E·XFL

NXP USA Inc. - MSC7115VM1000 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	SC1400 Core
Interface	Host Interface, I ² C, UART
Clock Rate	266MHz
Non-Volatile Memory	External
On-Chip RAM	400kB
Voltage - I/O	3.30V
Voltage - Core	1.20V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	400-LFBGA
Supplier Device Package	400-LFBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc7115vm1000

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Pin Assignments

This section includes diagrams of the MSC7115 package ball grid array layouts and pinout allocation tables.

1.1 MAP-BGA Ball Layout Diagrams

Top and bottom views of the MAP-BGA package are shown in Figure 2 and Figure 3 with their ball location index numbers.

ssignments

1.2 Signal List By Ball Location

Table 1 lists the signals sorted by ball number and configuration.

Table 1. MSC7115 Signals by Ball Designator

	Signal Names					
Number		S	Hardware	Controlled		
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate
A1			GI	ND		
A2			GI	ND		
A3			DC	QM1		
A4			DG	QS2		
A5			C	к		
A6			C	ĸ		
A7		GPIC7		GPOC7	H	D15
A8		GPIC4		GPOC4	H	D12
A9		GPIC2		GPOC2	H	D10
A10		rese	erved		Н	D7
A11		rese	erved		Н	D6
A12		rese	erved		Н	D4
A13		rese	erved		Н	D1
A14		rese	erved		Н	D0
A15		GND				
A16 (1L44X)			N	IC		
A16 (1M88B)	BM3	GP	ID8	GPOD7	rese	erved
A17			N	IC		
A18			N	IC		
A19			N	IC		
A20			N	IC		
B1			VD	DM		
B2			N	IC		
В3			C	S0		
B4			DC	QM2		
B5			DC	2S3		
B6			DC	280		
B7			CI	KE		
B8			N	/E		
В9		GPIC6		GPOC6	HI	D14
B10		GPIC3		GPOC3	HI	D11
B11		GPIC0		GPOC0	Н	D8
B12		rese	erved		Н	D5
B13		rese	erved		Н	D2
B14			N	IC		
B15 (1L44X)			N	IC		

ssignments

	Signal Names					
Number		S	Software Controlle	d	Hardware	Controlled
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate
D13			V _D	DIO		
D14			V _D	DIO		
D15			V _D	DIO		
D16			V _D	DIO		
D17			V _D	DC		
D18			N	С		
D19			N	С		
D20			N	С		
E1			GI	ND		
E2			D	26		
E3			D	31		
E4			VD	DM		
E5			VD	DM		
E6			V _D	DC		
E7			V _D	DC		
E8			V _D	DC		
E9			V _D	DC		
E10			VD	DM		
E11			V _D	DIO		
E12			V _D	DIO		
E13			V _D	DIO		
E14			V _D	DIO		
E15			V _D	DIO		
E16			V	DC		
E17			V	DC		
E18			N	С		
E19			N	С		
E20			N	С		
F1			VD	DM		
F2			D	15		
F3			D	29		
F4			VD	DC		
F5			V _C	DC		
F6			V _C	DC		
F7			GI	ND		
F8			GI	ND		
F9			GI	ND		
F10			VD	DM		

Table 1. MSC7115 Signals by Ball Designator (continued)

			Signal	Names		
Number		s	Software Controlle	ed	Hardware	Controlled
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate
F11			V	DDM		
F12			G	ND		
F13			G	ND		
F14			G	ND		
F15			V	DIO		
F16			V	DDC		
F17			V	DDC		
F18			Ν	IC		
F19			Ν	IC		
F20			Ν	IC		
G1			G	ND		
G2			D	13		
G3			G	ND		
G4			V	DDM		
G5			V	DDM		
G6			G	ND		
G7			G	ND		
G8			G	ND		
G9			G	ND		
G10			G	ND		
G11			G	ND		
G12			G	ND		
G13			G	ND		
G14			G	ND		
G15			V	DIO		
G16			V	DIO		
G17			V	DDC		
G18			Ν	IC		
G19			Ν	IC		
G20			Ν	IC		
H1			D	14		
H2			D	12		
H3			D	11		
H4			V	DDM		
H5			V	DDM		
H6			G	ND		
H7			G	ND		
H8			G	ND		

			Signa	l Names		
Number		s	Software Controll	ed	Hardware	Controlled
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate
K6			G	ND		
K7			G	ND		
K8			G	ND		
K9			G	ND		
K10			G	IND		
K11			G	IND		
K12			G	IND		
K13			G	IND		
K14			G	IND		
K15			V	DDIO		
K16			V	DDIO		
K17			V	DDC		
K18		rese	erved		F	IA0
K19		rese	erved		HDDS	
K20		reserved			HDS/HDS (or HWR/HWR
L1			[D1		
L2			G	IND		
L3			[D3		
L4			V	DDC		
L5			V	DDM		
L6			G	ND		
L7			G	ND		
L8			G	ND		
L9			G	ND		
L10			G	ND		
L11			G	IND		
L12			G	ND		
L13			G	ND		
L14			V	DDIO		
L15			V	DDIO		
L16			V	DDIO		
L17			V	DDC		
L18 (1L44X)		rese	erved		HCS	2/HCS2
L18 (1M88B)		GPIB11		GPOB11	HCS2	2/HCS2
L19		rese	erved		HCS	I/HCS1
L20		rese	erved		HRW or	HRD/HRD
M1			[D2		
M2			V	DDM		

			Signa	I Names		
Number		s	oftware Controll	ed	Hardware	Controlled
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate
P1				D7		
P2			Γ	017		
P3			Γ	D16		
P4			V	DDM		
P5			V	DDM		
P6			V	DDM		
P7			G	IND		
P8			G	SND		
P9			G	SND		
P10			G	IND		
P11			G	SND		
P12			G	SND		
P13			G	IND		
P14			G	SND		
P15			V			
P16			V			
P17			V	DDC		
P18			POF	RESET		
P19			TF	SEL		
P20			Vr	ו ופחנ		
R1			G	SND		
R2			ſ	019		
R3			[018		
R4			V	МОЛ		
R5			V			
R6			V			
R7			G	IND		
R8			V	МОО		
R9			G	SND		
R10			V	DDM		
R11			G	SND		
R12			G	GND		
R13			V	סוחס		
R14			G	SND		
R15			V	סוחס		
R16			V			
R17			V			
R18			т	DO		

	Signal Names					
Number		s	oftware Controlle	ed	Hardware	Controlled
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate
U17			V	DDC		
U18			N	IC		
U19			т	СК		
U20			TR	IST		
V1			V _D	DDM		
V2			Ν	IC		
V3			А	13		
V4			A	11		
V5			A	10		
V6			А	٨5		
V7			A	12		
V8			B	A0		
V9			Ν	IC		
V10		rese	erved		EV	NT0
V11	SWTE	GPIA16	IRQ12	GPOA16	EVNT4	
V12	GF	PIA8	IRQ6	GPOA8	T0 ⁻	тск
V13	GF	PIA4	IRQ1	GPOA4	T1RFS	
V14	GF	PIAO	IRQ11	GPOA0	T1	ITD
V15	GP	IA28	IRQ17	GPOA28	reserved	T2RD
V16		GPID6		GPOD6	reserved	T2TD
V17	GP	IA22	IRQ22	GPOA22	rese	erved
V18	GP	IA24	IRQ24	GPOA24	rese	erved
V19			Ν	IC		
V20			Т	DI		
W1			GI	ND		
W2			V _D	DDM		
W3			A	12		
W4			A	\8		
W5			A	7		
W6			A	16		
W7			A	13		
W8			Ν	IC		
W9	GP	A17	IRQ13	GPOA17	EVNT1	CLKO
W10	BM0	GPI	C14	GPOC14	EV	NT2
W11	GP	IA10	IRQ5	GPOA10	ТО	RFS
W12	GF	PIA7	IRQ7	GPOA7	то	TFS
W13	GF	PIA3	IRQ8	GPOA3	T1	RD
W14	GF	PIA1	IRQ10	GPOA1	T1	TFS

Figure 4. Timing Diagram for a Reset Configuration Write

2.5.4 **DDR DRAM Controller Timing**

This section provides the AC electrical characteristics for the DDR DRAM interface.

2.5.4.1 **DDR DRAM Input AC Timing Specifications**

Table 18 provides the input AC timing specifications for the DDR DRAM interface.

No.		Symbol	Min	М			
	Parameter			Mask Set 1L44X	Mask Set 1M88B	Unit	
—	AC input low voltage	V _{IL}	—	V _{REF} – 0.31	V _{REF} – 0.31	V	
_	AC input high voltage	V _{IH}	V _{REF} + 0.31	V _{DDM} + 0.3	V _{DDM} + 0.3	V	
201	Maximum Dn input setup skew relative to DQSn input	—	—	1026	900	ps	
202	Maximum Dn input hold skew relative to DQSn input	—	_	386	900	ps	
Notes:	 Maximum possible skew between a data strobe (DQSn) and any corresponding bit of data (D[8n + {07}] if 0 ≤ n ≤ 7). See Table 19 for t_{CK} value. Do should be driven at the same time as DQSn. This is necessary because the DQSn centering on the DQn data tenure is 						

Table 18. DDR DRAM Input AC Timing

done internally.

Figure 6 shows the DDR DRAM output timing diagram.

Figure 6. DDR DRAM Output Timing Diagram

Figure 7 provides the AC test load for the DDR DRAM bus.

Figure 7. DDR DRAM AC Test Load

Table 20. DDR DRAM Measurement Conditions

		Symbol	DDR DRAM	Unit
V _{TH} ¹			V _{REF} ± 0.31 V	V
V _{OUT} ²			$0.5 imes V_{DDM}$	V
Notes:	1. 2.	Data input threshold measurement point. Data output measurement point.		

2.5.5 TDM Timing

Table 21. TDM Timing

No.	Characteristic	Expression	Min	Max	Units
300	TDMxRCK/TDMxTCK	TC	20.0	—	ns
301	TDMxRCK/TDMxTCK High Pulse Width	0.4 imes TC	8.0	—	ns
302	TDMxRCK/TDMxTCK Low Pulse Width	0.4 imes TC	8.0	—	ns
303	TDM all input Setup time		3.0	—	ns
304	TDMxRD Hold time		3.5	—	ns
305	TDMxTFS/TDMxRFS input Hold time		2.0	—	ns
306	TDMxTCK High to TDMxTD output active		4.0	_	ns

ifications

2.5.6 HDI16 Signals

Table 22. Host Interface (HDI16) Timing^{1, 2}

	Characteristics ³	Mask Set 1L	44X	Mask Set 1M	188B	Unit
NO.	Characteristics	Expression	Value	Expression	Value	
40	Host Interface Clock period	T _{HCLK}	Note 1	T _{CORE}	Note 1	ns
44a	Read data strobe minimum assertion width ⁴ HACK read minimum assertion width	$3.0 imes T_{HCLK}$	Note 11	2.0 × T _{CORE} + 9.0	Note 11	ns
44b	Read data strobe minimum deassertion width ⁴ HACK read minimum deassertion width	$1.5 imes T_{HCLK}$	Note 11	$1.5 \times T_{CORE}$	Note 11	ns
44c	Read data strobe minimum deassertion width ⁴ after "Last Data Register" reads ^{5,6} , or between two consecutive CVR, ICR, or ISR reads ⁷ HACK minimum deassertion width after "Last Data Register" reads ^{5,6}	2.5 × T _{HCLK}	Note 11	2.5 × T _{CORE}	Note 11	ns
45	Write data strobe minimum assertion width ⁸ HACK write minimum assertion width	$1.5 imes T_{HCLK}$	Note 11	$1.5 \times T_{CORE}$	Note 11	ns
46	Write data strobe minimum deassertion width ⁸ HACK write minimum deassertion width after ICR, CVR and Data Register writes ⁵	2.5 × T _{HCLK}	Note 11	2.5 × T _{CORE}	Note 11	ns
47	Host data input minimum setup time before write data strobe deassertion ⁸ Host data input minimum setup time before HACK write deassertion	_	3.0	_	2.5	ns
48	Host data input minimum hold time after write data strobe deassertion ⁸ Host data input minimum hold time after HACK write deassertion	_	4.0	_	2.5	ns
49	Read data strobe minimum assertion to output data active from high impedance ⁴ HACK read minimum assertion to output data active from high impedance	_	1.0	_	1.0	ns
50	Read data strobe maximum assertion to output data valid ⁴ HACK read maximum assertion to output data valid	(2.0 × T _{HCLK}) + 8.0	Note 11	(2.0 × T _{CORE}) + 8.0	Note 11	ns
51	Read data strobe maximum deassertion to output data high impedance ⁴ HACK read maximum deassertion to output data high impedance	_	8.0	_	9.0	ns
52	Output data minimum hold time after read data strobe deassertion ⁴ Output data minimum hold time after HACK read deassertion	_	1.0	_	1.0	ns
53	HCS[1–2] minimum assertion to read data strobe assertion ⁴	—	0.0	—	0.5	ns
54	HCS[1–2] minimum assertion to write data strobe assertion ⁸	_	0.0	_	0.0	ns
55	HCS[1-2] maximum assertion to output data valid	$(2.0 \times T_{\text{HCLK}}) + 8.0$	Note 11	$(2.0 \times T_{CORE}) + 6.0$	Note 11	ns
56	HCS[1–2] minimum hold time after data strobe deassertion ⁹	—	0.0	—	0.5	ns
57	HA[0–3], HRW minimum setup time before data strobe assertion ⁹	—	5.0	—	5.0	ns
58	HA[0–3], HRW minimum hold time after data strobe deassertion ⁹	_	5.0	_	5.0	ns
61	Maximum delay from read data strobe deassertion to host request deassertion for "Last Data Register" read ^{4, 5, 10}	(3.0 × T _{HCLK}) + 8.0	Note 11	(3.0 × T _{CORE}) + 6.0	Note 11	ns
62	Maximum delay from write data strobe deassertion to host request deassertion for "Last Data Register" write ^{5,8,10}	(3.0 × T _{HCLK}) + 8.0	Note 11	$(3.0 \times T_{CORE})$ + 6.0	Note 11	ns
63	Minimum delay from DMA HACK (OAD=0) or Read/Write data strobe(OAD=1) deassertion to HREQ assertion.	(2.0×T _{HCLK}) + 1.0	Note 11	(2.0 × T _{CORE}) + 1.0	Note 11	ns
64	Maximum delay from DMA HACK (OAD=0) or Read/Write data strobe(OAD=1) assertion to HREQ deassertion	(5.0 × T _{HCLK}) + 8.0	Note 11	(5.0 × T _{CORE}) + 6.0	Note 11	ns

Figure 11. Read Timing Diagram, Double Data Strobe

Figure 12. Write Timing Diagram, Single Data Strobe

Figure 14. Host DMA Read Timing Diagram, HPCR[OAD] = 0

Figure 15. Host DMA Write Timing Diagram, HPCR[OAD] = 0

2.5.12 JTAG Signals

No	Characteristics	All freq	uencies	Unit
NO.	Characteristics	Min	Max	Unit
700	TCK frequency of operation $(1/(T_C \times 3); maximum 22 MHz)$	0.0	40.0	MHz
701	TCK cycle time	25.0	_	ns
702	TCK clock pulse width measured at $V_{M} = 1.6 V$	11.0	_	ns
703	TCK rise and fall times	0.0	3.0	ns
704	Boundary scan input data set-up time	5.0	_	ns
705	Boundary scan input data hold time	14.0	_	ns
706	TCK low to output data valid	0.0	20.0	ns
707	TCK low to output high impedance	0.0	20.0	ns
708	TMS, TDI data set-up time	5.0	_	ns
709	TMS, TDI data hold time	25.0	_	ns
710	TCK low to TDO data valid	0.0	24.0	ns
711	TCK low to TDO high impedance	0.0	10.0	ns
712	TRST assert time	100.0	_	ns
Note:	All timings apply to OCE module data transfers as the OCE module uses the JT	AG port as an interfa	ice.	•

Table 28. JTAG Timing

Figure 22. Test Clock Input Timing Diagram

3.2.2.2 Case 2

The power-up sequence is as follows:

- 1. Turn on the V_{DDIO} (3.3 V) supply first.
- 2. Turn on the V_{DDC} (1.2 V) and V_{DDM} (2.5 V) supplies simultaneously (second).
- 3. Turn on the V_{REF} (1.25 V) supply last (third).

Note: Make sure that the time interval between the ramp-up of V_{DDIO} and V_{DDC}/V_{DDM} is less than 10 ms.

The power-down sequence is as follows:

- 1. Turn off the V_{REF} (1.25 V) supply first.
- 2. Turn off the V_{DDM} (2.5 V) supply second.
- 3. Turn off the V_{DDC} (1.2 V) supply third.
- 4. Turn of the V_{DDIO} (3.3 V) supply fourth (last).

Use the following guidelines:

- Make sure that the time interval between the ramp-down for V_{DDIO} and V_{DDC} is less than 10 ms.
- Make sure that the time interval between the ramp-up or ramp-down for V_{DDC} and V_{DDM} is less than 10 ms for power-up and power-down.
- Refer to Figure 27 for relative timing for Case 2.

Figure 27. Voltage Sequencing Case 2

ware Design Considerations

3.2.2.5 Case 5 (not recommended for new designs)

The power-up sequence is as follows:

- 1. Turn on the V_{DDIO} (3.3 V) supply first.
- 2. Turn on the V_{DDM} (2.5 V) supply second.
- 3. Turn on the V_{DDC} (1.2 V) supply third.
- 4. Turn on the V_{REF} (1.25 V) supply fourth (last).

Note: Make sure that the time interval between the ramp-up of V_{DDIO} and V_{DDM} is less than 10 ms.

The power-down sequence is as follows:

- 1. Turn off the V_{REF} (1.25 V) supply first.
- 2. Turn off the V_{DDC} (1.2 V) supply second.
- 3. Turn off the V_{DDM} (2.5 V) supply third.
- 4. Turn of the V_{DDIO} (3.3 V) supply fourth (last).

Use the following guidelines:

- Make sure that the time interval between the ramp-down of V_{DDIO} and V_{DDM} is less than 10 ms.
- Make sure that the time interval between the ramp-up or ramp-down for V_{DDC} and V_{DDM} is less than 2 ms for power-up and power-down.
- Refer to **Figure 30** for relative timing for power sequencing case 5.

Note: Cases 1, 2, 3, and 4 are recommended for system design. Designs that use Case 5 may have large current spikes on the V_{DDM} supply at startup and is not recommended for most designs. If a design uses case 5, it must accommodate the potential current spikes. Verify risks related to current spikes using actual information for the specific application.

ware Design Considerations

3.2.7 Power Supply Design

One of the most common ways to derive power is to use either a simple fixed or adjustable linear regulator. For the system I/O voltage supply, a simple fixed 3.3 V supply can be used. However, a separate adjustable linear regulator supply for the core voltage V_{DDC} should be implemented. For the memory power supply, regulators are available that take care of all DDR power requirements.

Supply	Symbol	Nominal Voltage	Current Rating
Core	V _{DDC}	1.2 V	1.5 A per device
Memory	V _{DDM}	2.5 V	0.5 A per device
Reference	V _{REF}	1.25 V	10 µA per device
I/O	V _{DDIO}	3.3 V	1.0 A per device

Table 30	. Recommended	Power	Supply	Ratings
----------	---------------	-------	--------	---------

3.3 Estimated Power Usage Calculations

The following equations permit estimated power usage to be calculated for individual design conditions. Overall power is derived by totaling the power used by each of the major subsystems:

$$P_{TOTAL} = P_{CORE} + P_{PERIPHERALS} + P_{DDRIO} + P_{IO} + P_{LEAKAGE}$$
 Eqn. 3

This equation combines dynamic and static power. Dynamic power is determined using the generic equation:

$$C \times V^2 \times F \times 10^{-3} mW$$
 Eqn. 4

where,

C = load capacitance in pF

V = peak-to-peak voltage swing in V

F = frequency in MHz

3.3.1 Core Power

Estimation of core power is straightforward. It uses the generic dynamic power equation and assumes that the core load capacitance is 750 pF, core voltage swing is 1.2 V, and the core frequency is 200 MHz or 266 MHz. This yields:

$$P_{CORE} = 750 \ pF \times (1.2 \ V)^2 \times 200 \ MHz \times 10^{-3} = 216 \ mW$$
 Eqn. 5

$$P_{CORE} = 750 \ pF \times (1.2 \ V)^2 \times 266 \ MHz \times 10^{-3} = 287 \ mW$$
 Eqn. 6

This equation allows for adjustments to voltage and frequency if necessary.

NP

ware Design Considerations

3.3.4 External I/O Power

The estimation of the I/O power is similar to the computation of the peripheral power estimates. The power consumption per signal line is computed assuming a maximum load of 20 pF, a voltage swing of 3.3 V, and a switching frequency of 25 MHz or 33 MHz, which yields:

$$P_{IO} = 20 \ pF \times (3.3 \ V)^2 \times 25 \ MHz \times 10^{-3} = 5.44 \ mW \ per I/O \ line$$
 Eqn. 16

$$P_{IO} = 20 \ pF \times (3.3 \ V)^2 \times 33 \ MHz \times 10^{-3} = 7.19 \ mW \ per I/O \ line$$
 Eqn. 17

Multiply this number by the number of I/O signal lines used in the application design to compute the total I/O power.

Note: The signal loading depends on the board routing. For systems using a single DDR device, the load could be as low as 7 pF.

3.3.5 Leakage Power

The leakage power is for all power supplies combined at a specific temperature. The value is temperature dependent. The observed leakage value at room temperature is 64 mW.

3.3.6 Example Total Power Consumption

Using the examples in this section and assuming four peripherals and 10 I/O lines active, a total power consumption value is estimated as the following:

$$P_{TOTAL} (200 \text{ MHz core}) = 216 + (4 \times 2.88) + 324, 2 + (10 \times 5.44) + 64 = 670.12 \text{ mW}$$
 Eqn. 18

 P_{TOTAL} (266 MHz core) = 287 + (4 × 3.83) + 326.3 + (10 × 7.19) + 64 = 764.52 mW Eqn. 19

3.4 Reset and Boot

This section describes the recommendations for configuring the MSC7115 at reset and boot.

3.4.1 Reset Circuit

HRESET is a bidirectional signal and, if driven as an input, should be driven with an open collector or open-drain device. For an open-drain output such as **HRESET**, take care when driving many buffers that implement input bus-hold circuitry. The bus-hold currents can cause enough voltage drop across the pull-up resistor to change the logic level to low. Either a smaller value of pull-up or less current loading from the bus-hold drivers overcomes this issue. To avoid exceeding the MSC7115 output current, the pull-up value should not be too small (a 1 K Ω pull-up resistor is used in the MSC711xADS reference design).

3.6 Connectivity Guidelines

This section summarizes the connections and special conditions, such as pull-up or pull-down resistors, for the MSC7115 device. Following are guidelines for signal groups and configuration settings:

- Clock and reset signals.
 - SWTE is used to configure the MSC7115 device and is sampled on the deassertion of PORESET, so it should be tied to V_{DDC} or GND either directly or through pull-up or pull-down resistors until PORESET is deasserted. After PORESET, this signal can be left floating.
 - BM[0–1] configure the MSC7115 device and are sampled until PORESET is deasserted, so they should be tied to V_{DDIO} or GND either directly or through pull-up or pull-down resistors.
 - **HRESET** should be pulled up.
- Interrupt signals. When used, **IRQ** pins must be pulled up.
- HDI16 signals.
 - When they are configured for open-drain, the HREQ/HREQ or HTRQ/HTRQ signals require a pull-up resistor. However, these pins are also sampled at power-on reset to determine the HDI16 boot mode and may need to be pulled down. When these pins must be pulled down on reset and pulled up otherwise, a buffer can be used with the HRESET signal as the enable.
 - When the device boots through the HDI16, the HDDS, HDSP and H8BIT pins should be pulled up or down, depending on the required boot mode settings.
- I^2C signals. The SCL and SDA signals, when programmed for I^2C , requires an external pull-up resistor.
- *General-purpose I/O (GPIO) signals*. An unused GPIO pin can be disconnected. After boot, program it as an output pin.
- Other signals.
 - The $\overline{\mathsf{TEST0}}$ pin must be connected to ground.
 - The TPSEL pin should be pulled up to enable debug access via the EOnCE port and pulled down for boundary scan.
 - Pins labelled NO CONNECT (NC) must not be connected.
 - When a 16-pin double data rate (DDR) interface is used, the 16 unused data pins should be no connects (floating) if the used lines are terminated.
 - Do not connect DBREQ to DONE (as you would for the MSC8101 device). Connect DONE to one of the EVNT pins, and DBREQ to HRRQ.

4 Ordering Information

Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order.

Part	Supply Voltage	Package Type	Pin Count	Core Frequency (MHz)	Solder Spheres	Order Number
MSC7115 (mask	7115 1.2 V core ask 2.5 V mem.	Molded Array Process-Ball Grid Array (MAP-BGA)	400	200	Lead-free	MSC7115VM800
1L44X 3.3 V I/O				Lead-bearing	NISC/1157F800	
MSC7115 1.2 V core (mask 2.5 V mem 1M88B) 3.3 V I/O	Molded Array Process-Ball Grid Array (MAP-BGA)	400	266	Lead-free	MSC7115VM1000	
				Lead-bearing	MSC7115VF1000	

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 +1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

Document Number: MSC7115 Rev. 11 4/2008 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale™, the Freescale logo, CodeWarrior, fieldBIST, and StarCore are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2004, 2008. All rights reserved.

