

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	36KB (36K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-FQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08lc36lk

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Chapter 6 Parallel Input/Output

6.1 Pin Behavior in Stop Modes

Pin behavior following execution of a STOP instruction depends on the stop mode that is entered. An explanation of pin behavior for the various stop modes follows:

- In stop1 mode, all internal registers including parallel I/O control and data registers are powered off. Each of the pins assumes its default reset state (output buffer and internal pullup disabled). Upon exit from stop1, all pins must be reconfigured the same as if the MCU had been reset.
- Stop2 mode is a partial power-down mode, whereby latches maintain the pin state as before the STOP instruction was executed. CPU register status and the state of I/O registers must be saved in RAM before the STOP instruction is executed to place the MCU in stop2 mode. Upon recovery from stop2 mode, before accessing any I/O, the user must examine the state of the PPDF bit in the SPMSC2 register. If the PPDF bit is 0, I/O must be initialized as if a power on reset had occurred. If the PPDF bit is 1, I/O data previously stored in RAM, before the STOP instruction was executed, peripherals previously enabled will require being initialized and restored to their pre-stop condition. The user must then write a 1 to the PPDACK bit in the SPMSC2 register. Access of pins is now permitted again in the user's application program.
- In stop3 mode, all pin states are maintained because internal logic stays powered up. Upon recovery, all pin functions are the same as before entering stop3.

6.2 Parallel I/O Registers

6.2.1 Port A Registers

This section provides information about all registers and control bits associated with the parallel I/O ports. The parallel I/O registers are located in page zero of the memory map.

Refer to tables in Chapter 3, "Modes of Operation" for the absolute address assignments for all parallel I/O registers. This section refers to registers and control bits only by their names. A Freescale-provided equate or header file normally is used to translate these names into the appropriate absolute addresses.

- 0 = Bit forced to 0
- 1 = Bit forced to 1
 - = Bit set or cleared according to results of operation
- U = Undefined after the operation

Machine coding notation

- dd = Low-order 8 bits of a direct address 0x0000-0x00FF (high byte assumed to be 0x00)
- ee = Upper 8 bits of 16-bit offset
- ff = Lower 8 bits of 16-bit offset or 8-bit offset
- ii = One byte of immediate data
- jj = High-order byte of a 16-bit immediate data value
- kk = Low-order byte of a 16-bit immediate data value
- hh = High-order byte of 16-bit extended address
 - II = Low-order byte of 16-bit extended address
- rr = Relative offset

Source form

Everything in the source forms columns, *except expressions in italic characters*, is literal information that must appear in the assembly source file exactly as shown. The initial 3- to 5-letter mnemonic is always a literal expression. All commas, pound signs (#), parentheses, and plus signs (+) are literal characters.

- n Any label or expression that evaluates to a single integer in the range 0–7
- opr8i Any label or expression that evaluates to an 8-bit immediate value
- opr16i Any label or expression that evaluates to a 16-bit immediate value
- *opr8a* Any label or expression that evaluates to an 8-bit value. The instruction treats this 8-bit value as the low order 8 bits of an address in the direct page of the 64-Kbyte address space (0x00xx).
- *opr16a* Any label or expression that evaluates to a 16-bit value. The instruction treats this value as an address in the 64-Kbyte address space.
- *oprx8* Any label or expression that evaluates to an unsigned 8-bit value, used for indexed addressing
- *oprx16* Any label or expression that evaluates to a 16-bit value. Because the HCS08 has a 16-bit address bus, this can be either a signed or an unsigned value.
 - rel Any label or expression that refers to an address that is within -128 to +127 locations from the next address after the last byte of object code for the current instruction. The assembler will calculate the 8-bit signed offset and include it in the object code for this instruction.

Address modes

- INH = Inherent (no operands)
- IMM = 8-bit or 16-bit immediate
- DIR = 8-bit direct
- EXT = 16-bit extended

Chapter 9 Liquid Crystal Display Driver (S08LCDV1)

MC9S08LC60 Series Data Sheet: Technical Data, Rev. 4

Table 9-10. LCDSUPPLY Field Descriptions (continued)

Field	Description
5:4 CPCADJ[1:0]	LCD Module Charge Pump Clock Adjust- Adjust the clock source for the charge pump
	Charge Pump Clock Rate = LCDCLK / ($6 \times 2^{(CPADJ[1:0]+1)}$) Eqn. 9-3
	 00 Configures for 2728 Hz charge pump frequency (LCDCLK = 32.768khz) 01 Configures for 1364 Hz charge pump frequency (LCDCLK = 32.768khz) 10 Configures for 682 Hz charge pump frequency (LCDCLK = 32.768khz) 11 Configures for 341 Hz charge pump frequency (LCDCLK = 32.768khz)
3 HDRVBUF	 High Drive Buffer Mode Select — This bit enhances the VLCD buffer drive active high buffer drive for larger capacitance LCD glass. (See Figure 9-17 for details.) 0 Normal buffer drive. (Ideal for 2000 pF LCD glass.) 1 High buffer drive. (Ideal for 4000 pF LCD glass.)
2 BBYPASS	Op Amp Control — Determines whether the internal LCD op amp buffer is bypassed. (See Figure 9-17 for details) 0 Buffered mode 1 Unbuffered mode
1:0 VSUPPLY[1:0]	Voltage Supply Control — Configures whether the LCD module power supply is external or internal. It is recommended that this bit field not be modified while the LCD module is enabled (e.g., LCDEN = 1). See Figure 9-17 for more detail.

9.3.7 LCD Blink Control Register (LCDBCTL)

Figure 9-8. LCD Blink Control Register (LCDBCTL)

Read: anytime

Write: anytime. It is recommended that BRATE[1:0] and BLKMODE, must not be modified while BLINK is asserted.

9.5.2.3 Initialization Example 3

Example 3 LCD setup requirements are reiterated in the table below:

Example	Operating Voltage, V _{DD}	LCD Clock Source	LCD Glass Operating Voltage	Required LCD segments	LCD Frame Rate	Blinking Mode/Rate	Behavior in STOP3 and WAIT modes	LCD Power Input
3	3.6-V	Internal 18886 kHz	5-V	160	60 Hz	Individual segment 2.0 Hz	WAIT: off STOP3: on	Power via V _{DD}

Table 9-24 lists the required setup values required to initialize the LCD as specified by Example 3:

Register	Bit/bit field	Binary Value	Comment
LCDCLKS 11100011	SOURCE	1	Selects the bus clock as the LCD clock input External clock reference = 0; Bus clock = 1
	DIV16	1	Adjusts the LCD clock input (see table 9-12)
	CLKADJ[5:0]	100011	Adjusts the LCD clock input (see table 9-12)
LCDSUPPLY	LCDCPEN	1	Enable the charge pump
1XXXXX00	LCDCPMS	X	Don't care since power is from internal V_{DD} Doubler mode = 0; Tripler mode = 1
	HDRVBUF	Х	High drive buffer
	CPCADJ[1:0]	XX	Configure LCD charge pump clock source
	BBYPASS	Х	Buffer Bypass; Buffer mode = 0; Unbuffered mode = 1
	VSUPPLY[1:0]	00	Power LCD via V _{DD} internal power (see table 9-16). When VSUPPLY[1:0] = 00, V _{LL2} is generated from V _{DD} .
LCDCR1	LCDWAI	1	LCD is "off" in WAIT mode
*****	LCDSTP3	0	LCD is "on" in STOP3 mode
LCDCR0 0X011X00	LCLK[2:0]	011	For 1/4 duty cycle, select closest value to the desired 60 Hz LCD frame frequency (see table 9-13). Note the LCD base frequency - 256.2 Hz
	LPWAVE	X	Low power waveform
	DUTY[1:0]	11	For 160 segments (4x40), select 1/4 duty cycle (see table 9-11)
	BLKMODE	0	Blink individual segments; Blink Segments = 0; Blink All = 1
	BRATE[2:0]	010	Using the LCD base frequency for the selected LCD frame frequency, select 2.0 Hz blink frequency (see table 9-15).
FPENR[5:0]	FPENR0 FPENR1 FPENR2 FPENR3 FPENR4 FPENR5	11111111 11111111 11111111 11111111 1111	40 LCD frontplanes need to be enabled.

Table 9-24. Initialization Register Values for Example 3

Chapter 10 Internal Clock Generator (S08ICGV4)

- Digitally-controlled oscillator (DCO) preserves previous frequency settings, allowing fast frequency lock when recovering from stop3 mode
- DCO will maintain operating frequency during a loss or removal of reference clock
- Post-FLL divider selects 1 of 8 bus rate divisors (/1 through /128)
- Separate self-clocked source for real-time interrupt
- Trimmable internal clock source supports SCI communications without additional external components
- Automatic FLL engagement after lock is acquired
- External oscillator selectable for low power or high gain

10.2.2 Modes of Operation

This is a high-level description only. Detailed descriptions of operating modes are contained in Section 10.5, "Functional Description."

• Mode 1 - Off

The output clock, ICGOUT, is static. This mode may be entered when the STOP instruction is executed.

• Mode 2 — Self-clocked (SCM)

Default mode of operation that is entered immediately after reset. The ICG's FLL is open loop and the digitally controlled oscillator (DCO) is free running at a frequency set by the filter bits.

• Mode 3 — FLL engaged internal (FEI)

In this mode, the ICG's FLL is used to create frequencies that are programmable multiples of the internal reference clock.

- FLL engaged internal unlocked is a transition state that occurs while the FLL is attempting to lock. The FLL DCO frequency is off target and the FLL is adjusting the DCO to match the target frequency.
- FLL engaged internal locked is a state that occurs when the FLL detects that the DCO is locked to a multiple of the internal reference.
- Mode 4 FLL bypassed external (FBE)

In this mode, the ICG is configured to bypass the FLL and use an external clock as the clock source.

• Mode 5 — FLL engaged external (FEE)

The ICG's FLL is used to generate frequencies that are programmable multiples of the external clock reference.

- FLL engaged external unlocked is a transition state that occurs while the FLL is attempting to lock. The FLL DCO frequency is off target and the FLL is adjusting the DCO to match the target frequency.
- FLL engaged external locked is a state which occurs when the FLL detects that the DCO is locked to a multiple of the internal reference.

10.4 Register Definition

Refer to the direct-page register summary in the Memory chapter of this data sheet for the absolute address assignments for all ICG registers. This section refers to registers and control bits only by their names. A Freescale-provided equate or header file is used to translate these names into the appropriate absolute addresses.

10.4.1 ICG Control Register 1 (ICGC1)

Figure 10-6. ICG Control Register 1 (ICGC1)

¹ This bit can be written only once after reset. Additional writes are ignored.

Table 10-1. ICGC1 Register Field Descriptions

Field	Description
7 HGO	 High Gain Oscillator Select — The HGO bit is used to select between low power operation and high gain operation for improved noise immunity. This bit is write-once after reset. Oscillator configured for low power operation. Oscillator configured for high gain operation.
6 RANGE	 Frequency Range Select — The RANGE bit controls the oscillator, reference divider, and FLL loop prescaler multiplication factor (P). It selects one of two reference frequency ranges for the ICG. The RANGE bit is write-once after a reset. The RANGE bit only has an effect in FLL engaged external and FLL bypassed external modes. O Oscillator configured for low frequency range. FLL loop prescale factor P is 64. 1 Oscillator configured for high frequency range. FLL loop prescale factor P is 1.
5 REFS	 External Reference Select — The REFS bit controls the external reference clock source for ICGERCLK. The REFS bit is write-once after a reset. 0 External clock requested. 1 Oscillator using crystal or resonator requested.
4:3 CLKS	Clock Mode Select — The CLKS bits control the clock mode as described below. If FLL bypassed external is requested, it will not be selected until ERCS = 1. If the ICG enters off mode, the CLKS bits will remain unchanged. Writes to the CLKS bits will not take effect if a previous write is not complete. 00 Self-clocked 01 FLL engaged, internal reference 10 FLL bypassed, external reference 11 FLL engaged, external reference The CLKS bits are writable at any time, unless the first write after a reset was CLKS = 0X, the CLKS bits cannot be written to 1X until after the next reset (because the EXTAL pin was not reserved).

Chapter 10 Internal Clock Generator (S08ICGV4)

Table 10-6. ICGFLTL Register Field Descriptions

Field	Description
7:0 FLT	Filter Value — The FLT bits indicate the current filter value, which controls the DCO frequency. The FLT bits are read only except when the CLKS bits are programmed to self-clocked mode (CLKS = 00). In self-clocked mode, any write to ICGFLTU updates the current 12-bit filter value. Writes to the ICGFLTU register will not affect FLT if a previous latch sequence is not complete. The filter registers show the filter value (FLT).

10.4.6 ICG Trim Register (ICGTRM)

U = Unaffected by MCU reset

Figure 10-12. ICG Trim Register (ICGTRM)

Table 10-7. ICGTRM Register Field Descriptions

Field	Description
7 TRIM	ICG Trim Setting — The TRIM bits control the internal reference generator frequency. They allow a $\pm 25\%$
	adjustment of the nominal (POR) period. The bit's effect on period is binary weighted (i.e., bit 1 will adjust twice
	as much as changing bit 0). Increasing the binary value in TRIM will increase the period and decreasing the value
	will decrease the period.

10.5 Functional Description

This section provides a functional description of each of the five operating modes of the ICG. Also discussed are the loss of clock and loss of lock errors and requirements for entry into each mode. The ICG is very flexible, and in some configurations, it is possible to exceed certain clock specifications. When using the FLL, configure the ICG so that the frequency of ICGDCLK does not exceed its maximum value to ensure proper MCU operation.

Chapter 10 Internal Clock Generator (S08ICGV4)

10.5.10 Clock Mode Requirements

A clock mode is requested by writing to CLKS1:CLKS0 and the actual clock mode is indicated by CLKST1:CLKST0. Provided minimum conditions are met, the status shown in CLKST1:CLKST0 should be the same as the requested mode in CLKS1:CLKS0. Table 10-9 shows the relationship between CLKS, CLKST, and ICGOUT. It also shows the conditions for CLKS = CLKST or the reason CLKS \neq CLKST.

NOTE

If a crystal will be used before the next reset, then be sure to set REFS = 1 and CLKS = 1x on the first write to the ICGC1 register. Failure to do so will result in "locking" REFS = 0 which will prevent the oscillator amplifier from being enabled until the next reset occurs.

Actual Mode (CLKST)	Desired Mode (CLKS)	Range	Reference Frequency (f _{REFERENCE})	Comparison Cycle Time	ICGOUT	Conditions ¹ for CLKS = CLKST	Reason CLKS1 ≠ CLKST
Off	Off (XX) X		0		0	_	_
(XX)	FBE (10)	x	0	_	0	_	ERCS = 0
	SCM (00)	х	f _{ICGIRCLK} /7 ²	8/f _{ICGIRCLK}	ICGDCLK/R	Not switching from FBE to SCM	_
SCM	FEI (01)	0	f _{ICGIRCLK} /7 ⁽¹⁾	8/f _{ICGIRCLK}	ICGDCLK/R		DCOS = 0
(00)	FBE (10)	х	f _{ICGIRCLK} /7 ⁽¹⁾	8/f _{ICGIRCLK}	ICGDCLK/R	_	ERCS = 0
	FEE (11)	х	f _{ICGIRCLK} /7 ⁽¹⁾	8/f _{ICGIRCLK}	ICGDCLK/R		DCOS = 0 or ERCS = 0
FEI	FEI EI (01)		f _{ICGIRCLK} /7	8/f _{ICGIRCLK}	ICGDCLK/R	DCOS = 1	_
(01) FEE (11)	х	f _{ICGIRCLK} /7	8/f _{ICGIRCLK}	ICGDCLK/R	_	ERCS = 0	
FBE	FBE (10)		0	_	ICGERCLK/R	ERCS = 1	_
(10) F (FEE (11)	x	0		ICGERCLK/R		LOCS = 1 & ERCS = 1
FEE (11)	FEE	0	ficgerclk	2/f _{ICGERCLK}	ICGDCLK/R ³	ERCS = 1 and DCOS = 1	_
	(11)	1	ficgerclk	128/f _{ICGERCLK}	ICGDCLK/R ⁽²⁾	ERCS = 1 and DCOS = 1	

Table 10-9. ICG State Table

¹ CLKST will not update immediately after a write to CLKS. Several bus cycles are required before CLKST updates to the new value.

² The reference frequency has no effect on ICGOUT in SCM, but the reference frequency is still used in making the comparisons that determine the DCOS bit

³ After initial LOCK; will be ICGDCLK/2R during initial locking process and while FLL is re-locking after the MFD bits are changed.

Chapter 10 Internal Clock Generator (S08ICGV4)

Figure 10-15. ICG Initialization and Stop Recovery for Example #2

10.6.4 Example #3: No External Crystal Connection, 5.4 MHz Bus Frequency

In this example, the FLL will be used (in FEI mode) to multiply the internal 243 kHz (approximate) reference clock up to 10.8 MHz to achieve 5.4 MHz bus frequency. This system will also use the trim function to fine tune the frequency based on an external reference signal.

After the MCU is released from reset, the ICG is in self-clocked mode (SCM) and supplies approximately 8 MHz on ICGOUT which corresponds to a 4 MHz bus frequency (f_{Bus}).

The clock scheme will be FLL engaged, internal (FEI). So

Solving for N / R gives:

N / R = 10.8 MHz /(243/7 kHz * 64) = 4.86 ; We can choose N = 10 and R = 2. Eqn. 10-6

A trim procedure will be required to hone the frequency to exactly 5.4 MHz. An example of the trim procedure is shown in example #4.

The values needed in each register to set up the desired operation are:

ICGC1 = \$28 (%00101000)

Bit 7	HGO	0	Configures oscillator for low power
Bit 6	RANGE	0	Configures oscillator for low-frequency range; FLL prescale factor is 64
Bit 5	REFS	1	Oscillator using crystal or resonator requested (bit is really a don't care)
Bits 4:3	CLKS	01	FLL engaged, internal reference clock mode
Bit 2	OSCSTEN	0	Disables the oscillator
Bit 1	LOCD	0	Loss-of-clock enabled
Bit 0		0	Unimplemented or reserved, always reads zero

ICGC2 = \$31 (%00110001)

Bit 7	LOLRE	0	Generates an interrupt request on loss of lock
Bit 6:4	MFD	011	Sets the MFD multiplication factor to 10
Bit 3	LOCRE	0	Generates an interrupt request on loss of clock
Bit 2:0	RFD	001	Sets the RFD division factor to $\div 2$

ICGS1 = xx

This is read only except for clearing interrupt flag

ICGS2 = xx

This is read only; good idea to read this before performing time critical operations

ICGFLTLU/L = \$xx

Not used in this example

Chapter 13 Serial Peripheral Interface (S08SPIV3)

13.2 External Signal Description

The SPI optionally shares four port pins. The function of these pins depends on the settings of SPI control bits. When the SPI is disabled (SPE = 0), these four pins revert to being general-purpose port I/O pins that are not controlled by the SPI.

13.2.1 SPSCK — SPI Serial Clock

When the SPI is enabled as a slave, this pin is the serial clock input. When the SPI is enabled as a master, this pin is the serial clock output.

13.2.2 MOSI — Master Data Out, Slave Data In

When the SPI is enabled as a master and SPI pin control zero (SPC0) is 0 (not bidirectional mode), this pin is the serial data output. When the SPI is enabled as a slave and SPC0 = 0, this pin is the serial data input. If SPC0 = 1 to select single-wire bidirectional mode, and master mode is selected, this pin becomes the bidirectional data I/O pin (MOMI). Also, the bidirectional mode output enable bit determines whether the pin acts as an input (BIDIROE = 0) or an output (BIDIROE = 1). If SPC0 = 1 and slave mode is selected, this pin is not used by the SPI and reverts to being a general-purpose port I/O pin.

13.2.3 MISO — Master Data In, Slave Data Out

When the SPI is enabled as a master and SPI pin control zero (SPC0) is 0 (not bidirectional mode), this pin is the serial data input. When the SPI is enabled as a slave and SPC0 = 0, this pin is the serial data output. If SPC0 = 1 to select single-wire bidirectional mode, and slave mode is selected, this pin becomes the bidirectional data I/O pin (SISO) and the bidirectional mode output enable bit determines whether the pin acts as an input (BIDIROE = 0) or an output (BIDIROE = 1). If SPC0 = 1 and master mode is selected, this pin is not used by the SPI and reverts to being a general-purpose port I/O pin.

13.2.4 **SS** — Slave Select

When the SPI is enabled as a slave, this pin is the low-true slave select input. When the SPI is enabled as a master and mode fault enable is off (MODFEN = 0), this pin is not used by the SPI and reverts to being a general-purpose port I/O pin. When the SPI is enabled as a master and MODFEN = 1, the slave select output enable bit determines whether this pin acts as the mode fault input (SSOE = 0) or as the slave select output (SSOE = 1).

14.4 Functional Description

This section provides a complete functional description of the IIC module.

14.4.1 IIC Protocol

The IIC bus system uses a serial data line (SDA) and a serial clock line (SCL) for data transfer. All devices connected to it must have open drain or open collector outputs. A logic AND function is exercised on both lines with external pull-up resistors. The value of these resistors is system dependent.

Normally, a standard communication is composed of four parts:

- START signal
- Slave address transmission
- Data transfer
- STOP signal

The STOP signal should not be confused with the CPU STOP instruction. The IIC bus system communication is described briefly in the following sections and illustrated in Figure 14-8.

Figure 14-8. IIC Bus Transmission Signals

Chapter 15 Analog-to-Digital Converter (S08ADC12V1)

Figure 15-7. Data Result Low Register (ADCRL)

15.3.5 Compare Value High Register (ADCCVH)

In 12-bit mode, the ADCCVH register holds the upper four bits of the 12-bit compare value. These bits are compared to the upper four bits of the result following a conversion in 12-bit mode when the compare function is enabled.

Figure 15-8. Compare Value High Register (ADCCVH)

In 10-bit mode, the ADCCVH register holds the upper two bits of the 10-bit compare value (ADCV9 – ADCV8). These bits are compared to the upper two bits of the result following a conversion in 10-bit mode when the compare function is enabled.

In 8-bit mode, ADCCVH is not used during compare.

15.3.6 Compare Value Low Register (ADCCVL)

This register holds the lower 8 bits of the 12-bit or 10-bit compare value, or all 8 bits of the 8-bit compare value. Bits ADCV7:ADCV0 are compared to the lower 8 bits of the result following a conversion in 12-bit, 10-bit or 8-bit mode.

Figure 15-9. Compare Value Low Register(ADCCVL)

15.3.7 Configuration Register (ADCCFG)

ADCCFG is used to select the mode of operation, clock source, clock divide, and configure for low power or long sample time.

MC9S08LC60 Series Data Sheet: Technical Data, Rev. 4

Chapter 15 Analog-to-Digital Converter (S08ADC12V1)

Figure 15-14. Initialization Flowchart for Example

15.6 Application Information

This section contains information for using the ADC module in applications. The ADC has been designed to be integrated into a microcontroller for use in embedded control applications requiring an A/D converter.

15.6.1 External Pins and Routing

The following sections discuss the external pins associated with the ADC module and how they should be used for best results.

15.6.1.1 Analog Supply Pins

The ADC module has analog power and ground supplies (V_{DDAD} and V_{SSAD}) which are available as separate pins on some devices. On other devices, V_{SSAD} is shared on the same pin as the MCU digital V_{SS} , and on others, both V_{SSAD} and V_{DDAD} are shared with the MCU digital supply pins. In these cases, there are separate pads for the analog supplies which are bonded to the same pin as the corresponding digital supply so that some degree of isolation between the supplies is maintained.

When available on a separate pin, both V_{DDAD} and V_{SSAD} must be connected to the same voltage potential as their corresponding MCU digital supply (V_{DD} and V_{SS}) and must be routed carefully for maximum noise immunity and bypass capacitors placed as near as possible to the package.

16.2 External Signal Description

The ACMP has two analog input pins, ACMP+ and ACMP– and one digital output pin ACMPO. Each of these pins can accept an input voltage that varies across the full operating voltage range of the MCU. As shown in Figure 16-2, the ACMP– pin is connected to the inverting input of the comparator, and the ACMP+ pin is connected to the comparator non-inverting input if ACBGS is a 0. As shown in Figure 16-2, the ACMPO pin can be enabled to drive an external pin.

The signal properties of ACMP are shown in Table 16-1.

Signal	Function	I/O
ACMP-	Inverting analog input to the ACMP. (Minus input)	I
ACMP+	Non-inverting analog input to the ACMP. (Positive input)	I
ACMPO	Digital output of the ACMP.	0

Table 16-1. Signal Properties

16.3 Register Definition

The ACMP includes one register:

• An 8-bit status and control register

Refer to the direct-page register summary in the memory section of this data sheet for the absolute address assignments for all ACMP registers. This section refers to registers and control bits only by their names and relative address offsets.

Some MCUs may have more than one ACMP, so register names include placeholder characters to identify which ACMP is being referenced.

Chapter 17 Development Support

Figure 17-2 shows an external host transmitting a logic 1 or 0 to the BKGD pin of a target HCS08 MCU. The host is asynchronous to the target so there is a 0-to-1 cycle delay from the host-generated falling edge to where the target perceives the beginning of the bit time. Ten target BDC clock cycles later, the target senses the bit level on the BKGD pin. Typically, the host actively drives the pseudo-open-drain BKGD pin during host-to-target transmissions to speed up rising edges. Because the target does not drive the BKGD pin during the host-to-target transmission period, there is no need to treat the line as an open-drain signal during this period.

Figure 17-2. BDC Host-to-Target Serial Bit Timing

¹ BDFR is writable only through serial background mode debug commands, not from user programs.

Figure 17-6. System Background Debug Force Reset Register (SBDFR)

Table 17-3. SBDFR Register Field Description

Field	Description
0 BDFR	Background Debug Force Reset — A serial active background mode command such as WRITE_BYTE allows an external debug host to force a target system reset. Writing 1 to this bit forces an MCU reset. This bit cannot be written from a user program.

17.4.3 DBG Registers and Control Bits

The debug module includes nine bytes of register space for three 16-bit registers and three 8-bit control and status registers. These registers are located in the high register space of the normal memory map so they are accessible to normal application programs. These registers are rarely if ever accessed by normal user application programs with the possible exception of a ROM patching mechanism that uses the breakpoint logic.

17.4.3.1 Debug Comparator A High Register (DBGCAH)

This register contains compare value bits for the high-order eight bits of comparator A. This register is forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1.

17.4.3.2 Debug Comparator A Low Register (DBGCAL)

This register contains compare value bits for the low-order eight bits of comparator A. This register is forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1.

17.4.3.3 Debug Comparator B High Register (DBGCBH)

This register contains compare value bits for the high-order eight bits of comparator B. This register is forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1.

17.4.3.4 Debug Comparator B Low Register (DBGCBL)

This register contains compare value bits for the low-order eight bits of comparator B. This register is forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1.

MC9S08LC60 Series Data Sheet: Technical Data, Rev. 4

Figure A-9. Typical Stop3 IDD

A.7 ADC Characteristics

Characteristic	Conditions	Symbol	Min	Typ ⁽¹⁾	Max	Unit	Comment
Supply voltage	Absolute	V _{DDAD}	1.8	_	3.6	V	
	Delta to V _{DD} (V _{DD} -V _{DDAD}) ⁽²⁾	ΔV_{DDAD}	-100	0	+100	mV	
Ground voltage	Delta to $V_{SS} (V_{SS} - V_{SSAD})^2$	ΔV_{SSAD}	-100	0	+100	mV	
Ref Voltage High (80-pin package only)		V _{REFH}	1.8	V _{DDAD}	V _{DDAD}	V	
Ref Voltage Low (80-pin package only)		V _{REFL}	V _{SSAD}	V _{SSAD}	V _{SSAD}	V	
Supply Current	Stop, Reset, Module Off	I _{DDAD}	—	0.007	0.8	μΑ	
Input Voltage		V _{ADIN}	V _{REFL}	—	V _{REFH}	V	
Input Capacitance		C _{ADIN}	_	4.5	5.5	pF	
Input Resistance		R _{ADIN}	_	5	7	kΩ	

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H.

/4. DIMENSIONS TO BE DETERMINED AT SEATING PLANE C.

/5]. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 mm AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.

6. THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE DIMENSION INCLUDING MOLD MISMATCH.

/8]

/7. EXACT SHAPE OF EACH CORNER IS OPTIONAL.

THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 mm AND 0.25 mm FROM THE LEAD TIP.

© FREESCALE SEMICONDUCTOR, INC. All Rights reserved.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE		
TITLE: 64LD LQFP,	DOCUMENT NO	REV: E			
10 X 10 X 1.4 P	CASE NUMBER	11 AUG 2006			
0.5 PITCH, CASE OL	STANDARD: JEDEC MS-026 BCD				