

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	50
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-TQFP-64
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c164cm4efabkxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C164CM

Revision History: 2001-05

Previous Version: ---

Page	Subjects (major changes since last revision)							

Controller Area Network (CAN): License of Robert Bosch GmbH

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Table 2Pin Definitions and Functions (cont'd)										
Symbol	Pin No.	Input Outp.	Function							
P8		IO	Port 8 is a 4-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 8 outputs can be configured as push/ pull or open drain drivers.							
P8.0	56	I/O I	CC16IO CAPCOM2: CC16 Capture Inp./Compare Outp.,							
P8.1	57	I/O O	CC17IO CAPCOM2: CC17 Capture Inp./Compare Outp., CAN1 TxD CAN1 Transmit Data Output							
P8.2	58	1/O	CC18IO CAPCOM2: CC18 Capture Inp./Compare Outp., CAN1 BxD CAN1 Beceive Data Input							
P8.3	59	I/O O	CC19IO CAPCOM2: CC19 Capture Inp./Compare Outp., CAN1_TxD CAN1 Transmit Data Output							
			Note: The CAN interface lines are only available in the C164CM.							
P5		I	Port 5 is an 8-bit input-only port with Schmitt-Trigger characteristic. The pins of Port 5 also serve as analog input channels for the A/D convertor, or they serve as timer inputs:							
P5.0	62	1	ANO							
P5.1	63	1	AN1							
P5.2	64		AN2, T3EUD GPT1 Timer T3 Ext. Up/Down Ctrl. Inp.							
P5.3	1		AN3, 13IN GP11 Timer 13 Count Input							
P5.4	2		AN4, I2EUD GPTTTImer 15 Ext. Up/Down Ctrl. Inp.							
PD.0	3		ANS, 14EUD GPT1 Timer 14 Ext. Up/Down Ctn. inp.							
P5.7	5		AN7. T4IN GPT1 Timer T4 Count Input							
	60	_	Reference ground for the A/D converter.							
V _{AREF}	61	_	Reference voltage for the A/D converter.							
V _{DD}	7, 16, 32, 48	-	Digital Supply Voltage: +5 V during normal operation and idle mode. ≥2.5 V during power down mode.							
V _{SS}	6, 17, 33, 51	-	Digital Ground.							

Note: The following behavior differences must be observed when the bidirectional reset is active:

- Bit BDRSTEN in register SYSCON cannot be changed after EINIT and is cleared automatically after a reset.
- The reset indication flags always indicate a long hardware reset.
- The PORT0 configuration is treated as if it were a hardware reset. In particular, the bootstrap loader may be activated when P0L.4 is low.
- Pin RSTIN may only be connected to external reset devices with an open drain output driver.
- A short hardware reset is extended to the duration of the internal reset sequence.

The Capture/Compare Unit CAPCOM6

The CAPCOM6 unit supports generation and control of timing sequences on up to three 16-bit capture/compare channels plus one 10-bit compare channel.

In compare mode the CAPCOM6 unit provides two output signals per channel which have inverted polarity and non-overlapping pulse transitions. The compare channel can generate a single PWM output signal and is further used to modulate the capture/ compare output signals.

In capture mode the contents of compare timer 12 is stored in the capture registers upon a signal transition at pins CCx.

Compare timers T12 (16-bit) and T13 (10-bit) are free running timers which are clocked by the prescaled CPU clock.

Figure 5 CAPCOM6 Block Diagram

For motor control applications both subunits may generate versatile multichannel PWM signals which are basically either controlled by compare timer 12 or by a typical hall sensor pattern at the interrupt inputs (block commutation).

Serial Channels

Serial communication with other microcontrollers, processors, terminals or external peripheral components is provided by two serial interfaces with different functionality, an Asynchronous/Synchronous Serial Channel (**ASC0**) and a High-Speed Synchronous Serial Channel (**SSC**).

The ASC0 is upward compatible with the serial ports of the Infineon 8-bit microcontroller families and supports full-duplex asynchronous communication at up to 781 Kbit/s and half-duplex synchronous communication at up to 3.1 Mbit/s (@ 25 MHz CPU clock).

A dedicated baud rate generator allows to set up all standard baud rates without oscillator tuning. For transmission, reception and error handling 4 separate interrupt vectors are provided. In asynchronous mode, 8- or 9-bit data frames are transmitted or received, preceded by a start bit and terminated by one or two stop bits. For multiprocessor communication, a mechanism to distinguish address from data bytes has been included (8-bit data plus wake up bit mode).

In synchronous mode, the ASC0 transmits or receives bytes (8 bits) synchronously to a shift clock which is generated by the ASC0. The ASC0 always shifts the LSB first. A loop back option is available for testing purposes.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. A parity bit can automatically be generated on transmission or be checked on reception. Framing error detection allows to recognize data frames with missing stop bits. An overrun error will be generated, if the last character received has not been read out of the receive buffer register at the time the reception of a new character is complete.

The SSC supports full-duplex synchronous communication at up to 6.25 Mbit/s (@ 25 MHz CPU clock). It may be configured so it interfaces with serially linked peripheral components. A dedicated baud rate generator allows to set up all standard baud rates without oscillator tuning. For transmission, reception and error handling 3 separate interrupt vectors are provided.

The SSC transmits or receives characters of 2 ... 16 bits length synchronously to a shift clock which can be generated by the SSC (master mode) or by an external master (slave mode). The SSC can start shifting with the LSB or with the MSB and allows the selection of shifting and latching clock edges as well as the clock polarity.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. Transmit and receive error supervise the correct handling of the data buffer. Phase and baudrate error detect incorrect serial data.

Power Management

The C164CM provides several means to control the power it consumes either at a given time or averaged over a certain timespan. Three mechanisms can be used (partly in parallel):

• **Power Saving Modes** switch the C164CM into a special operating mode (control via instructions).

Idle Mode stops the CPU while the peripherals can continue to operate.

Sleep Mode and Power Down Mode stop all clock signals and all operation (RTC may optionally continue running). Sleep Mode can be terminated by external interrupt signals.

Clock Generation Management controls the distribution and the frequency of internal and external clock signals (control via register SYSCON2).
 Slow Down Mode lets the C164CM run at a CPU clock frequency of f_{OSC}/1 ... 32 (half for prescaler operation) which drastically reduces the consumed power. The PLL can be optionally disabled while operating in Slow Down Mode.

External circuitry can be controlled via the programmable frequency output FOUT.

• **Peripheral Management** permits temporary disabling of peripheral modules (control via register SYSCON3).

Each peripheral can separately be disabled/enabled. A group control option disables a major part of the peripheral set by setting one single bit.

The on-chip RTC supports intermittend operation of the C164CM by generating cyclic wakeup signals. This offers full performance to quickly react on action requests while the intermittend sleep phases greatly reduce the average power consumption of the system.

Instruction Set Summary

 Table 6 lists the instructions of the C164CM in a condensed way.

The various addressing modes that can be used with a specific instruction, the operation of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the "C166 Family Instruction Set Manual".

This document also provides a detailed description of each instruction.

Mnemonic	Description	Bytes
ADD(B)	Add word (byte) operands	2/4
ADDC(B)	Add word (byte) operands with Carry	2/4
SUB(B)	Subtract word (byte) operands	2/4
SUBC(B)	Subtract word (byte) operands with Carry	2/4
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16-16-bit)	2
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2
CPL(B)	Complement direct word (byte) GPR	2
NEG(B)	Negate direct word (byte) GPR	2
AND(B)	Bitwise AND, (word/byte operands)	2/4
OR(B)	Bitwise OR, (word/byte operands)	2/4
XOR(B)	Bitwise XOR, (word/byte operands)	2/4
BCLR	Clear direct bit	2
BSET	Set direct bit	2
BMOV(N)	Move (negated) direct bit to direct bit	4
BAND, BOR, BXOR	AND/OR/XOR direct bit with direct bit	4
BCMP	Compare direct bit to direct bit	4
BFLDH/L	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data	4
CMP(B)	Compare word (byte) operands	2/4
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2	2/4
CMPI1/2	Compare word data to GPR and increment GPR by 1/2	2/4
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL / SHR	Shift left/right direct word GPR	2
ROL / ROR	Rotate left/right direct word GPR	2
ASHR	Arithmetic (sign bit) shift right direct word GPR	2

Table 6 Instruction Set Summary

Table 7C164CM Registers, Ordered by Name (cont'd)

Name		Physica Address	l S	8-Bit Addr.	Description	Reset Value
SORIC b FF6E _H			В7 _Н	Serial Channel 0 Receive Interrupt Control Register	0000 _H	
SOTBIC	b	F19C _H	Ε	CEH	Serial Channel 0 Transmit Buffer Interrupt Control Register	0000 _H
SOTBUF		FEB0 _H		58 _H	Serial Channel 0 Transmit Buffer Reg. (write only)	0000 _H
SOTIC	b	FF6C _H		B6 _H	Serial Channel 0 Transmit Interrupt Control Register	0000 _H
SP		FE12 _H		09 _H	CPU System Stack Pointer Register	FC00 _H
SSCBR		F0B4 _H	Ε	5A _H	SSC Baudrate Register	0000 _H
SSCCON	b	FFB2 _H		D9 _H	SSC Control Register	0000 _H
SSCEIC	b	FF76 _H		BB _H	SSC Error Interrupt Control Register	0000 _H
SSCRB		F0B2 _H	Ε	59 _H	SSC Receive Buffer	XXXX _H
SSCRIC	SSCRIC b FF74 _H			BA _H	SSC Receive Interrupt Control Register	0000 _H
SSCTB	SSCTB F0B0 _H E		Ε	58 _H	SSC Transmit Buffer	0000 _H
SSCTIC	SSCTIC b FF72 _H			B9 _H	SSC Transmit Interrupt Control Register	0000 _H
STKOV		FE14 _H		0A _H	CPU Stack Overflow Pointer Register	FA00 _H
STKUN		FE16 _H		0B _H	CPU Stack Underflow Pointer Register	FC00 _H
SYSCON	b	FF12 _H		89 _H	CPU System Configuration Register	¹⁾ 0xx0 _H
SYSCON1	b	F1DC _H	Ε	EEH	CPU System Configuration Register 1	0000 _H
SYSCON2	b	F1D0 _H	Ε	E8 _H	CPU System Configuration Register 2	0000 _H
SYSCON3	b	F1D4 _H	Ε	EA _H	CPU System Configuration Register 3	0000 _H
T12IC	b	F190 _H	Ε	C8 _H	CAPCOM 6 Timer 12 Interrupt Ctrl. Reg.	0000 _H
T12OF		F034 _H	Ε	1A _H	CAPCOM 6 Timer 12 Offset Register	0000 _H
T12P		F030 _H	Ε	18 _H	CAPCOM 6 Timer 12 Period Register	0000 _H
T13IC	b	F198 _H	Ε	CCH	CAPCOM 6 Timer 13 Interrupt Ctrl. Reg.	0000 _H
T13P		F032 _H	Ε	19 _H	CAPCOM 6 Timer 13 Period Register	0000 _H
T14		F0D2 _H	Ε	69 _H	RTC Timer 14 Register	no
T14REL		F0D0 _H	Ε	68 _H	RTC Timer 14 Reload Register	no
T2		FE40 _H		20 _H	GPT1 Timer 2 Register	0000 _H
T2CON	b	FF40 _H		A0 _H	GPT1 Timer 2 Control Register	0000 _H

Parameter Interpretation

The parameters listed in the following partly represent the characteristics of the C164CM and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column "Symbol":

CC (Controller Characteristics):

The logic of the C164CM will provide signals with the respective characteristics.

SR (**S**ystem **R**equirement):

The external system must provide signals with the respective characteristics to the C164CM.

DC Characteristics

(Operating Conditions apply)¹⁾

Parameter	Symbol		Limit Values		Unit	Test Conditions
			min.	max.		
Input low voltage (TTL, all except XTAL1)	V _{IL}	SR	-0.5	0.2 V _{DD} - 0.1	V	_
Input low voltage XTAL1	V _{IL2}	SR	-0.5	0.3 V _{DD}	V	-
Input high voltage (TTL, all except RSTIN, XTAL1)	V _{IH}	SR	0.2 V _{DD} + 0.9	V _{DD} + 0.5	V	_
Input high voltage RSTIN (when operated as input)	V _{IH1}	SR	0.6 V _{DD}	V _{DD} + 0.5	V	_
Input high voltage XTAL1	V _{IH2}	SR	0.7 V _{DD}	V _{DD} + 0.5	V	_
Output low voltage ²⁾	V _{OL}	CC	_	1.0	V	$I_{OL} \leq I_{OLmax}^{3)}$
			_	0.45	V	$I_{OL} \leq I_{OLnom}^{3)4)$
Output high voltage ⁵⁾	V _{OH}	CC	V _{DD} - 1.0	_	V	$ _{OH} \ge _{OHmax}^{3)}$
			V _{DD} - 0.45	_	V	$ _{OH} \ge _{OHnom}^{3)4}$
Input leakage current (Port 5)	I _{OZ1}	CC	-	±200	nA	$0 V < V_{IN} < V_{DD}$
Input leakage current (all other)	I _{OZ2}	СС	-	±500	nA	0.45 V < V _{IN} < V _{DD}
RSTIN inactive current ⁶⁾	I _{RSTH}	7)	-	-10	μA	$V_{IN} = V_{IH1}$
RSTIN active current ⁶⁾	I _{RSTL}	8)	-100	_	μA	$V_{IN} = V_{IL}$
RD/WR inact. current ⁹⁾	I _{RWH} 7	7)	_	-40	μA	V _{OUT} = 2.4 V
RD/WR active current ⁹⁾	I _{RWL} ⁸	3)	-500	_	μA	$V_{OUT} = V_{OLmax}$

DC Characteristics (cont'd)

(Operating Conditions apply)¹⁾

Parameter	Symbol	Limit Values		Unit	Test Conditions
		min.	max.		
ALE inactive current ⁹⁾	I _{ALEL} ⁷⁾	_	40	μA	$V_{OUT} = V_{OLmax}$
ALE active current ⁹⁾	I _{ALEH} ⁸⁾	500	-	μA	V _{OUT} = 2.4 V
PORT0 configuration current ¹⁰⁾	1 _{P0H} ⁷⁾	_	-10	μA	$V_{IN} = V_{IHmin}$
	1 _{P0L} ⁸⁾	-100	-	μA	$V_{IN} = V_{ILmax}$
XTAL1 input current	I _{IL} CC	-	±20	μA	$0 V < V_{IN} < V_{DD}$
Pin capacitance ¹¹⁾ (digital inputs/outputs)	C _{IO} CC	_	10	pF	f= 1 MHz T _A = 25 °C

¹⁾ Keeping signal levels within the levels specified in this table, ensures operation without overload conditions. For signal levels outside these specifications also refer to the specification of the overload current I_{OV}.

²⁾ For pin RSTIN this specification is only valid in bidirectional reset mode.

³⁾ The maximum deliverable output current of a port driver depends on the selected output driver mode, see Table 10, Current Limits for Port Output Drivers. The limit for pin groups must be respected.

- ⁴⁾ As a rule, with decreasing output current the output levels approach the respective supply level ($V_{OL} \rightarrow V_{SS}$, $V_{OH} \rightarrow V_{DD}$). However, only the levels for nominal output currents are guaranteed.
- ⁵⁾ This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.
- ⁶⁾ These parameters describe the $\overline{\text{RSTIN}}$ pullup, which equals a resistance of ca. 50 to 250 kΩ.
- ⁷⁾ The maximum current may be drawn while the respective signal line remains inactive.
- ⁸⁾ The minimum current must be drawn in order to drive the respective signal line active.
- ⁹⁾ This specification is valid during Reset and during Adapt-mode.
- ¹⁰⁾ This specification is valid during Reset if required for configuration, and during Adapt-mode.
- ¹¹⁾ Not 100% tested, guaranteed by design and characterization.

Table 10	Current Limits for Port Output Drivers
----------	--

Port Output Driver Mode	Maximum Output Current (I _{OLmax} , -I _{OHmax}) ¹⁾	Nominal Output Current (I _{OLnom} , -I _{OHnom})		
Strong driver	10 mA	2.5 mA		
Medium driver	4.0 mA	1.0 mA		
Weak driver	0.5 mA	0.1 mA		

¹⁾ An output current above II_{OXnom}I may be drawn from up to three pins at the same time. For any group of 16 neighboring port output pins the total output current in each direction (ΣI_{OL} and Σ-I_{OH}) must remain below 50 mA.

P0.15-13 (P0H.7-5). Register RP0H can be loaded from the upper half of register RSTCON under software control.

Table 11 associates the combinations of these three bits with the respective clock generation mode.

CLKCFG ¹⁾ (RP0H.7-5)		CPU Frequency $f_{CPU} = f_{OSC} \times F$	External Clock Input Range ²⁾	Notes				
1 1	1	$f_{OSC} \times 4$	2.5 to 6.25 MHz	Default configuration				
1 1	0	$f_{OSC} \times 3$	3.33 to 8.33 MHz	-				
1 0	1	$f_{OSC} \times 2$	5 to 12.5 MHz	-				
1 0	0	$f_{OSC} \times 5$	2 to 5 MHz	-				
0 1	1	$f_{OSC} \times 1$	1 to 25 MHz	Direct drive ³⁾				
0 1	0	$f_{OSC} \times 1.5$	6.66 to 16.66 MHz	-				
0 0	1	f _{OSC} / 2	2 to 50 MHz	CPU clock via prescaler				
0 0	0	$f_{OSC} \times 2.5$	4 to 10 MHz	-				

 Table 11
 C164CM Clock Generation Modes

¹⁾ Please note that pin P0.15 (corresponding to RP0H.7) is inverted in emulation mode, and thus also in EHM.

²⁾ The external clock input range refers to a CPU clock range of 10 ... 25 MHz.

³⁾ The maximum frequency depends on the duty cycle of the external clock signal.

Prescaler Operation

When prescaler operation is configured (CLKCFG = 001_B) the CPU clock is derived from the internal oscillator (input clock signal) by a 2:1 prescaler.

The frequency of f_{CPU} is half the frequency of f_{OSC} and the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the period of the input clock f_{OSC} .

The timings listed in the AC Characteristics that refer to TCLs therefore can be calculated using the period of f_{OSC} for any TCL.

Phase Locked Loop

When PLL operation is configured (via CLKCFG) the on-chip phase locked loop is enabled and provides the CPU clock (see **Table 11**). The PLL multiplies the input frequency by the factor **F** which is selected via the combination of pins P0.15-13 (i.e. $f_{CPU} = f_{OSC} \times F$). With every **F**'th transition of f_{OSC} the PLL circuit synchronizes the CPU clock to the input clock. This synchronization is done smoothly, i.e. the CPU clock frequency does not change abruptly.

A/D Converter Characteristics

(Operating Conditions apply)

Table 13	A/D Converter	Characteristics
----------	---------------	------------------------

Parameter	Symbol		Limit Values		Unit	Test	
			min.	max.		Conditions	
Analog reference supply	V _{AREF} S	SR	4.0	V _{DD} + 0.1	V	1)	
Analog reference ground	VAGNDS	SR	V _{SS} - 0.1	$V_{SS} + 0.2$	V	-	
Analog input voltage range	V _{AIN} S	SR	V _{AGND}	V _{AREF}	V	2)	
Basic clock frequency	f _{BC}		0.5	6.25	MHz	3)	
Conversion time	t _c c	CC	_	40 t _{BC} +	_	$\frac{4}{1} = \frac{1}{1000}$	
Calibration time after reset	t _{CAL} C	CC	_	3328 t _{BC}	_	5)	
Total unadjusted error	TUE C	CC	_	±2	LSB	1)	
Internal resistance of reference voltage source	R _{AREF} S	SR	-	t _{BC} / 60 - 0.25	kΩ	t _{BC} in [ns] ⁶⁾⁷⁾	
Internal resistance of analog source	R _{ASRC} S	SR	_	t _S / 450 - 0.25	kΩ	t _S in [ns] ⁷⁾⁸⁾	
ADC input capacitance	C _{AIN} C	CC	_	33	pF	7)	

¹⁾ TUE is tested at $V_{AREF} = 5.0 \text{ V}$, $V_{AGND} = 0 \text{ V}$, $V_{DD} = 4.9 \text{ V}$. It is guaranteed by design for all other voltages within the defined voltage range.

If the analog reference supply voltage exceeds the power supply voltage by up to 0.2 V

(i.e. $V_{ABEF} = V_{DD} = +0.2 \text{ V}$) the maximum TUE is increased to ±3 LSB. This range is not 100% tested.

The specified TUE is guaranteed only if the absolute sum of input overload currents on Port 5 pins (see I_{OV} specification) does not exceed 10 mA.

During the reset calibration sequence the maximum TUE may be \pm 4 LSB.

- ²⁾ V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.
- ³⁾ The limit values for f_{BC} must not be exceeded when selecting the CPU frequency and the ADCTC setting.
- ⁴⁾ This parameter includes the sample time t_S, the time for determining the digital result and the time to load the result register with the conversion result.

Values for the basic clock t_{BC} depend on programming and can be taken from Table 14.

This parameter depends on the ADC control logic. It is not a real maximum value, but rather a fixum.

- ⁵⁾ During the reset calibration conversions can be executed (with the current accuracy). The time required for these conversions is added to the total reset calibration time.
- ⁶⁾ During the conversion the ADC's capacitance must be repeatedly charged or discharged. The internal resistance of the reference voltage source must allow the capacitance to reach its respective voltage level within each conversion step. The maximum internal resistance results from the programmed conversion timing.
- ⁷⁾ Not 100% tested, guaranteed by design and characterization.

⁸⁾ During the sample time the input capacitance C_{AIN} can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S. After the end of the sample time t_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample time t_S depend on programming and can be taken from Table 14.

Sample time and conversion time of the C164CM's A/D Converter are programmable. Table 14 should be used to calculate the above timings.

The limit values for f_{BC} must not be exceeded when selecting ADCTC.

ADCON.15 14 (ADCTC)	A/D Converter Basic Clock $f_{\rm BC}$	ADCON.13 12 (ADSTC)	Sample time t _S
00	f _{CPU} / 4	00	$t_{BC} \times 8$
01	f _{CPU} / 2	01	$t_{BC} \times 16$
10	f _{CPU} / 16	10	$t_{BC} \times 32$
11	f _{CPU} / 8	11	$t_{BC} \times 64$

Table 14 A/D Converter Computation Table

Converter Timing Example:

Assumptions:	f _{CPU}	= 25 MHz (i.e. t _{CPU} = 40 ns), ADCTC = '00', ADSTC = '00'.
Basic clock	f _{BC}	= f _{CPU} /4 = 6.25 MHz, i.e. t _{BC} = 160 ns.
Sample time	ts	$= t_{BC} \times 8 = 1280 \text{ ns.}$
Conversion time	^t c	= t _S + 40 t _{BC} + 2 t _{CPU} = (1280 + 6400 + 80) ns = 7.8 μs.

Figure 16 External Memory Cycle: Multiplexed Bus, With Read/Write Delay, Normal ALE

Figure 17 External Memory Cycle: Multiplexed Bus, With Read/Write Delay, Extended ALE

Infineon goes for Business Excellence

"Business excellence means intelligent approaches and clearly defined processes, which are both constantly under review and ultimately lead to good operating results.

Better operating results and business excellence mean less idleness and wastefulness for all of us, more professional success, more accurate information, a better overview and, thereby, less frustration and more satisfaction."

Dr. Ulrich Schumacher

http://www.infineon.com