 3) positive input is positive input is 0>: Channels gative input is pative input is	s AN0 (Op Amp ip 3) AN3 (Op Amp 1 AN3 (Op Amp 1 AN3, CH2 pos AN3, CH2 pos AN0, CH2 pos AN9, CH2 nega AN6, CH2 nega	2), CH2 posit), CH2 positive), CH2 positive itive input is Al itive input is Al e Input Select ative input is Al ative input is Al	ive input is AN2 e input is AN0 (C e input is AN0 (C N4, CH3 positiv N1, CH3 positiv for Sample A bi N10, CH3 nega	25 (Op Amp 5) Op Amp 2), CH3 Op Amp 2), CH3 e input is AN5 e input is AN2 ts tive input is AN	3 positive inp 3 positive inp 11				
	input is 011 = CH1 po is AN2 010 = CH1 po is AN6 001 = CH1 po 000 = CH1 po CH123NA<1: 11 = CH1 neg 10 = CH1 neg 0x = CH1, CH	AN6 (Op Am positive input is 5 (Op Amp 5) positive input is (Op Amp 3) positive input is positive input is 0>: Channels gative input is pative input is 12, CH3 nega	s AN0 (Op Amp 1p 3) AN3 (Op Amp 1 AN3 (Op Amp 1 AN3, CH2 pos S AN0, CH2 pos S AN0, CH2 pos S 1, 2, 3 Negative AN9, CH2 nega	2), CH2 positive 1), CH2 positive itive input is Al itive input is Al e Input Select ative input is Al ative input is Al Ative input is Al	ive input is AN2 e input is AN0 (C e input is AN0 (C N4, CH3 positiv N1, CH3 positiv for Sample A bi N10, CH3 negati N7, CH3 negati	25 (Op Amp 5) Op Amp 2), CH3 Op Amp 2), CH3 e input is AN5 e input is AN2 ts tive input is AN	3 positive inp 3 positive inp 11				

REGISTER 24-5: ADxCHS123: ADCx INPUT CHANNELS 1, 2, 3 SELECT REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
HLMS	0-0	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN					
		OCEN	OCINEIN	OBEN	OBINEIN	UAEN						
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN					
bit 7							bit					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown						
bit 15	1 = The mask	ing (blanking)		event any asse	rted ('0') compai rted ('1') compai							
bit 14	Unimplemen	ted: Read as	ʻ0'	-		-						
bit 13	OCEN: OR G	OCEN: OR Gate C Input Enable bit										
		1 = MCI is connected to OR gate										
bit 12		 0 = MCI is not connected to OR gate OCNEN: OR Gate C Input Inverted Enable bit 										
		1 = Inverted MCI is connected to OR gate										
	0 = Inverted MCI is not connected to OR gate											
bit 11	OBEN: OR Gate B Input Enable bit											
	 1 = MBI is connected to OR gate 0 = MBI is not connected to OR gate 											
bit 10	O = MBLIS NOT CONNECTED TO OR GATE OBNEN: OR Gate B Input Inverted Enable bit											
		1 = Inverted MBI is connected to OR gate										
	0 = Inverted MBI is not connected to OR gate											
bit 9		OAEN: OR Gate A Input Enable bit										
		 1 = MAI is connected to OR gate 0 = MAI is not connected to OR gate 										
L:1 0			-	- L:4								
bit 8	OANEN: OR Gate A Input Inverted Enable bit											
	 1 = Inverted MAI is connected to OR gate 0 = Inverted MAI is not connected to OR gate 											
bit 7	NAGS: AND Gate Output Inverted Enable bit											
	1 = Inverted A		ten RO at het	e								
				nate								
	0 = Inverted A	ANDI is not co	nnected to OR	gate								
	0 = Inverted A PAGS: AND	ANDI is not co Gate Output E	nnected to OR nable bit	gate								
	0 = Inverted A PAGS: AND 0 1 = ANDI is c	ANDI is not co	nnected to OR nable bit R gate	gate								
bit 6 bit 5	0 = Inverted A PAGS: AND 0 1 = ANDI is c 0 = ANDI is n	ANDI is not co Gate Output E onnected to C	nnected to ŌR nable bit R gate to OR gate	gate								
bit 6	0 = Inverted A PAGS: AND 0 1 = ANDI is c 0 = ANDI is n ACEN: AND 1 = MCI is co	ANDI is not co Gate Output E onnected to C ot connected f Gate C Input E nnected to AN	nnected to OR nable bit R gate o OR gate Enable bit D gate	gate								
bit 6	0 = Inverted A PAGS: AND (1 = ANDI is c 0 = ANDI is n ACEN: AND 1 = MCI is co 0 = MCI is no	ANDI is not co Gate Output E onnected to C ot connected f Gate C Input E nnected to AN t connected to	nnected to OR nable bit R gate o OR gate Enable bit D gate	-								

28.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EV instruction set is almost identical to that of the dsPIC30F and dsPIC33F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into following five basic categories:

- Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- Control operations

Table 28-1 lists the general symbols used in describing the instructions.

The dsPIC33E instruction set summary in Table 28-2 lists all the instructions, along with the Status Flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have the following three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write-back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the Table Read and Table Write instructions

29.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

29.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

29.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

29.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

29.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

DC CHARACTER	$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$								
Parameter No. Typ. ⁽²⁾ Max.			Doze Ratio	Units	Conditions				
Doze Current (IDOZE) ⁽¹⁾									
DC73a	16.0	18.25	1:2	mA	-40°C	5.0V	70 MIPS		
DC73g	7.1	8.0	1:128	mA	-40 C				
DC70a	16.25	18.5	1:2	mA	.05%0	5.0V	70 MIPS		
DC70g	7.3	8.2	1:128	mA	+25°C		10 101175		
DC71a	17.0	19.0	1:2	mA	195%	5.0V			
DC71g	7.5	8.9	1:128	mA	+85°C		70 MIPS		
DC72a	17.75	19.95	1:2	mA	+125°C	5.0V	60 MIPS		
DC72g	8.25	9.32	1:128	mA	+120 C		OU MIPS		

TABLE 30-9: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

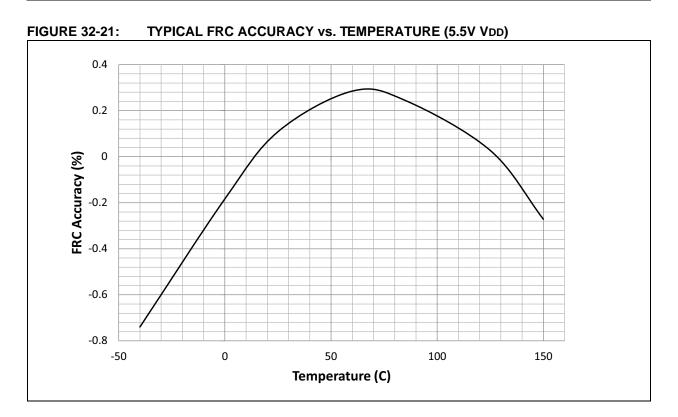
• Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

• CLKO is configured as an I/O input pin in the Configuration Word

• All I/O pins are configured as outputs and driving low

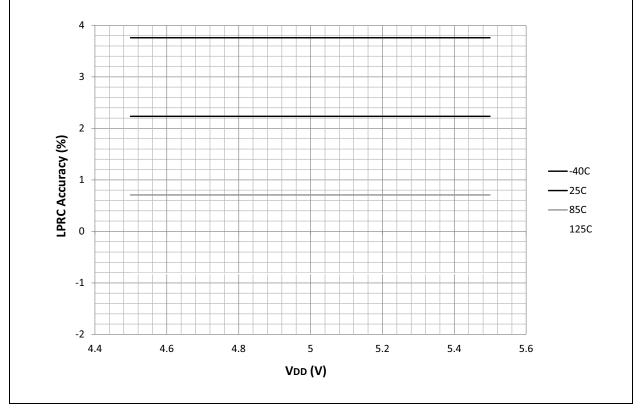
• MCLR = VDD, WDT and FSCM are disabled

• CPU, SRAM, program memory and data memory are operational


• No peripheral modules are operating or being clocked (defined PMDx bits are all ones)

CPU executing

```
while(1)
{
NOP();
}
```


2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

dsPIC33EVXXXGM00X/10X FAMILY

32.6 LPRC

32.12 VBOR

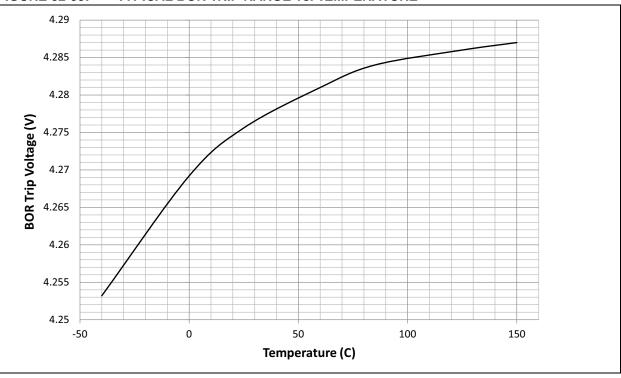


FIGURE 32-35: TYPICAL BOR TRIP RANGE vs. TEMPERATURE

32.13 RAM Retention

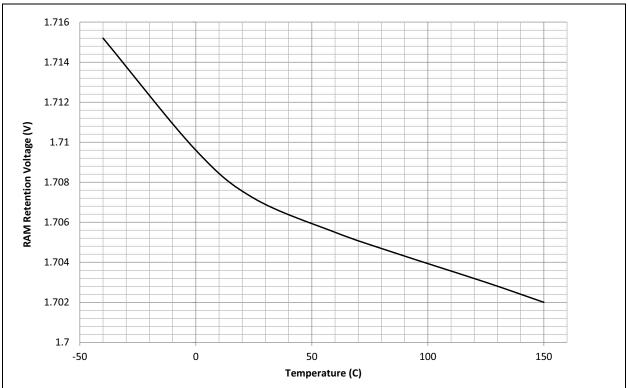
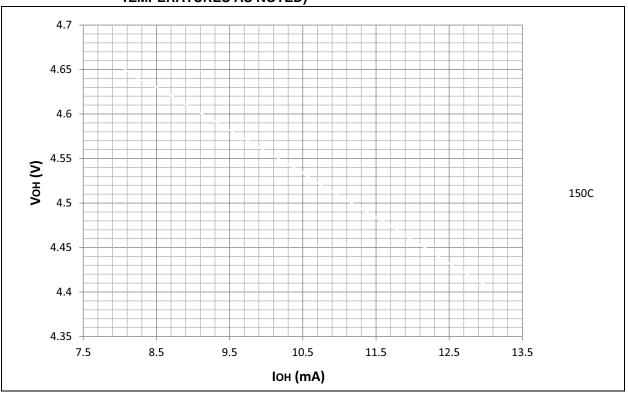
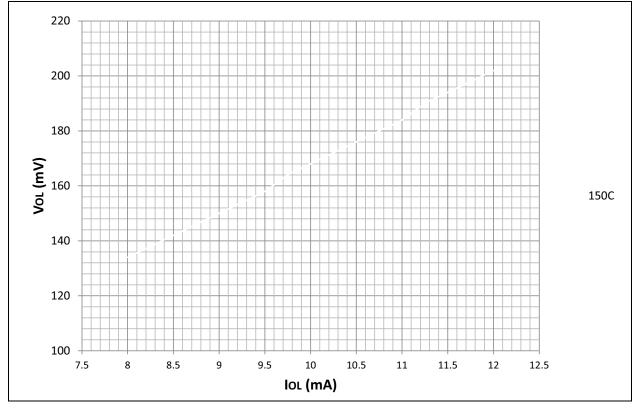


FIGURE 32-36: TYPICAL RAM RETENTION VOLTAGE vs. TEMPERATURE

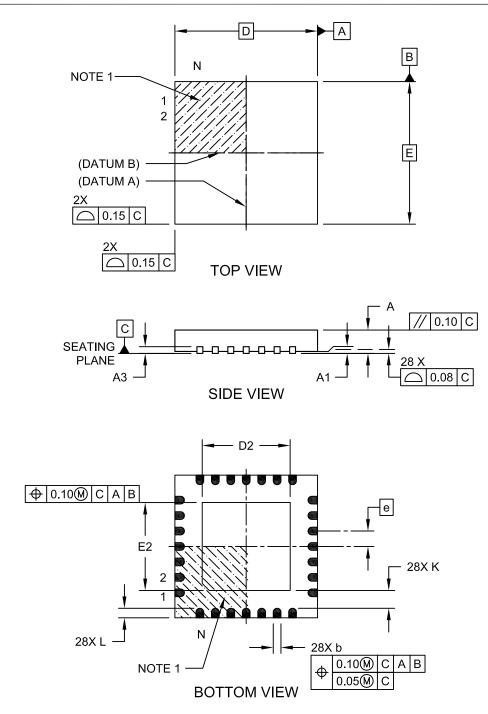
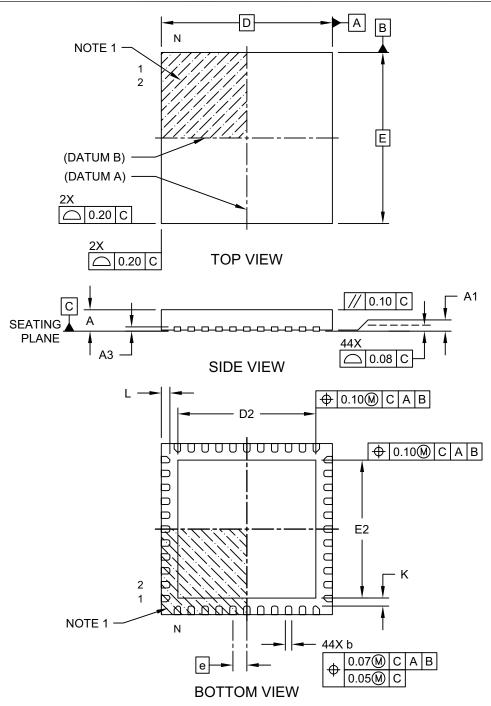

FIGURE 33-27: TYPICAL VOH 4x DRIVER PINS vs. IOH (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

FIGURE 33-28: TYPICAL Vol 8x DRIVER PINS vs. Iol (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-124C Sheet 1 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

NOTES: