

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Detuns	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 36x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev64gm106-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Timers/Output Compare/Input Capture

- Nine General Purpose Timers:
 - Five 16-bit and up to two 32-bit timers/counters; Timer3 can provide ADC trigger
- Four Output Compare modules Configurable as Timers/Counters
- Four Input Capture modules

Communication Interfaces

- Two Enhanced Addressable Universal Asynchronous Receiver/Transmitter (UART) modules (6.25 Mbps):
 - With support for LIN/J2602 bus and IrDA®
 - High and low speed (SCI)
- Two SPI modules (15 Mbps):
 - 25 Mbps data rate without using PPS
- One I²C module (up to 1 Mbaud) with SMBus Support
- Two SENT J2716 (Single-Edge Nibble Transmission-Transmit/Receive) module for Automotive Applications
- One CAN module:
 - 32 buffers, 16 filters and three masks

Direct Memory Access (DMA)

- 4-Channel DMA with User-Selectable Priority Arbitration
- UART, Serial Peripheral Interface (SPI), ADC, Input Capture, Output Compare and Controller Area Network (CAN)

Input/Output

- GPIO Registers to Support Selectable Slew Rate I/Os
- Peripheral Pin Select (PPS) to allow Function Remap
- Sink/Source: 8 mA or 12 mA, Pin-Specific for Standard VOH/VOL
- · Selectable Open-Drain, Pull-ups and Pull-Downs
- Change Notice Interrupts on All I/O Pins

Qualification and Class B Support

- AEC-Q100 REVG (Grade 1: -40°C to +125°C) Compliant
- AEC-Q100 REVG (Grade 0: -40°C to +150°C) Compliant
- Class B Safety Library, IEC 60730

Class B Fault Handling Support

- Backup FRC
- · Windowed WDT uses LPRC
- Windowed Deadman Timer (DMT) uses System Clock (System Windowed Watchdog Timer)
- H/W Clock Monitor Circuit
- Oscillator Frequency Monitoring through CTMU (OSCI, SYSCLK, FRC, BFRC, LPRC)
- Dedicated PWM Fault Pin
- Lockable Clock Configuration

Debugger Development Support

- In-Circuit and In-Application Programming
- Three Complex and Five Simple Breakpoints
- Trace and Run-Time Watch

TABLE 4-26: DMAC REGISTER MAP (CONTINUED)

			Bit 0	Resets		
DSADR<15:0>						
- DSADR<23:16>						
	_	LST	LSTCH<3:0>	LSTCH<3:0>		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: PWM REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0C00	PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000
PTCON2	0C02	_	000						0000									
PTPER	0C04		PTPER<15:0> FF							FFF8								
SEVTCMP	0C06		SEVTCMP<15:0> 000							0000								
MDC	0C0A									MDC<1	15:0>							0000
CHOP	0C1A	CHPCLKEN	_		_	-	—	CHOPCLK9	CHOPCLK8	CHOPCLK7	CHOPCLK6	CHOPCLK5	CHOPCLK4	CHOPCLK3	CHOPCLK2	CHOPCLK1	CHOPCLK0	0000
PWMKEY	0C1E	PWMKEY<15:0> 0							0000									

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: PWM GENERATOR 1 REGISTER MAP

20 FLTSTAT 22 PENH 24 — 26	CLSTAT PENL CLSRC4	TRGSTAT POLH CLSRC3	FLTIEN POLL	CLIEN PMOD1	TRGIEN	ITB	MDCS									
24 —				PMOD1			IVIDUS	DTC1	DTC0	DTCP		-	CAM	XPRES	IUE	0000
	CLSRC4	CLSRC3			PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
26			CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC1<15:0>								0000								
28		PHASE1<15:0> 0						0000								
2A —	_		DTR1<13:0>						0000							
2C —	_							ALTDT	R1<13:0>							0000
32							TRGC	MP<15:0>								0000
34 TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	_	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
38							PWMC	AP1<15:0>								0000
3A PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
3C —	—	-	_						LEB<	11:0>						0000
3E —	—	-	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	—	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000
2A 2C 32 34 38 3A 3C 3E	3	3 2 4 TRGDIV3 TRGDIV2 3 4 PHR PHF 2 4 PHR PHF 5 6	3 2 4 TRGDIV3 TRGDIV2 TRGDIV1 3 4 PHR PHF PLR 2 4 PHR PHF PLR 5 6	3 2 2 4 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 3 4 PHR PHF PLR PLF 5	3 2 4 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 3 4 PHR PHF PLR PLF FLTLEBEN 2 3 BLANKSEL3	3 2 4 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 3 4 PHR PHF PLR PLF FLTLEBEN CLLEBEN 2 3 BLANKSEL3 BLANKSEL2	3 2 2 4 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 3 4 PHR PHF PLR PLF FLTLEBEN CLLEBEN 2	3 PHASI 4 2 TRGCIV 4 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 3 PWMC/ 4 PHR PHF PLR PLF FLTLEBEN CLLEBEN 2	Bit Markowski filter PHASE 1<15:0> A — — DTR1 C — — ALTDTF 2 — — ALTDTF 2 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 — — — — 3 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 — — — — — 4 PHR PHF PLR PLF FLTLEBEN CLLEBEN — — — — 2 — # # # #	Bit Markowski filo PHASE1<15:0> A — — DTR1<13:0> C — — ALTDTR1<13:0> C — — ALTDTR1<13:0> C — — — ITRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 — — — — — — ITRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 — — — — — — — — — — — — —	Bit Markowski fille PHASE1<15:0> Markowski fille DTR1<13:0> Markowski fille ALTDTR1<13:0> Markowski fille ALTDTR1<13:0> Markowski fille ALTDTR1<13:0> Markowski fille TRGDIV3 TRGDIV3 TRGDIV1 TRGDIV4 TRGDIV0 — — Markowski TRGDIV1 TRGDIV3 TRGDIV1 TRGDIV4 TRGDIV0 — — Markowski TRGDIV1 TRGDIV4 TRGDIV0 — — Markowski —	Bit Network PHASE1<15:0> A — — DTR1<13:0> C — — ALTDTR1<13:0> C — — ALTDTR1<13:0> C — — ALTDTR1<13:0> C — — ALTDTR1<13:0> C — — — ALTDTR1<13:0> C — — — — TRGDIV3 TRGDIV1 TRGDIV0 — — — V TRGDIV2 TRGDIV1 TRGDIV0 — — — — TRGSTR14 PHR PHF PLF FLTLEBEN CLLEBEN — — — MESCH BCL C — — — — — — LEB<11:0>	Bit Notes PHASE 1<15:0> DTR1<13:0> DTR1<13:0> DTR1<13:0> ALTDTR1<13:0> DTR1 ALTDTR1<13:0> ALTDTR1<13:0> DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1	Bit Notes Second Se	B PHASE1<15:0> A — — DTR1<13:0> C — — ALTDTR1<13:0> C — — ALTDTR1<13:0> C — — ALTDTR1<13:0> C — — — ALTDTR1<13:0> C — — — — ALTDTR1 TRGSTRT5 TRGSTRT3 TRGSTRT3 TRGSTRT2 TRGSTRT1 V TRGDIV3 TRGDIV2 TRGDIV0 — — — — — TRGSTRT5 TRGSTRT3 TRGSTRT3 TRGSTRT2 TRGSTRT1 V PHR PHF PLR PLF FLTLEBEN CLLEBEN — — — — BCH BCL BPHL BPLH BPLH V — — — — — _ LEB<11:0> _	B PHASE1<15:0> A DTR1<13:0> C ALTDTR1<13:0> 2 COMP<15:0> 4 TRGCMP<15:0> 5 TRGDIV2 TRGDIV1 TRGDIV0

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.7 Interfacing Program and Data Memory Spaces

The dsPIC33EVXXXGM00X/10X family architecture uses a 24-bit wide Program Space and a 16-bit wide Data Space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the Program Space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both the spaces.

Aside from normal execution, the architecture of the dsPIC33EVXXXGM00X/10X family devices provides two methods by which Program Space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the Program Space
- Remapping a portion of the Program Space into the Data Space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

Table 4-47 shows the construction of the Program Space address.

How the data is accessed from Program Space is shown in Figure 4-17.

A	Access	Program Space Address								
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>				
Instruction Access	User	0		PC<22:1>		0				
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0								
TBLRD/TBLWT	User	TB	LPAG<7:0>	Data EA<15:0>						
(Byte/Word Read/Write)		0	xxx xxxx	XXXX	xxxx xxxx xxxx xxxx					
	Configuration	TB	LPAG<7:0>	Data EA<15:0>						
		1	xxx xxxx	XXXX		xx				

TABLE 4-47: PROGRAM SPACE ADDRESS CONSTRUCTION

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

- bit 4 Unimplemented: Read as '0'
- bit 3 **CF:** Clock Fail Detect bit (read/clear by application)
 - 1 = FSCM has detected a clock failure
 - 0 = FSCM has not detected a clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Requests oscillator switch to selection specified by the NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- Note 1: Writes to this register require an unlock sequence. Refer to "Oscillator" (DS70580) in the "dsPIC33/PIC24 Family Reference Manual" (available from the Microchip web site) for details.
 - 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - 3: This register resets only on a Power-on Reset (POR).
 - 4: COSC<2:0> bits will be set to '0b100' when FRC fails.
 - 5: User cannot write '0b100' to NOSC<2:0>. COSC<2:0> will be set to '0b100' (BFRC) when the FRC fails.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
ROI	DOZE2 ⁽³⁾	DOZE1 ⁽³⁾	DOZE0 ⁽³⁾	DOZEN ^(1,4)	FRCDIV2	FRCDIV1	FRCDIV0
bit 15		•	-	-		•	bit 8
			DAMO	D/M/ 0		R/W-0	DAMA
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		R/W-0
PLLPOST1	PLLPOST0	—	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15		on Interrupt b	i+				
		will clear the E					
		have no effect		N bit			
bit 14-12	•	Processor Clo					
	111 = FCY div						
	110 = FCY div						
	101 = FCY div						
	100 = FCY div 011 = FCY div						
	010 = FCY div						
	001 = Fcy div						
		vided by 1 (def					
bit 11		e Mode Enable					
				tween the peri atio are forced		nd the process	or clocks
bit 10-8	FRCDIV<2:0>	. Internal Fast	RC Oscillator	Postscaler bit	S		
	111 = FRC d i	vided by 256					
	110 = FRC di						
	101 = FRC di	•					
	100 = FRC di 011 = FRC di						
	010 = FRC di						
		vided by 2 (de	fault)				
	000 = FRC di	•					
bit 7-6	PLLPOST<1:	0>: PLL VCO	Output Divide	r Select bits (al	so denoted as	'N2', PLL posts	caler)
	11 = Output d						
	10 = Reserve 01 = Output d						
	00 = Output d						
bit 5		ted: Read as '	0'				
Note 1: Th	is bit is cleared v	when the ROI	bit is set and a	an interrupt occ	urs.		
2: Th	is register resets	s only on a Pov	wer-on Reset	(POR).			
)ZE<2:0> bits ca)ZE<2:0> are igi		en to when th	e DOZEN bit is	clear. If DOZE	N = 1, any wri	tes to
	o DOZEN bit cou		075-2.05 -		2.0 > - 0.00 on	attempt by up	or ooftwara to

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾

4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

REGISTER 11-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			T2CK	R<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **T2CKR<7:0>:** Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 •

• 00000001 = Input tied to CMP1 00000000 = Input tied to Vss

REGISTER 11-11:	RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23
-----------------	--

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	_	—	—	—	—	
bit 15							bit 8	
				=				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			SS2I	R<7:0>				
bit 7							bit C	
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'		
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-8	Unimpleme	nted: Read as	ʻ0'					
bit 7-0		: Assign SPI2 S 1-2 for input pin			esponding RP	n Pin bits		
	10110101 =	Input tied to R	PI181					
	•							
	•							
	-	Input tied to C	MP1					
	0000001 -							

00000000 = Input tied to Vss

REGISTER 11-12: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			C1RX	(R<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at POR '1' = Bit is		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-8	Unimplemented: Read as '0'
bit 7-0	C1RXR<7:0>: Assign CAN1 RX Input (C1RX) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
	10110101 = Input tied to RPI181
	•
	•
	•
	00000001 = Input tied to CMP1 00000000 = Input tied to Vss

REGISTER 14-11: DMTHOLDREG: DMT HOLD REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			UPRO	CNT<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			UPR	CNT<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = V		W = Writable I	W = Writable bit		nented bit, rea	l bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			

bit 15-0 UPRCNT<15:0>: Value of the DMTCNTH register when DMTCNTL and DMTCNTH were Last Read bits

Note 1: The DMTHOLDREG register is initialized to '0' on Reset, and is only loaded when the DMTCNTL and DMTCNTH registers are read.

16.1 Output Compare Control Registers

REGISTER 16-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	
_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	—	
bit 15							bit 8	
R/W-0	U-0	U-0	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0	
ENFLTA		_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	
bit 7							bit (
Legend:		HSC = Hardv	vare Settable/Cl	earable bit				
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'		
n = Value at	POR	'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unkn	iown	
bit 12-10	OCTSEL<2:0 111 = Periphe 110 = Reserv 101 = Reserv 100 = T1CLK 011 = T5CLK 010 = T4CLK	>: Output Con eral clock (FP) red is the clock so is the clock so is the clock so	inues to operate npare x Clock S purce of the OC purce of the OC purce of the OC purce of the OC	elect bits x (only the syn x x		(is supported)		
			ource of the OC					
bit 9-8	Unimplemen	ted: Read as '	0'					
bit 7	1 = Output C	ompare Fault	K Fault A Input E A (OCFA) input A (OCFA) input	is enabled				
bit 6-5	-	ted: Read as '						
bit 4	1 = PWM Fa	ult A condition	ndition Status bit on the OCFA pi on the OCFA pi	in has occurred				
bit 3	 0 = PWM Fault A condition on the OCFA pin has not occurred TRIGMODE: Trigger Status Mode Select bit 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software 0 = TRIGSTAT is cleared only by software 							

Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

18.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on $\frac{1}{SSx}$.

Note: This insures that the first frame transmission after initialization is not shifted or corrupted.

- 2. In Non-Framed 3-Wire mode (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = <u>0</u>, always place a pull-down resistor on SSx.
- **Note:** This will insure that during power-up and initialization, the master/slave will not lose sync due to an errant SCKx transition that would cause the slave to accumulate data shift errors, for both transmit and receive, appearing as corrupted data.

- 3. FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame Sync pulse is active on the SSx pin, which indicates the start of a data frame.
- Note: Not all third-party devices support Frame mode timing. For more information, refer to the SPI specifications in Section 30.0 "Electrical Characteristics".
- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPI data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.

To avoid invalid slave read data to the master, the user's master software must ensure enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF Transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPIx Shift register and is empty once the data transmission begins.

REGISTER 19-1: I2CxCON1: I2Cx CONTROL REGISTER 1 (CONTINUED)

bit 7	GCEN: General Call Enable bit (I ² C Slave mode only)
	 1 = Enables interrupt when a general call address is received in I2CxRSR; module is enabled for reception 0 = General call address is disabled.
bit 6	STREN: SCLx Clock Stretch Enable bit
	In I ² C Slave mode only, used in conjunction with the SCLREL bit. 1 = Enables clock stretching 0 = Disables clock stretching
bit 5	ACKDT: Acknowledge Data bit
	In I ² C Master mode, during Master Receive mode. The value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive. In I ² C Slave mode when AHEN = 1 or DHEN = 1. The value that the slave will transmit when it initiates an Acknowledge sequence at the end of an address or data reception. 1 = NACK is sent 0 = ACK is sent
bit 4	ACKEN: Acknowledge Sequence Enable bit
	In I ² C Master mode only; applicable during Master Receive mode. 1 = Initiates Acknowledge sequence on SDAx and SCLx pins, and transmits ACKDT data bit 0 = Acknowledge sequence is Idle
bit 3	RCEN: Receive Enable bit (I ² C Master mode only)
	 1 = Enables Receive mode for I²C, automatically cleared by hardware at the end of 8-bit receive data byte 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (I ² C Master mode only)
	 1 = Initiates Stop condition on SDAx and SCLx pins 0 = Stop condition is Idle
bit 1	RSEN: Restart Condition Enable bit (I ² C Master mode only)
	 1 = Initiates Restart condition on SDAx and SCLx pins 0 = Restart condition is Idle
bit 0	SEN: Start Condition Enable bit (I ² C Master mode only)
	 1 = Initiates Start condition on SDAx and SCLx pins 0 = Start condition is Idle
Note 1:	Automatically cleared to '0' at the beginning of slave transmission; automatically cleared to '0' at the end of slave reception.

2: Automatically cleared to '0' at the beginning of slave transmission.

REGISTER 22-24: CxRXOVF1: CANx RECEIVE BUFFER OVERFLOW REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXOVF	-<15:8>			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXOV	F<7:0>			
bit 7							bit 0
Legend:		C = Writable	bit, but only '0'	can be writter	n to clear the bit		

Logena.	$\mathbf{O} = \mathbf{V}$ include bit, but only \mathbf{O}		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	i as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **RXOVF<15:0>:** Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

REGISTER 22-25: CxRXOVF2: CANx RECEIVE BUFFER OVERFLOW REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0		
			RXOV	F<31:24>					
bit 15							bit 8		
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0		
			RXOV	F<23:16>					
bit 7							bit 0		
Legend:		C = Writable b	it, but only '()' can be written	to clear the b	bit			
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow				nown					

bit 15-0 **RXOVF<31:16>:** Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC			SAMC4 ⁽¹⁾	SAMC3 ⁽¹⁾	SAMC2 ⁽¹⁾	SAMC1 ⁽¹⁾	SAMC0 ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS7 ⁽²⁾	ADCS6 ⁽²⁾	ADCS5 ⁽²⁾	ADCS4 ⁽²⁾	ADCS3 ⁽²⁾	ADCS2 ⁽²⁾	ADCS1 ⁽²⁾	ADCS0 ⁽²⁾
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 14-13	 1 = ADCx internal RC clock 0 = Clock derived from system clock Unimplemented: Read as '0' 						
bit 12-8	Unimplemented: Read as '0' SAMC<4:0>: Auto-Sample Time bits ⁽¹⁾ 11111 = 31 TAD						
bit 7-0	11111111 = ' 00000010 = ' 0000001 = '	ADCx Convers TP • (ADCS<7 TP • (ADCS<7 TP • (ADCS<7 TP • (ADCS<7 TP • (ADCS<7	0> + 1) = TP • 0> + 1) = TP • 0> + 1) = TP •	256 = TAD 3 = TAD 2 = TAD			
	ese bits are only ese bits are not		-		1 and SSRCG	6 (ADxCON1<4	>)=0.

REGISTER 24-3: ADxCON3: ADCx CONTROL REGISTER 3

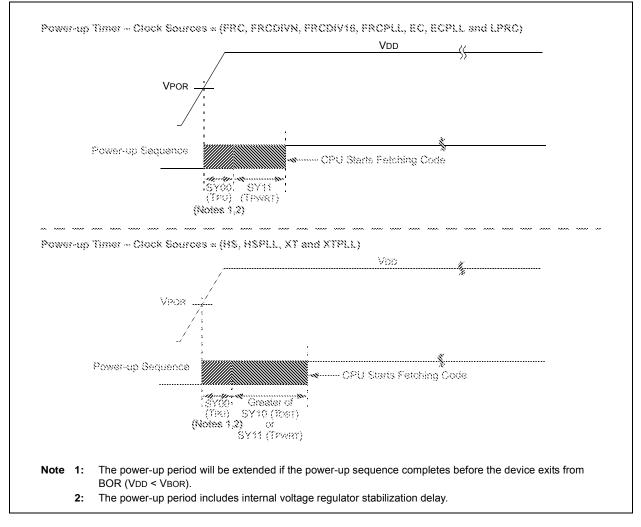
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0				
	—	—	—	_	—	_	ADDMAEN				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
_	—	—	—	—	DMABL2	DMABL1	DMABL0				
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	x = Bit is unk	nown					
bit 15-9	Unimplemen	ted: Read as '0)'								
bit 8	ADDMAEN: A	ADCx DMA Ena	able bit								
	 1 = Conversion results are stored in the ADC1BUF0 register for transfer to RAM using DMA 0 = Conversion results are stored in the ADC1BUF0 through ADC1BUFF registers; DMA will not be used 										
	0 = Conversio	n results are sto	red in the ADC	1BUF0 throug	h ADC1BUFF re	egisters; DMA v	vill not be used				
bit 7-3	Unimplemen	ted: Read as '0)'								
bit 2-0	DMABL<2:0>	Selects Number Selects Number	per of DMA Bu	Iffer Locations	per Analog Inp	ut bits					
		111 = Allocates 128 words of buffer to each analog input									
		110 = Allocates 64 words of buffer to each analog input									
		es 32 words of		0 1							
		100 = Allocates 16 words of buffer to each analog input									
		 011 = Allocates 8 words of buffer to each analog input 010 = Allocates 4 words of buffer to each analog input 									
		010 - Anocales 4 words of build to each analog input									

REGISTER 24-4: ADxCON4: ADCx CONTROL REGISTER 4

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

DC CHARACT	ERISTICS		(unless oth	erwise state	$-40^{\circ}C \le TA \le$	V to 5.5V +85°C for Industrial +125°C for Extended		
Parameter No.	Typ. ⁽²⁾	Max.	Units	Conditions				
Power-Down Current (IPD) – dsPIC33EVXXXGM00X/10X ⁽¹⁾								
DC60d	9.25	30	μA	-40°C				
DC60a	15.75	35	μA	+25°C	E OV	Base Power-Down Current		
DC60b	67.75	250	μA	+85°C	5.0V			
DC60c	270	750	μA	+125°C				
DC61d	1	7	μA	-40°C				
DC61a	1.25	8	μA	+25°C	5.0V	Watchdog Timer Current: ∆IwDT ⁽³⁾		
DC61b	3.5	12	μA	+85°C	5.00			
DC61c	5	15	μA	+125°C				


TABLE 30-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: IPD (Sleep) current is measured as follows:

 CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all ones)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- **2:** Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.
- **3:** The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

TABLE 30-24: TIMER2 AND TIMER4 (TYPE B TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

Standard Operating Conditions: 4.5V to 5.5V

AC CHARACTERISTICS			(unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions
TB10	T⊤xH	TxCK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TB15, N = Prescaler Value (1, 8, 64, 256)
TB11	ΤτχL	TxCK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TB15, N = Prescaler Value (1, 8, 64, 256)
TB15	ΤτχΡ	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_	_	ns	N = Prescaler Value (1, 8, 64, 256)
TB20	TCKEXT- MRL	Delay from External TxCK Clock Edge to Timer Increment		0.75 Tcy + 40		1.75 Tcy + 40	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 30-25: TIMER3 AND TIMER5 (TYPE C TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions
TC10	ТтхН	TxCK High Time	Synchronous	Tcy + 20	—	_	ns	Must also meet Parameter TC15
TC11	ΤτxL	TxCK Low Time	Synchronous	Tcy + 20	_	—	ns	Must also meet Parameter TC15
TC15	ΤτχΡ	TxCK Input Period	Synchronous, with Prescaler	2 Tcy + 40	_	—	ns	N = Prescaler Value (1, 8, 64, 256)
TC20	TCKEXT- MRL	Delay from I Clock Edge Increment	External TxCK to Timer	0.75 Tcy + 40	—	1.75 Tcy + 40	ns	

Note 1:	These parameters are characterized but not tested in manufacturing.

31.1 High-Temperature DC Characteristics

TABLE 31-1: OPERATING MIPS vs. VOLTAGE

Characteristic	VDD Range	Temperature Range	Max MIPS		
Characteristic	(in Volts)	(in °C)	dsPIC33EVXXXGM00X/10X Family		
HDC5	4.5V to 5.5V ^(1,2)	-40°C to +150°C	40		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules, such as the ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Device functionality is tested but is not characterized. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

2: When BOR is enabled, the device will work from 4.7V to 5.5V.

TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
High-Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+155	°C
Operating Ambient Temperature Range	TA	-40	_	+150	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	Pint + Pi/o		W	
Maximum Allowed Power Dissipation	Power Dissipation PDMAX (TJ – TA)/θJA		W		

TABLE 31-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions		
Operating Voltage									
HDC10	Vdd	Supply Voltage ⁽³⁾	VBOR	_	5.5	V			
HDC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	—	—	V			
HDC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	—	_	Vss	V			
HDC17	SVDD	V DD Rise Rate to Ensure Internal Power-on Reset Signal	1.0	_	—	V/ms	0V-5.0V in 5 ms		
HDC18	VCORE	VDD Core Internal Regulator Voltage	1.62	1.8	1.98	V	Voltage is dependent on load, temperature and VDD		

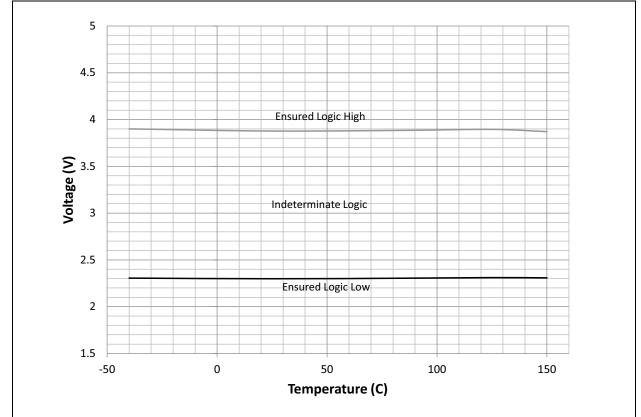
Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

2: This is the limit to which VDD may be lowered without losing RAM data.

3: VDD voltage must remain at Vss for a minimum of 200 μ s to ensure POR.

DC CHARACTERISTICS		Standard Operating Conditions: 4.5V to 5.5V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
	VIL	Input Low Voltage					
DI10		Any I/O Pins	Vss	—	0.2 Vdd	V	
	Vih	Input High Voltage					
DI20		I/O Pins	0.75 VDD	—	5.5	V	
DI30	ICNPU	Change Notification Pull-up Current	200	375	600	μA	VDD = 5.0V, VPIN = VSS
DI31	ICNPD	Change Notification Pull-Down Current ⁽⁷⁾	175	400	625	μΑ	VDD = 5.0V, VPIN = VDD
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O Pins	-200	_	200	nA	$\label{eq:VSS} \begin{split} VSS \leq V PIN \leq V DD, \\ \text{pin at high-impedance} \end{split}$
DI55		MCLR	-1.5	_	1.5	μA	$VSS \leq VPIN \leq VDD$
DI56		OSC1	-300	—	300	nA	$\label{eq:VSS} \begin{split} &VSS \leq VPIN \leq VDD, \\ &XT \text{ and } HS \text{ modes} \end{split}$
Dl60a	licl	Input Low Injection Current	0	—	_5 ^(4,6)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP and RB7
DI60b	Іісн	Input High Injection Current	0	_	+5(5,6)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB7 and all 5V tolerant pins ⁽⁵⁾
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	₋₂₀ (7)	_	+20 ⁽⁷⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT

TABLE 31-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS


Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.
- **3:** Negative current is defined as current sourced by the pin.
- 4: VIL source < (VSS 0.3). Characterized but not tested.
- 5: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 6: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.

7: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

