

#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Discontinued at Digi-Key                                                          |
|----------------------------|-----------------------------------------------------------------------------------|
| Core Processor             | TriCore™                                                                          |
| Core Size                  | 32-Bit Single-Core                                                                |
| Speed                      | 80MHz                                                                             |
| Connectivity               | CANbus, SPI, UART/USART                                                           |
| Peripherals                | DMA, POR, WDT                                                                     |
| Number of I/O              | 81                                                                                |
| Program Memory Size        | 1.5MB (1.5M x 8)                                                                  |
| Program Memory Type        | FLASH                                                                             |
| EEPROM Size                | -                                                                                 |
| RAM Size                   | 100K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 1.42V ~ 1.58V                                                                     |
| Data Converters            | A/D 36x12b                                                                        |
| Oscillator Type            | External                                                                          |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                 |
| Mounting Type              | Surface Mount                                                                     |
| Package / Case             | 176-LQFP                                                                          |
| Supplier Device Package    | PG-LQFP-176-2                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/saf-tc1165-192f80hl-aa |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

İnfineon

# 2 General Device Information

Chapter 2 provides the general information for the TC1165/TC1166.

## 2.1 Block Diagram

Figure 2-1 shows the TC1165/TC1166 block diagram.



infineon

Advance Information

General Device Information

## 2.4 Pad Driver and Input Classes Overview

The TC1165/TC1166 provides different types and classes of input and output lines. For understanding of the abbreviations in Table 2-1 starting at the next page, Table 4-1 gives an overview on the pad type and class types.



## General Device Information

| Table 2-1                            | Pi                         | n Def  | ini tions              | and Func           | tions (cont'd)                                                                                                                                                                              |  |  |  |  |
|--------------------------------------|----------------------------|--------|------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Symbol                               | Pins                       | /O     | Pad<br>Driver<br>Class | Power<br>Supply    | Functions<br>Analog input 31<br>Analog input 32<br>Analog input 33<br>Analog input 34<br>Analog input 35                                                                                    |  |  |  |  |
| AN31<br>AN32<br>AN33<br>AN34<br>AN35 | 32<br>31<br>30<br>29<br>28 | I      | D                      | _                  |                                                                                                                                                                                             |  |  |  |  |
| System I/                            | 0                          | 1      | 1                      | 1                  |                                                                                                                                                                                             |  |  |  |  |
| TRST                                 | 114                        | Ι      | A2 <sup>3)</sup>       | $V_{DDP}$          | JTAG Module Reset/Enable Input                                                                                                                                                              |  |  |  |  |
| ТСК                                  | 115                        | Ι      | A2 <sup>3)</sup>       | $V_{DDP}$          | JTAG Module Clock Input                                                                                                                                                                     |  |  |  |  |
| TDI                                  | 111                        | Ι      | A1 <sup>3)</sup>       | $V_{DDP}$          | JTAG Module Serial Data Input                                                                                                                                                               |  |  |  |  |
| TDO                                  | 113                        | 0      | A2                     | $V_{DDP}$          | JTAG Module Serial Data Output                                                                                                                                                              |  |  |  |  |
| TMS                                  | 112                        | I      | A2 <sup>3)</sup>       | $V_{DDP}$          | JTAG Module State Machine Control Input                                                                                                                                                     |  |  |  |  |
| BRKIN                                | 117                        | I/O    | A3                     | $V_{DDP}$          | OCDS Break Input (Alternate Output) <sup>4)5)</sup>                                                                                                                                         |  |  |  |  |
| <u>BRK</u><br>OUT                    | 116                        | I/O    | A3                     | V <sub>DDP</sub>   | OCDS Break Output (Alternate Input) 4)5)                                                                                                                                                    |  |  |  |  |
| TRCLK                                | 9                          | 0      | A4                     | $V_{DDP}$          | Trace Clock for OCDS_L2 Lines 4)                                                                                                                                                            |  |  |  |  |
| NMI                                  | 120                        | I      | A2 <sup>6)7)</sup>     | $V_{DDP}$          | Non-Maskable In terrupt Input                                                                                                                                                               |  |  |  |  |
| HDRST                                | 122                        | I/O    | A2 <sup>8)</sup>       | V <sub>DDP</sub>   | Hardware Reset Input /<br>Reset Indication Output                                                                                                                                           |  |  |  |  |
| PORST<br>9)                          | 121                        | I      | A2 <sup>6)7)</sup>     | V <sub>DDP</sub>   | Power-on Reset Input                                                                                                                                                                        |  |  |  |  |
| BYPASS                               | 119                        | I      | A1 <sup>3)</sup>       | V <sub>DDP</sub>   | PLL Clock Bypass Select Input<br>This input has to be held stable during power-<br>on resets. With BYPASS = 1, the spike filters<br>in the HDRST, PORST and NMI inputs are<br>switched off. |  |  |  |  |
| TEST<br>MODE                         | 118                        | I      | A2 <sup>6)10)</sup>    | V <sub>DDP</sub>   | Test Mode Select Input<br>For normal operation of the TC1165/TC1166,<br>this pin should be connected to high level.                                                                         |  |  |  |  |
| XTAL1<br>XTAL2                       | 102<br>103                 | l<br>O | n.a.                   | V <sub>DDOSC</sub> | Oscillator/PLL/Clock Generator<br>Input/Output Pins                                                                                                                                         |  |  |  |  |



### General Device Information

| Symbol           | Pins                                                            | I/O | Pad<br>Driver<br>Class | Power<br>Supply | Functions                 |
|------------------|-----------------------------------------------------------------|-----|------------------------|-----------------|---------------------------|
| V <sub>DDP</sub> | 11,<br>69,<br>83,<br>100,<br>124,<br>154,<br>171,<br>139        | -   | -                      | -               | Port Power Supply (3.3 V) |
| V <sub>SS</sub>  | 12,<br>70,<br>85,<br>101,<br>125,<br>155,<br>172,<br>140,<br>82 | -   | -                      | _               | Ground                    |

Table 2-1 Pin Defini tions and Functions (cont'd)

1) Not applicable to TC1165

2) The logical AND function of the two slave select outputs is available as a third alternate output function.

3) These pads are I/O pads with input only function. Its input characteristics are identical with the input characteristics as defined for class A pads.

- 4) In case of a power-fail condition (one or more power supply voltages drop below the specified voltage range), an undefined output driving level may occur at these pins.
- 5) Programmed by software as either break input or break output.
- 6) These pads are input only pads with input characteristics.
- 7) Input only pads with input spike filter.
- 8) Open drain pad with input spike filter.
- 9) The dual input reset system of TC1165/TC1166 assumes that the PORST reset pin is used for power on reset only.
- 10) Input only pads without input spike filter.

İnfineon

## Functional Description

- On-chip generation of programming voltage
  - JEDEC-standard based command sequences for PFLASH control
    - Write state machine controls programming and erase operations
    - Status and error reporting by status flags and interrupt
- Margin check for detection of problematic PFLASH bits

## Features of Data Flash

- 32 Kbyte on-chip data Flash memory, organized in two 16 Kbyte banks
- Usable for data storage with EEPROM functionality
- 128 Byte of program interface
  - 128 bytes are programmed into one DFLASH page by one step/command
- 64-bit read interface (no burst transfers)
- Dynamic correction of single-bit errors during read access
- Detection of double-bit errors
- Fixed sector architecture
  - Two 16 Kbyte banks/sectors
  - Each sector separately erasable
- Configurable read protection (combined with write protection) for complete DFLASH together with PFLASH read protection
- · Password mechanism for temporary disabling of write and read protection
- Erasing/programming of one bank possible while reading data from the other bank
- Programming of one bank while erasing the other bank possible
- On-chip generation of programming voltage
- JEDEC-standard based command sequences for DFLASH control
  - Write state machine controls programming and erase operations
  - Status and error reporting by status flags and interrupt
- Margin check for detection of problematic DFLASH bits

Infineon

Functional Description

## 3.3.3 Contents of the Segments

This section summarizes the contents of the segments.

## Segments 0-7

These segments are reserved segments in the TC1165/TC1166.

## Segment 8

From the SPB point of view (PCP, DMA and Cerberus), this memory segment allows accesses to all PMU memories (PFLASH, DFLASH, BROM, and TROM).

From the CPU point of view (PMI and DMI), this memory segment allows cached accesses to all PMU memories (PFLASH, DFLASH, BROM, and TROM).

### Segment 9

This memory segment is reserved in the TC1165/TC1166.

### Segment 10

From the SPB point of view (PCP, DMA and Cerberus), this memory segment allows accesses to all PMU memories (PFLASH, DFLASH, BROM, and TROM).

From the CPU point of view (PMI and DMI), this memory segment allows non-cached accesses to all PMU memories (PFLASH, DFLASH, BROM, and TROM).

### Segment 11

This memory segment is reserved in the TC1165/TC1166.

### Segment 12

From the SPB point of view (PCP, DMA, and Cerberus), this memory segment is reserved in the TC1165/TC1166.

From the CPU point of view (PMI and DMI), this memory segment allows cached accesses to the PMU memory, OVRAM.

### Segment 13

From the SPB point of view (PCP, DMA and Cerberus), this memory segment is reserved in the TC1165/TC1166.

From the CPU point of view (PMI and DMI), this memory segment allows non-cached accesses to the PMI scratch-pad RAM, read access to the boot ROM and test ROM (BROM and TROM) and the DMI memories (LDRAM).



Functional Description

The STM can also be read in sections from seven registers, STM\_TIM0 through STM\_TIM6, that select increasingly higher-order 32-bit ranges of the STM. These can be viewed as individual 32-bit timers, each with a different resolution and timing range.

The content of the 56-bit System Timer can be compared with the content of two compare values stored in the STM\_CMP0 and STM\_CMP1 registers. Interrupts can be generated on a compare match of the STM with the STM\_CMP0 or STM\_CMP1 registers.

The maximum clock period is  $2^{56} \times f_{STM}$ . At  $f_{STM} = 80$  MHz, for example, the STM counts 28.56 years before overflowing. Thus, it is capable of timing the entire expected product life-time of a system without overflowing continuously.

Figure 3-13 shows an overview on the System Timer with the options for reading parts of the STM contents.

İnfineon

## **Electrical Parameters**

## 4.1.2 Pad Driver and Pad Classes Summary

This section gives an overview on the different pad driver classes and its basic characteristics. More details (mainly DC parameters) are defined in Section 4.2.1.

| Class | Power<br>Supply | Туре                              | Sub Class                     | Speed<br>Grade | Load     | Leakage 1) | Termination                                                     |
|-------|-----------------|-----------------------------------|-------------------------------|----------------|----------|------------|-----------------------------------------------------------------|
| A     | 3.3V            | LVTTL<br>I/O,<br>LVTTL<br>outputs | A1<br>(e.g. GPIO)             | 6 MHz          | 100 pF   | 500 nA     | No                                                              |
|       |                 |                                   | A2<br>(e.g. serial<br>I/Os)   | 40<br>MHz      | 50 pF    | 6 μΑ       | Series<br>termination<br>recommended                            |
|       |                 |                                   | A3<br>(e.g. BRKIN,<br>BRKOUT) | 80<br>MHz/     | 50 pF    | 6 μΑ       | Series<br>termination<br>recommended<br>(for <i>f</i> > 25 MHz) |
|       |                 |                                   | A4<br>(e.g. Trace<br>Clock)   | 80<br>MHz      | 25 pF    | 6 μΑ       | Series<br>termination<br>recommended                            |
| С     | 3.3V            | LVDS                              | -                             | 50<br>MHz      |          | _          | Parallel termination <sup>2)</sup> , $100\Omega \pm 10\%$       |
| D     | -               | Analog i                          | nputs, referenc               | e voltage      | e inputs |            | ·                                                               |

Table 4-1 Pad Driver an d Pad Classes Overview

1) Values are for  $T_{\text{Jmax}} = 125 \text{ °C}.$ 

2) In applications where the LVDS pins are not used (disabled), these pins must be either left unconnected, or properly terminated with the differential parallel termination of  $100\Omega \pm 10\%$ .



**Electrical Parameters** 

## 4.3.8 Peripheral Timings

Section 4.3.8 provides the characteristics of the peripheral timings in the TC1165/TC1166.

Note: Peripheral timing parameters are not subject to production test. They are verified by design/characterization.

## 4.3.8.1 Micro Link Interface (MLI) Timing

Table 4-17 provides the characteristics of the MLI timing in the TC1165/TC1166.

| Table 4-17 | MLI Timing (Opera | ting Conditions apply), C | L = 50  pF |
|------------|-------------------|---------------------------|------------|
|------------|-------------------|---------------------------|------------|

| Parameter                              | Symbol                 |           | Limit Values l          |      | nit |
|----------------------------------------|------------------------|-----------|-------------------------|------|-----|
|                                        |                        |           | Min.                    | Max. |     |
| TCLK/RCLK clock period <sup>1)2)</sup> | <i>t</i> <sub>30</sub> | CC/<br>SR | $2 \times T_{MLI}^{3)}$ | -    | ns  |
| MLI outputs delay from TCLK            | t <sub>35</sub>        | CC        | 0                       | 8    | ns  |
| MLI inputs setup to RCLK<br>飞          | <i>t</i> <sub>36</sub> | SR        | 4                       | _    | ns  |
| MLI inputs hold to RCLK                | t <sub>37</sub>        | SR        | 4                       | _    | ns  |
| RREADY output delay from RCLK          | <i>t</i> <sub>38</sub> | CC        | 0                       | 8    | ns  |

1) TCLK signal rise/fall times are the same as the A2 Pads rise/fall times.

2) TCLK high and low times can be minimum 1  $\times$   $T_{\rm MLI}$ 

3)  $T_{\text{MLImin}} = T_{\text{SYS}} = 1/f_{\text{SYS}}$ . When  $f_{\text{SYS}} = 80$ MHz,  $t_{30} = 25$ ns