

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Betuils	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev64gm104t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.5.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

The address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note:	The modulo corrected Effective Address
	is written back to the register only when
	Pre-Modify or Post-Modify Addressing
	mode is used to compute the Effective
	Address. When an address offset, such as
	[W7 + W2] is used, Modulo Addressing
	correction is performed, but the contents
	of the register remain unchanged.

4.6 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.6.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when all of these conditions are met:

- BWM<3:0> bits (W register selection) in the MODCON register are any value other than '1111' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Addressing modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word-sized data (LSb of every EA is
	always clear). The XB value is scaled
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed
	Addressing can be enabled simultaneously
	using the same W register, but Bit-
	Reversed Addressing operation will always
	take precedence for data writes when
	enabled.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

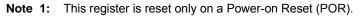

The operation of Bit-Reversed Addressing is shown in Figure 4-16 and Table 4-46.

FIGURE 4-17: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	—	—	—	—	—				
bit 15							bit 8				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—			TUN	l<5:0>						
bit 7							bit 0				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'					
n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown					
bit 15-6	Unimplemen	ted: Read as 'd	כי								
oit 5-0	TUN<5:0>: FRC Oscillator Tuning bits										
	111111 = Ce	111111 = Center frequency – 0.048% (7.363 MHz)									
	•	•									
	100001 = Ce	100001 = Center frequency – 1.5% (7.259 MHz)									
	100000 = Center frequency – 1.548% (7.2552 MHz)										
		nter frequency									
	•	nter frequency	+ 1.452% (7.	477 WHZ)							
	•										
	•										
		nter frequency									
	000000 = Ce	nter frequency	(1.37 MHZ N	ominal)							

REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER⁽¹⁾

Periphera Select II Register	nput	Input/ Output	Pin Assignment
00	000	I	Vss
00	001	Ι	CMP1 ⁽¹⁾
0 0	010	Ι	CMP2 ⁽¹⁾
000 00	011	Ι	CMP3 ⁽¹⁾
000 01	100	Ι	CMP4 ⁽¹⁾
000 01	101	—	—
000 11	100	Ι	CMP5 ⁽¹⁾
000 11	101	_	_
000 11	110	_	
000 11	111	_	_
001 00	000	Ι	RPI16
001 00	001	I	RPI17
001 00	010	I	RPI18
001 00	011	I	RPI19
001 01	100	I/O	RP20
001 01	101	_	
001 01	110	_	_
001 01	111	_	_
001 10	000	I	RPI24
001 10	001	Ι	RPI25
001 10	010	_	—
001 10	011	I	RPI27
001 11	100	Ι	RPI28
001 11	101		_
001 11	110		_
001 11	111		_
010 00		Ι	RPI32
010 00		I	RPI33
010 00		I	RPI34
010 00		I/O	RP35
010 01		I/O	RP36
010 01		I/O	RP37
010 01		I/O	RP38
010 01		1/O	RP39
010 10		I/O	
010 10		1/U	RPI44
010 11		-	RPI45
010 11			RPI46
010 11		1	RPI47
		I/O	
011 00		-	RP48 the PPS Input register

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES

Legend: Shaded rows indicate the PPS Input register values that are unimplemented.

Note 1: These are virtual pins. See Section 11.5.4.1 "Virtual Connections" for more information on selecting this pin assignment.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP70R5	RP70R4	RP70R3	RP70R2	RP70R1	RP70R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP69R5	RP69R4	RP69R3	RP69R2	RP69R1	RP69R0
bit 7							bit 0

REGISTER 11-26: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP70R<5:0>: Peripheral Output Function is Assigned to RP70 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP69R<5:0>: Peripheral Output Function is Assigned to RP69 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: This register is present in dsPIC33EVXXXGM004/104/006/106 devices only.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP118R5	RP118R4	RP118R3	RP118R2	RP118R1	RP118R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	RP97R5	RP97R4	RP97R3	RP97R2	RP97R1	RP97R0
bit 7							bit 0

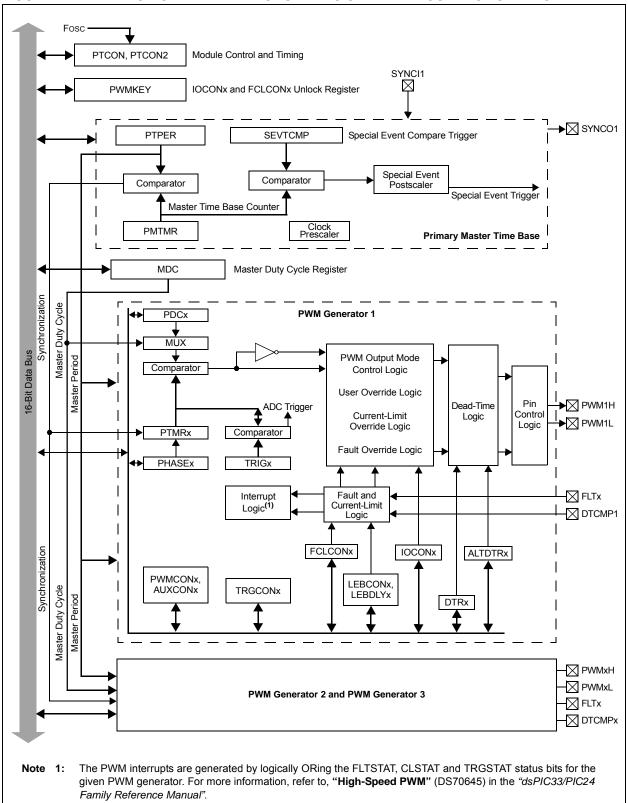
REGISTER 11-27: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8**RP118R<5:0>:** Peripheral Output Function is Assigned to RP118 Output Pin bits
(see Table 11-3 for peripheral function numbers)bit 7-6**Unimplemented:** Read as '0'

bit 5-0 **RP97R<5:0>:** Peripheral Output Function is Assigned to RP97 Output Pin bits (see Table 11-3 for peripheral function numbers)


Note 1: This register is present in dsPIC33EVXXXGM004/106 devices only.

15.1 Input Capture Control Registers

REGISTER 15-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

REGISTER	15-1: ICxCO	N1: INPUT C	CAPTURE x CO	ONTROL REG	ISTER 1						
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0				
_		ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	_				
bit 15		•					bit				
U-0	R/W-0	R/W-0	R-0, HC, HS	R-0, HC, HS	R/W-0	R/W-0	R/W-0				
_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0				
bit 7							bit				
Legend:		HC = Hardwa	re Clearable bit	HS = Hardwar	re Settable bit						
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is un	known				
bit 15-14	Unimplemen	ted: Read as '	0'								
bit 13	-		p in Idle Mode C	control bit							
		-	t in CPU Idle mod								
		-	tinue to operate		de						
bit 12-10			e x Timer Select								
		111 = Peripheral clock (FP) is the clock source of the ICx									
	110 = Reserved										
	101 = Reserved										
	100 = T1CLK is the clock source of the ICx (only the synchronous clock is supported) 011 = T5CLK is the clock source of the ICx										
	011 = 130LK is the clock source of the ICx										
			ource of the ICx								
bit 9-7		ted: Read as '									
bit 6-5	ICI<1:0>: Nur	ICI<1:0>: Number of Captures per Interrupt Select bits (this field is not used if ICM<2:0> = 001 or 111)									
	11 = Interrupt	t on every four	th capture event								
		10 = Interrupt on every third capture event									
		01 = Interrupt on every second capture event									
	-	00 = Interrupt on every capture event									
bit 4	-	ICOV: Input Capture x Overflow Status Flag bit (read-only)									
	 1 = Input Capture x buffer overflow has occurred 0 = Input Capture x buffer overflow has not occurred 										
bit 3		-			nlv)						
	ICBNE: Input Capture x Buffer Not Empty Status bit (read-only) 1 = Input Capture x buffer is not empty, at least one more capture value can be read										
	0 = Input Capture x buffer is empty										
bit 2-0	ICM<2:0>: In	put Capture x	Mode Select bits								
			tions as an inter		CPU Sleep an	d Idle modes	(rising edg				
		detect only, all other control bits are not applicable)									
		110 = Unused (module is disabled)101 = Capture mode, every 16th rising edge (Prescaler Capture mode)									
			/ 16th rising edge								
			/ rising edge (Sir								
			/ falling edge (Si								
	001 = Captur	re mode, every	edge, rising and			CI<1:0>) is not	t used in th				
	mode) 000 = Input Capture x module is turned off										

000 = Input Capture x module is turned off

NOTES:

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (DS70005185) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, ADC Converters, etc. The SPI module is compatible with the Motorola[®] SPI and SIOP interfaces.

The dsPIC33EVXXXGM00X/10X device family offers two SPI modules on a single device, SPI1 and SPI2, that are functionally identical. Each SPI module includes an eight-word FIFO buffer and allows DMA bus connections. When using the SPI module with DMA, FIFO operation can be disabled.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 and SPI2 modules.

The SPI1 module uses dedicated pins which allow for a higher speed when using SPI1. The SPI2 module takes advantage of the Peripheral Pin Select (PPS) feature to allow for greater flexibility in pin configuration of this module, but results in a lower maximum speed. See **Section 30.0 "Electrical Characteristics"** for more information.

The SPIx serial interface consists of the following four pins:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- · SCKx: Shift Clock Input or Output
- SSx/FSYNCx: Active-Low Slave Select or Frame Synchronization I/O Pulse

Note: All of the 4 pins of the SPIx serial interface must be configured as digital in the ANSELx registers.

The SPIx module can be configured to operate with two, three or four pins. In 3-pin mode, SSx is not used. In 2-pin mode, neither SDOx nor SSx is used.

Figure 18-1 illustrates the block diagram of the SPIx module in Standard and Enhanced modes.

REGISTER 21-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	1 = Receive buffer has overflowed
	0 = Receive buffer has not overflowed; clearing a previously set OERR bit (1 \rightarrow 0 transition) resets the receive buffer and the UxRSR to the empty state
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty
Note 1:	Refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/

PIC24 Family Reference Manual" for information on enabling the UART module for transmit operation.

24.3 ADC Control Registers

REGISTER 24-1: ADxCON1: ADCx CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	ADDMABM	—	AD12B	FORM1	FORM0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC, HS	R/C-0, HC, HS
SSRC2	SSRC1	SSRC0	SSRCG	SIMSAM	ASAM	SAMP	DONE ⁽¹⁾
bit 7				•			bit 0

Legend: C = Clearable bit		U = Unimplemented bit, read as '0'				
R = Readable bit	W = Writable bit	HS = Hardware Settable bit	HC = Hardware Clearable bit			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	ADON: ADCx Operating Mode bit
	1 = ADCx module is operating
	0 = ADCx is off
bit 14	Unimplemented: Read as '0'
bit 13	ADSIDL: ADCx Stop in Idle Mode bit
	 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	ADDMABM: ADCx DMA Buffer Build Mode bit
	 1 = DMA buffers are written in the order of conversion; the module provides an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode; the module provides a Scatter/Gather mode address to the DMA channel based on the index of the analog input and the size of the DMA buffer
bit 11	Unimplemented: Read as '0'
bit 10	AD12B: ADCx 10-Bit or 12-Bit Operation Mode bit
	1 = 12-bit, 1-channel ADC operation
	0 = 10-bit, 4-channel ADC operation
bit 9-8	FORM<1:0>: Data Output Format bits
	For 10-Bit Operation:
	11 = Signed fractional (Dout = sddd dddd dd00 0000, where s = .NOT.d<9>)
	10 = Fractional (Dout = dddd dddd dd00 0000) 01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>)
	$00 = \text{Integer}(\text{DOUT} = 0.000 \ 0.00 \text{d} \text{d} \text{d} \text{d} \text{d} \text{d} \text{d} \text{d}$
	For 12-Bit Operation:
	11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<11>)
	10 = Fractional (Dout = dddd dddd dddd 0000)
	01 = Signed integer (Dout = ssss sddd dddd dddd, where s = .NOT.d<11>) 00 = Integer (Dout = 0000 dddd dddd dddd)

REGISTER	24-2: ADx	CON2: ADCx (CONTROL RI	EGISTER 2						
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
VCFG2 ⁽¹⁾	VCFG1 ⁽¹⁾	VCFG0 ⁽¹⁾	—	—	CSCNA	CHPS1	CHPS0			
bit 15							bit			
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS			
bit 7			0111112			Dor m	bit			
<u> </u>										
Legend: R = Readable	, hit	W = Writable I	sit	II – Unimplor	monted bit read					
-n = Value at		'1' = Bit is set	JIL	'0' = Bit is cle	nented bit, read	x = Bit is unkr				
	PUR	I = DILIS SEL			areu	X = DILIS UNKI	IOWII			
bit 15-13	VCFG<2:0>	. Converter Volta	ge Reference	Configuration I	bits ⁽¹⁾					
	Value	VREFH	VREFL							
	xxx	AVdd	AVss							
bit 12-11	Unimpleme	ented: Read as '0	,							
bit 10	CSCNA: Inp	out Scan Select b	it							
		nputs for CH0+ d	uring Sample N	/UX A						
	0 = Does no	ot scan inputs								
bit 9-8	CHPS<1:0>: Channel Select bits									
	In 12-Bit Mode (AD21B = 1), CHPS<1:0> bits are Unimplemented and are Read as '0':									
	1x = Converts CH0, CH1, CH2 and CH3 01 = Converts CH0 and CH1									
	01 = Conve									
bit 7	BUFS: Buffer Fill Status bit (only valid when BUFM = 1)									
	1 = ADCx is currently filling the second half of the buffer; the user application should access data in the									
	first half of the buffer									
	0 = ADCx is currently filling the first half of the buffer; the user application should access data in th									
		half of the buffer								
bit 6-2		Increment Rate	bits							
	$\frac{\text{When ADDMAEN} = 0}{11117}$									
	x1111 = Generates interrupt after completion of every 16th sample/conversion operation x1110 = Generates interrupt after completion of every 15th sample/conversion operation									
	•									
	•									
	•									
	x0001 = Generates interrupt after completion of every 2nd sample/conversion operation									
	x0000 = Generates interrupt after completion of every sample/conversion operation When ADDMAEN = 1:									
	$\frac{1}{11111}$ = Increments the DMA address after completion of every 32nd sample/conversion operation									
	11111 = Increments the DMA address after completion of every 32nd sample/conversion operation 11110 = Increments the DMA address after completion of every 31st sample/conversion operation									
	•				-					
	•									
	• 00001 = lpc	crements the DM	A address after	completion of	every 2nd sam	nle/conversion	operation			
		crements the DM								
Note 1. TL		H Input is connec	tod to AVpp		put in passa-t-	d to AV/aa				
NOLE I: IN		·□ πουπis connec	ieu iu aviju ar	IU IIIE VREEL III	IOULIS CONNECTE	UIUAVSS.				

REGISTER 24-2: ADxCON2: ADCx CONTROL REGISTER 2

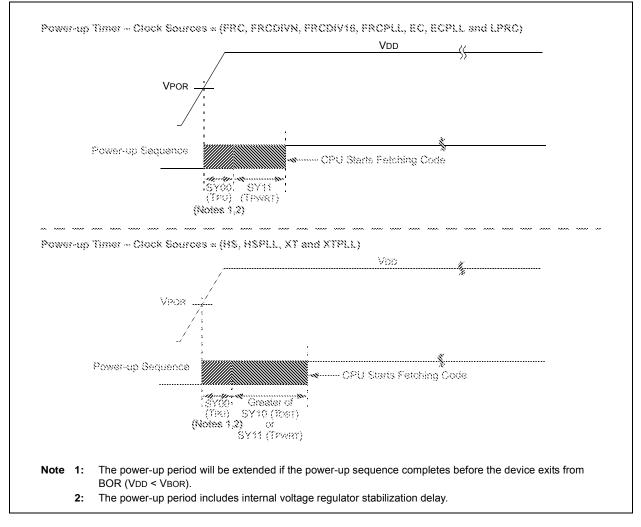
Note 1: The ADCx VREFH Input is connected to AVDD and the VREFL input is connected to AVss.

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 30-2: EXTERNAL CLOCK TIMING Q1 Q2 Q3 Q4 Q1 Q2 ı, Q3 Q4 OSC1 **OS20** OS30 **OS30** 0531 0531 **OS25** CLKO **OS41** OS40

			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ\text{C} \le \text{Ta} \le +85^\circ\text{C} \mbox{ for Industrial} \\ -40^\circ\text{C} \le \text{Ta} \le +125^\circ\text{C} \mbox{ for Extended} \end{array}$					
Param No.	Sym	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	40	MHz	EC	
		Oscillator Crystal Frequency	3.5 10	_	10 25	MHz MHz	XT HS	
OS20	Tosc	Tosc = 1/Fosc	12.5		DC	ns	TA = +125°C	
OS25	Тсү	Instruction Cycle Time ⁽²⁾	25		DC	ns	TA = +125°C	
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	—	0.625 x Tosc	ns	EC	
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	—	20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽³⁾	—	5.2	—	ns		
OS41	TckF	CLKO Fall Time ⁽³⁾		5.2		ns		
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	—	12	_	mA/V	HS, VDD = 5.0V, TA = +25°C	
			—	6	—	mA/V	XT, VDD = 5.0V, TA = +25°C	

TABLE 30-17: EXTERNAL CLOCK TIMING REQUIREMENTS


Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.

3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.

4: This parameter is characterized but not tested in manufacturing.

TABLE 30-44:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK1 Input Frequency		_	25	MHz	See Note 3	
SP72	TscF	SCK1 Input Fall Time	—			ns	See Parameter DO32 and Note 4	
SP73	TscR	SCK1 Input Rise Time	_			ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDO1 Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDO1 Data Output Rise Time	—			ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20			ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	_	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SS1} \downarrow$ to SCK1 \uparrow or SCK1 \downarrow Input	120	—	_	ns		
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	_	50	ns	See Note 4	
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40		_	ns	See Note 4	

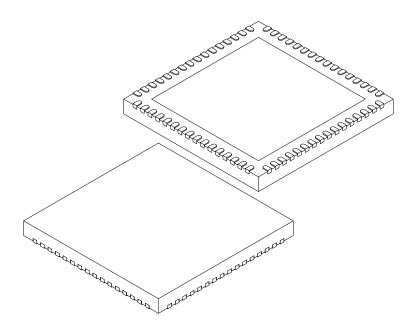
Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 40 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
		ADC	Accurac	cy (12-Bi	t Mode)		
AD20a	Nr	Resolution	1:	2 data bi	ts	bits	
AD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V
AD22a	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V
AD23a	Gerr	Gain Error	-10	4	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V
AD24a	EOFF	Offset Error	-10	1.75	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V
AD25a	—	Monotonicity ⁽²⁾	_	_	_	—	Guaranteed
		Dynamic	c Perforn	nance (1	2-Bit Mo	de)	
AD30a	THD	Total Harmonic Distortion	—	—	-75	dB	
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	—	dB	
AD32a	SFDR	Spurious Free Dynamic Range	80	_	—	dB	
AD33a	Fnyq	Input Signal Bandwidth		—	250	kHz	
AD34a	ENOB	Effective Number of Bits	11.09	11.3		bits	


TABLE 30-55: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

2: The conversion result never decreases with an increase in the input voltage.

64-Lead Very Thin Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [VQFN] With 7.15 x 7.15 Exposed Pad [Also called QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

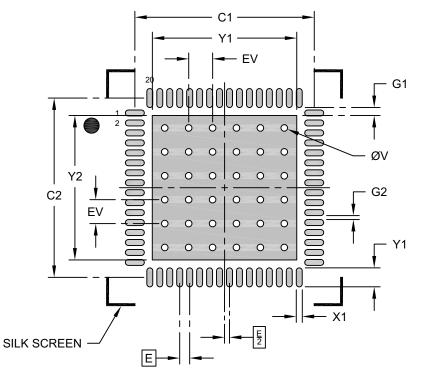
	Units			S
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		64	
Pitch	е		0.50 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	E		9.00 BSC	
Exposed Pad Width	E2	7.05	7.15	7.25
Overall Length	D		9.00 BSC	
Exposed Pad Length	D2	7.05	7.15	7.25
Contact Width	b	0.18	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149D [MR] Sheet 2 of 2

64-Lead Very Thin Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [VQFN] With 7.15 x 7.15 Exposed Pad [Also called QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Dimension Limits			MAX
Contact Pitch	E		0.50 BSC	
Optional Center Pad Width	X2			7.25
Optional Center Pad Length	Y2			7.25
Contact Pad Spacing	C1		9.00	
Contact Pad Spacing	C2		9.00	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.95
Contact Pad to Center Pad (X64)	G1	0.40		
Spacing Between Contact Pads (X60)	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2149C [MR]

SENTx Module	
Shared I/O Port Structure	143
SPIx Module	
Type B Timer (Timer2 and Timer4)	
Type B/Type C Timer Pair (32-Bit Timer)	177
Type C Timer (Timer3 and Timer5)	
UARTx Module	247
User-Programmable Blanking Function	
Watchdog Timer (WDT)	325
Brown-out Reset (BOR)	

С

C Compilers	
MPLAB XC	338
CAN	
CAN Module	
Control Registers	
Message Buffers	
Word 0	
Word 1	
Word 2	
Word 3	
Word 4	
Word 5	
Word 6	
Word 7	
Modes of Operation	
Overview	253
Characteristics for High-Temperature	
Devices (+150°C)	439
Characteristics for Industrial/Extended Temperature	
Devices (-40°C to +125°C)	
Charge Time Measurement Unit (CTMU)	279
Charge Time Measurement Unit. See CTMU.	
Code Examples	
Port Write/Read	144
PORTA Slew Selections	145
PWM1 Write-Protected Register	
Unlock Sequence	200
PWRSAV Instruction Syntax	133
Code Protection3	17, 326
CodeGuard Security 3	17, 326
Comparator Voltage Reference	
Configuring	313
Control Registers	315
Configuration Bits	317
Description	320
Controller Area Network (CAN)	253
Controller Area Network. See CAN.	
CPU	
Addressing Modes	
Arithmetic Logic Unit (ALU)	
Control Registers	
Data Space Addressing	21
DSP Engine	30
Instruction Set	21
Programmer's Model	23
CTMU	
Control Registers	
Customer Change Notification Service	493
Customer Notification Service	493
Customer Support	493

D

Data Address Space
Alignment
Memory Map for 256-Kbyte Devices
Memory Map for 32-Kbyte Devices
Memory Map for 64/128-Kbyte Devices
Near Data Space
SFR Space
Width
Data Space
Extended X72
Memory Arbitration, Bus Master Priority
Paged Memory Scheme
DC Characteristics
Brown-out Reset (BOR)
CTMU Current Source
Doze Current (IDOZE)
Filter Capacitor (CEFC) Specifications
High Temperature
Brown-out Reset (BOR)
CTMU Current Source
I/O Pin Input Specifications
I/O Pin Output Specifications
Idle Current (IDLE)
Op Amp/ Comparator x
Operating Current (IDD)
Operating MIPS vs. Voltage
Power-Down Current (IPD)
Program Memory
Temperature and Voltage Specifications
Doze Current (IDOZE)
I/O Pin Input Specifications
I/O Pin Output Specifications
Idle Current (IDLE)
Internal Band Gap Reference Voltage
Op Amp/Comparator x Specifications
Op Amp/Comparator x Voltage Reference
Specifications
Operating Current (IDD)
Operating MIPS vs. Voltage
Power-Down Current (IPD)
Program Memory
Temperature and Voltage Specifications
Thermal Operating Conditions
Deadman Timer (DMT)
Control Registers
Deadman Timer. See DMT.
Development Support
Direct Memory Access. See DMA.
DMA Controller
Channel to Peripheral Associations
Control Registers 111
Supported Peripherals 109
DMAC Registers
DMAxCNT
DMAxCON 111
DMAxPAD 111
DMAxREQ 111
DMAxSTAH/L 111
DMAxSTBH/L 111
DMT
Doze Mode 135

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2013-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0975-5