
Zilog - Z8F0411PH020EC Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor eZ8

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, IrDA, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 11

Program Memory Size 4KB (4K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 3.6V

Data Converters -

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Through Hole

Package / Case 20-DIP (0.300", 7.62mm)

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/zilog/z8f0411ph020ec

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/z8f0411ph020ec-4426653
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Z8 Encore! XP® F0822 Series
Product Specification

ix
OCD Interface . 171
Debug Mode. 173
OCD Data Format . 173
OCD Auto-Baud Detector/Generator . 174
OCD Serial Errors . 174
Breakpoints . 175
OCDCNTR Register . 176

On-Chip Debugger Commands . 176
On-Chip Debugger Control Register Definitions . 181

OCD Control Register . 181
OCD Status Register . 183

Electrical Characteristics . 185
Absolute Maximum Ratings . 185
DC Characteristics . 187
AC Characteristics . 194
On-Chip Peripheral AC and DC Electrical Characteristics 195

General Purpose I/O Port Input Data Sample Timing 200
General Purpose I/O Port Output Timing . 201
On-Chip Debugger Timing . 202
SPI MASTER Mode Timing . 203
SPI SLAVE Mode Timing . 204
I2C Timing . 205
UART Timing . 206

eZ8 CPU Instruction Set . 209
Assembly Language Programming Introduction . 209
Assembly Language Syntax. 210
eZ8 CPU Instruction Notation. 210
Condition Codes. 213
eZ8 CPU Instruction Classes . 214
eZ8 CPU Instruction Summary. 218
Flags Register . 227

Opcode Maps . 229
Packaging . 233
Ordering Information . 236

Part Number Suffix Designations . 240
Index . 241
Customer Support . 251
PS022517-0508 Table of Contents

Z8 Encore! XP® F0822 Series
Product Specification

3

Block Diagram

Figure 1 displays the block diagram of the architecture of Z8 Encore! XP® F0822 Series
devices.

Figure 1. Z8 Encore! XP® F0822 Series Block Diagram

CPU and Peripheral Overview

eZ8 CPU Features
Zilog’s latest eZ8 8-bit CPU, meets the continuing demand for faster and more code-effi-
cient microcontrollers. The eZ8 CPU executes a superset of the original Z8® instruction
set.

GPIO

IrDA

UART I2CTimers SPI ADC

Flash

Flash
Controller

RAM

RAM
Controller

Memory

Interrupt
Controller

On-Chip
Debugger

eZ8
CPU WDT with

RC Oscillator

POR/VBO
& Reset

Controller

Crystal
Oscillator

Register Bus

Memory Buses

System
Clock
PS022517-0508 Introduction

Z8 Encore! XP® F0822 Series
Product Specification

7

Signal and Pin Descriptions
Z8 Encore! XP® F0822 Series products are available in a variety of packages, styles, and
pin configurations. This chapter describes the signals and available pin configurations for
each of the package styles. For information regarding the physical package specifications,
see Packaging on page 233.

Available Packages

Table 2 identifies the package styles available for each device within Z8 Encore! XP
F0822 Series product line.

Pin Configurations

Figure 2 through Figure 5 display the pin configurations for all of the packages available
in Z8 Encore! XP F0822 Series. See Table 4 for a description of the signals.

The analog input alternate functions (ANAx) are not available on Z8 Encore! XP® F0822
Series devices.

Table 2. Z8 Encore! XP F0822 Series Package Options

Part Number 10-Bit ADC 20-Pin SSOP and PDIP 28-Pin SOIC and PDIP

Z8F0822 Yes X

Z8F0821 Yes X

Z8F0812 No X

Z8F0811 No X

Z8F0422 Yes X

Z8F0421 Yes X

Z8F0412 No X

Z8F0411 No X

Note:
PS022517-0508 Signal and Pin Descriptions

Z8 Encore! XP® F0822 Series
Product Specification

23
UART0 Status 1
U0STAT1 (F44H- Read Only)
D7 D6 D5 D4 D3 D2 D1 D0

Mulitprocessor Receive
 Returns value of last
multiprocessor bit

New Frame
 0 = Current byte is not start
of frame
 1 = Current byte is start of
new frame

Reserved

UART0 Address Compare
U0ADDR (F45H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

UART0 Address Compare

UART0 Baud Rate Generator High Byte
U0BRH (F46H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

UART0 Baud Rate divisor

UART0 Baud Rate Generator Low Byte
U0BRL (F47H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

UART0 Baud Rate divisor

I2C Data
I2CDATA (F50H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

I2C data [7:0]

I2C Status
I2CSTAT (F51H - Read Only)
D7 D6 D5 D4 D3 D2 D1 D0

NACK Interrupt
 0 = No action required to
service NAK
 1 = START/STOP not set
after NAK

Data Shift State
 0 = Data is not being
transferred
 1 = Data is being transferred

Transmit Address State
 0 = Address is not being
transferred
 1 = Address is being
transferred

Read
 0 = Write operation
 1 = Read operation

10-Bit Address
 0 = 7-bit address being
transmitted
 1 = 10-bit address being
transmitted

Acknowledge
 0 = Acknowledge not
 transmitted/received
 1 = For last byte,
Acknowledge was
 transmitted/received

Receive Data Register Full
 0 = I2C has not received
data
 1 = Data register contains
received data

Transmit Data Register Empty
 0 = Data register is full
 1 = Data register is empty
PS022517-0508 Control Register Summary

Z8 Encore! XP® F0822 Series
Product Specification

61
Poor coding style that resulting in lost interrupt requests:
LDX r0, IRQ0
OR r0, MASK
LDX IRQ0, r0

To avoid missing interrupts, the following style of coding to set bits in the
Interrupt Request Registers is recommended

Good coding style that avoids lost interrupt requests:

ORX IRQ0, MASK

Interrupt Control Register Definitions

For all interrupts other than the WDT interrupt, the Interrupt Control Registers enable
individual interrupts, set interrupt priorities, and indicate interrupt requests.

Interrupt Request 0 Register
The Interrupt Request 0 (IRQ0) Register (Table 25) stores the interrupt requests for both
vectored and polled interrupts. When a request is presented to the interrupt controller, the
corresponding bit in the IRQ0 Register becomes 1. If interrupts are globally enabled
(vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU.
If interrupts are globally disabled (polled interrupts), the eZ8 CPU reads the IRQ0
Register to determine if any interrupt requests are pending.

Reserved—Must be 0

T1I—Timer 1 Interrupt Request
0 = No interrupt request is pending for Timer 1.
1 = An interrupt request from Timer 1 is awaiting service.

T0I—Timer 0 Interrupt Request
0 = No interrupt request is pending for Timer 0.
1 = An interrupt request from Timer 0 is awaiting service.

Table 25. Interrupt Request 0 Register (IRQ0)

BITS 7 6 5 4 3 2 1 0

FIELD Reserved T1I T0I U0RXI U0TXI I2CI SPII ADCI

RESET 0

R/W R/W

ADDR FC0H

Note:
PS022517-0508 Interrupt Controller

Z8 Encore! XP® F0822 Series
Product Specification

63
Interrupt Request 2 Register
The Interrupt Request 2 (IRQ2) Register (Table 27) stores interrupt requests for both
vectored and polled interrupts. When a request is presented to the interrupt controller, the
corresponding bit in the IRQ2 register becomes 1. If interrupts are globally enabled
(vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU.
If interrupts are globally disabled (polled interrupts), the eZ8 CPU reads the IRQ2
Register to determine if any interrupt requests are pending.

Reserved—Must be 0

PCxI—Port C Pin x Interrupt Request
0 = No interrupt request is pending for GPIO Port C pin x.
1 = An interrupt request from GPIO Port C pin x is awaiting service.
Where x indicates the specific GPIO Port C pin number (0 through 3).

IRQ0 Enable High and Low Bit Registers
The IRQ0 Enable High and Low Bit Registers (Table 29 and Table 30) form a priority
encoded enabling for interrupts in the Interrupt Request 0 Register. Priority is generated
by setting bits in each register. Table 28 describes the priority control for IRQ0.

Table 27. Interrupt Request 2 Register (IRQ2)

BITS 7 6 5 4 3 2 1 0

FIELD Reserved PC3I PC2I PC1I PC0I

RESET 0

R/W R/W

ADDR FC6H

Table 28. IRQ0 Enable and Priority Encoding

IRQ0ENH[x] IRQ0ENL[x] Priority Description

0 0 Disabled Disabled

0 1 Level 1 Low

1 0 Level 2 Nominal

1 1 Level 3 High

where x indicates the register bits from 0 through 7.
PS022517-0508 Interrupt Controller

Z8 Encore! XP® F0822 Series
Product Specification

88
WDTH—WDT Reload High Byte
Middle byte, Bits[15:8], of the 24-bit WDT reload value.

WDTL—WDT Reload Low
Least significant byte (LSB), Bits[7:0], of the 24-bit WDT reload value.

Table 50. Watchdog Timer Reload High Byte Register (WDTH)

BITS 7 6 5 4 3 2 1 0
FIELD WDTH

RESET 1

R/W R/W*

ADDR FF2H

R/W*–Read returns the current WDT count value. Write sets the desired Reload Value.

Table 51. Watchdog Timer Reload Low Byte Register (WDTL)

BITS 7 6 5 4 3 2 1 0
FIELD WDTL

RESET 1

R/W R/W*

ADDR FF3H

R/W*–Read returns the current WDT count value. Write sets the desired Reload Value.
PS022517-0508 Watchdog Timer

Z8 Encore! XP® F0822 Series
Product Specification

92
5. Check the TDRE bit in the UART Status 0 Register to determine if the Transmit Data
Register is empty (indicated by a 1). If empty, continue to step 6. If the Transmit Data
Register is full (indicated by a 0), continue to monitor the TDRE bit until the Transmit
Data Register becomes available to receive new data.

6. Write the UART Control 1 Register to select the outgoing address bit:
– Set the Multiprocessor Bit Transmitter (MPBT) if sending an address byte,

clear it if sending a data byte.

7. Write data byte to the UART Transmit Data Register. The transmitter automatically
transfers data to the Transmit Shift Register and then transmits the data.

8. If required, and multiprocessor mode is enabled, make any changes to the
Multiprocessor Bit Transmitter (MPBT) value.

9. To transmit additional bytes, return to step 5.

Transmitting Data Using Interrupt-Driven Method
The UART Transmitter interrupt indicates the availability of the Transmit Data Register to
accept new data for transmission. Follow the below steps to configure the UART for
interrupt-driven data transmission:

1. Write to the UART Baud Rate High and Low Byte Registers to set the required
baud rate.

2. Enable the UART pin functions by configuring the associated GPIO Port pins for
alternate function operation.

3. Execute a DI instruction to disable interrupts.

4. Write to the Interrupt Control Registers to enable the UART Transmitter interrupt and
set the required priority.

5. If MULTIPROCESSOR mode is required, write to the UART Control 1 Register to
enable Multiprocessor (9-bit) mode functions:
– Set the Multiprocessor Mode Select (MPEN) to enable MULTIPROCESSOR

mode.

6. Write to the UART Control 0 Register to:
– Set the transmit enable (TEN) bit to enable the UART for data transmission
– Enable parity, if required, and if MULTIPROCESSOR mode is not enabled, and

select either even or odd parity.
– Set or clear the CTSE bit to enable or disable control from the remote receiver

through the CTS pin.

7. Execute an EI instruction to enable interrupts.
PS022517-0508 Universal Asynchronous Receiver/Transmitter

Z8 Encore! XP® F0822 Series
Product Specification

97
Enable signal asserts at least one UART bit period and no greater than two UART bit peri-
ods before the Start bit is transmitted. This format allows a setup time to enable the trans-
ceiver. The Driver Enable signal deasserts one system clock period after the last STOP bit
is transmitted. This one system clock delay allows both time for data to clear the trans-
ceiver before disabling it, as well as the ability to determine if another character follows
the current character. In the event of back to back characters (new data must be written to
the Transmit Data Register before the previous character is completely transmitted) the
DE signal is not deasserted between characters. The DEPOL bit in the UART Control
Register 1 sets the polarity of the Driver Enable signal.

Figure 15. UART Driver Enable Signal Timing (with 1 STOP Bit and Parity)

The Driver Enable to Start bit setup time is calculated as follows:

UART Interrupts
The UART features separate interrupts for the transmitter and the receiver. In addition,
when the UART primary functionality is disabled, the BRG also functions as a basic timer
with interrupt capability.

Transmitter Interrupts
The transmitter generates a single interrupt when the Transmit Data Register Empty bit
(TDRE) is set to 1. This indicates that the transmitter is ready to accept new data for
transmission. The TDRE interrupt occurs after the Transmit shift register has shifted the
first bit of data out. At this point, the Transmit Data Register can be written with the next
character to send. This provides 7 bit periods of latency to load the Transmit Data Register
before the Transmit shift register completes shifting the current character. Writing to the
UART Transmit Data Register clears the TDRE bit to 0.

Start Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Parity

Data Field

lsb msb
Idle State

of Line

STOP Bit

1

1

0

0

1

DE

1
Baud Rate (Hz)
---⎠

⎞
⎝
⎛ DE to Start Bit Setup Time (s) 2

Baud Rate (Hz)
---⎝ ⎠

⎛ ⎞≤ ≤
PS022517-0508 Universal Asynchronous Receiver/Transmitter

Z8 Encore! XP® F0822 Series
Product Specification

101
UART Receive Data Register
Data bytes received through the RXDx pin are stored in the UART Receive Data Register
(Table 53). The Read-only UART Receive Data Register shares a Register File address
with the Write-only UART Transmit Data Register.

RXD—Receive Data
UART receiver data byte from the RXDx pin

UART Status 0 Register
The UART Status 0 and Status 1 registers (Table 54 and Table 55 on page 102) identify
the current UART operating configuration and status.

RDA—Receive Data Available
This bit indicates that the UART Receive Data Register has received data. Reading the
UART Receive Data Register clears this bit.
0 = The UART Receive Data Register is empty.
1 = There is a byte in the UART Receive Data Register.

PE—Parity Error
This bit indicates that a parity error has occurred. Reading the UART Receive Data Regis-
ter clears this bit.
0 = No parity error has occurred.
1 = A parity error has occurred.

OE—Overrun Error
This bit indicates that an overrun error has occurred. An overrun occurs when new data is
received and the UART Receive Data Register has not been read. If the RDA bit is reset to

Table 53. UART Receive Data Register (U0RXD)

BITS 7 6 5 4 3 2 1 0
FIELD RXD

RESET X

R/W R

ADDR F40H

Table 54. UART Status 0 Register (U0STAT0)

BITS 7 6 5 4 3 2 1 0
FIELD RDA PE OE FE BRKD TDRE TXE CTS

RESET 0 1 X

R/W R

ADDR F41H
PS022517-0508 Universal Asynchronous Receiver/Transmitter

Z8 Encore! XP® F0822 Series
Product Specification

103
Reserved—Must be 0

NEWFRM—Status bit denoting the start of a new frame. Reading the UART Receive
Data Register resets this bit to 0.
0 = The current byte is not the first data byte of a new frame.
1 = The current byte is the first data byte of a new frame.

MPRX—Multiprocessor Receive
Returns the value of the last multiprocessor bit received. Reading from the UART Receive
Data Register resets this bit to 0.

UART Control 0 and Control 1 Registers
The UART Control 0 and Control 1 registers (Table 56 and Table 57 on page 104) config-
ure the properties of the UART’s transmit and receive operations. The UART Control
Registers must not been written while the UART is enabled.

TEN—Transmit Enable
This bit enables or disables the transmitter. The enable is also controlled by the CTS signal
and the CTSE bit. If the CTS signal is low and the CTSE bit is 1, the transmitter is
enabled.
0 = Transmitter disabled.
1 = Transmitter enabled.

REN—Receive Enable
This bit enables or disables the receiver.
0 = Receiver disabled.
1 = Receiver enabled.

CTSE—CTS Enable
0 = The CTS signal has no effect on the transmitter.
1 = The UART recognizes the CTS signal as an enable control from the transmitter.

PEN—Parity Enable
This bit enables or disables parity. Even or odd is determined by the PSEL bit. This bit is
overridden by the MPEN bit.
0 = Parity is disabled.
1 = The transmitter sends data with an additional parity bit and the receiver
 receives an additional parity bit.

Table 56. UART Control 0 Register (U0CTL0)

BITS 7 6 5 4 3 2 1 0

FIELD TEN REN CTSE PEN PSEL SBRK STOP LBEN

RESET 0

R/W R/W

ADDR F42H
PS022517-0508 Universal Asynchronous Receiver/Transmitter

Z8 Encore! XP® F0822 Series
Product Specification

120
necessary for SS to deassert between characters to generate the interrupt. The SPI in
SLAVE mode also generates an interrupt if the SS signal deasserts prior to transfer of all
the bits in a character (see description of Slave Abort Error). Writing a 1 to the IRQ bit in
the SPI Status Register clears the pending SPI interrupt request. The IRQ bit must be
cleared to 0 by the ISR to generate future interrupts. To start the transfer process, an SPI
interrupt can be forced by software writing a 1 to the STR bit in the SPICTL Register.

If the SPI is disabled, an SPI interrupt can be generated by a BRG time-out. This timer
function must be enabled by setting the BIRQ bit in the SPICTL Register. This BRG
time-out does not set the IRQ bit in the SPISTAT Register, just the SPI interrupt bit in the
interrupt controller.

SPI Baud Rate Generator
In SPI MASTER mode, the BRG creates a lower frequency serial clock (SCK) for data
transmission synchronization between the Master and the external Slave. The input to the
BRG is the system clock. The SPI Baud Rate High and Low Byte Registers combine to
form a 16-bit reload value, BRG[15:0], for the SPI Baud Rate Generator. The SPI baud
rate is calculated using the following equation:

Minimum baud rate is obtained by setting BRG[15:0] to 0000H for a clock divisor value
of (2 X 65536 = 131072).

When the SPI is disabled, BRG functions as a basic 16-bit timer with interrupt on
time-out. Follow the steps below to configure BRG as a timer with interrupt on time-out:

1. Disable the SPI by clearing the SPIEN bit in the SPI Control Register to 0.

2. Load the desired 16-bit count value into the SPI Baud Rate High and Low Byte
registers.

3. Enable BRG timer function and associated interrupt by setting the BIRQ bit in the SPI
Control Register to 1.

When configured as a general-purpose timer, the interrupt interval is calculated using the
following equation:

Interrupt Interval (s) = System Clock Period (s) ×BRG[15:0]]

SPI Baud Rate (bits/s) System Clock Frequency (Hz)
2xBRG[15:0]

---=
PS022517-0508 Serial Peripheral Interface

Z8 Encore! XP® F0822 Series
Product Specification

126
BRH = SPI Baud Rate High Byte
Most significant byte, BRG[15:8], of the SPI Baud Rate Generator’s reload value.

BRL = SPI Baud Rate Low Byte
Least significant byte, BRG[7:0], of the SPI Baud Rate Generator’s reload value.

Table 69. SPI Baud Rate Low Byte Register (SPIBRL)

BITS 7 6 5 4 3 2 1 0

FIELD BRL

RESET 1

R/W R/W

ADDR F67H
PS022517-0508 Serial Peripheral Interface

Z8 Encore! XP® F0822 Series
Product Specification

130
START bits in the Control Register are set.

In order for a receive (read) DMA transaction to send a Not Acknowledge on the last
byte, the receive DMA must be set up to receive n-1 bytes, then software must set the
NAK bit and receive the last (nth) byte directly.

Start and Stop Conditions
The Master (I2C) drives all Start and Stop signals and initiates all transactions. To start a
transaction, the I2C Controller generates a START condition by pulling the SDA signal
Low while SCL is High. To complete a transaction, the I2C Controller generates a Stop
condition by creating a low-to-high transition of the SDA signal while the SCL signal is
high. The START and STOP bits in the I2C Control Register control the sending of the
Start and Stop conditions. A Master is also allowed to end one transaction and begin a new
one by issuing a Restart. This is accomplished by setting the START bit at the end of a
transaction, rather than the STOP bit.

The Start condition not sent until the START bit is set and data has been written to the I2C
Data Register.

Master Write and Read Transactions
The following sections provide a recommended procedure for performing I2C write and
read transactions from the I2C Controller (Master) to slave I2C devices. In general soft-
ware should rely on the TDRE, RDRF and NCKI bits of the status register (these bits
generate interrupts) to initiate software actions. When using interrupts or DMA, the TXI
bit is set to start each transaction and cleared at the end of each transaction to eliminate a
‘trailing’ Transmit Interrupt.

Caution should be used in using the ACK status bit within a transaction because it is diffi-
cult for software to tell when it is updated by hardware.

When writing data to a slave, the I2C pauses at the beginning of the Acknowledge cycle if
the data register has not been written with the next value to be sent (TDRE bit in the I2C
Status register equal to 1). In this scenario where software is not keeping up with the I2C
bus (TDRE asserted longer than one byte time), the Acknowledge clock cycle for byte n is
delayed until the data register is written with byte n + 1, and appears to be grouped with
the data clock cycles for byte n + 1. If either the START or STOP bit is set, the I2C does
not pause prior to the Acknowledge cycle because no additional data is sent.

When a Not Acknowledge condition is received during a write (either during the address
or data phases), the I2C Controller generates the Not Acknowledge interrupt (NCKI = 1)
and pause until either the STOP or START bit is set. Unless the Not Acknowledge was
received on the last byte, the data register will already have been written with the next
address or data byte to send. In this case the FLUSH bit of the control register should be
set at the same time the STOP or START bit is set to remove the stale transmit data and
enable subsequent Transmit Interrupts.

Note:
PS022517-0508 I2C Controller

Z8 Encore! XP® F0822 Series
Product Specification

131
When reading data from the slave, the I2C pauses after the data Acknowledge cycle until
the receive interrupt is serviced and the RDRF bit of the status register is cleared by reading
the I2C Data Register. Once the I2C Data Register has been read, the I2C reads the next
data byte.

Address Only Transaction with a 7-bit Address
In the situation where software determines if a slave with a 7-bit address is responding
without sending or receiving data, a transaction can be done which only consists of an
address phase. Figure 26 on page 131 displays this “address only” transaction to determine
if a slave with a 7-bit address will acknowledge. As an example, this transaction can be
used after a “write” has been done to a EEPROM to determine when the EEPROM com-
pletes its internal write operation and is once again responding to I2C transactions. If the
slave does not Acknowledge, the transaction is repeated until the slave does Acknowl-
edge.

Figure 26. 7-Bit Address Only Transaction Format

Follow the steps below for an address only transaction to a 7-bit addressed slave:

1. Software asserts the IEN bit in the I2C Control Register.

2. Software asserts the TXI bit of the I2C Control Register to enable Transmit interrupts.

3. The I2C interrupt asserts, because the I2C Data Register is empty (TDRE = 1)

4. Software responds to the TDRE bit by writing a 7-bit Slave address plus write bit (=0)
to the I2C Data Register. As an alternative this could be a read operation instead of a
write operation.

5. Software sets the START and STOP bits of the I2C Control Register and clears the
TXI bit.

6. The I2C Controller sends the START condition to the I2C Slave.

7. The I2C Controller loads the I2C Shift register with the contents of the I2C Data
Register.

8. Software polls the STOP bit of the I2C Control Register. Hardware deasserts the
STOP bit when the address only transaction is completed.

9. Software checks the ACK bit of the I2C Status Register. If the slave acknowledged,
the ACK bit is equal to 1. If the slave does not acknowledge, the ACK bit is equal to 0.
The NCKI interrupt does not occur in the not acknowledge case because the STOP bit
was set.

S Slave Address W = 0 A/A P
PS022517-0508 I2C Controller

Z8 Encore! XP® F0822 Series
Product Specification

172
transmission is half-duplex, in that transmit and receive cannot occur simultaneously. The
serial data on the DBG pin is sent using the standard asynchronous data format defined in
RS-232. This pin can interface the Z8 Encore! XP F0822 Series products to the serial port
of a host PC using minimal external hardware.Two different methods for connecting the
DBG pin to an RS-232 interface are displayed in Figure 38 and Figure 39.

For operation of the OCD, all power pins (VDD and AVDD) must be sup-
plied with power, and all ground pins (VSS and AVSS) must be properly
grounded. The DBG pin is open-drain and must always be connected to
VDD through an external pull-up resistor to insure proper operation.

Figure 38. Interfacing the On-Chip Debugger’s DBG Pin with an RS-232 Interface (1)

Figure 39. Interfacing the On-Chip Debugger’s DBG Pin with an RS-232 Interface (2)

Caution:

RS-232 TX

RS-232 RX

RS-232
Transceiver

VDD

DBG Pin

10K Ohm
Diode

RS-232 TX

RS-232 RX

RS-232
Transceiver

VDD

DBG Pin

10 KΩOpen-Drain
Buffer
PS022517-0508 On-Chip Debugger

Z8 Encore! XP® F0822 Series
Product Specification

225
SCF C ← 1 DF 1 - - - - - 1 2

SRA dst R D0 * * * 0 - - 2 2

IR D1 2 3

SRL dst R 1F C0 * * 0 * - - 3 2

IR 1F C1 3 3

SRP src RP ← src IM 01 - - - - - - 2 2

STOP STOP Mode 6F - - - - - - 1 2

SUB dst, src dst ← dst – src r r 22 * * * * 1 * 2 3

r Ir 23 2 4

R R 24 3 3

R IR 25 3 4

R IM 26 3 3

IR IM 27 3 4

SUBX dst, src dst ← dst – src ER ER 28 * * * * 1 * 4 3

ER IM 29 4 3

SWAP dst dst[7:4] ↔ dst[3:0] R F0 X * * X - - 2 2

IR F1 2 3

TCM dst, src (NOT dst) AND src r r 62 - * * 0 - - 2 3

r Ir 63 2 4

R R 64 3 3

R IR 65 3 4

R IM 66 3 3

IR IM 67 3 4

TCMX dst, src (NOT dst) AND src ER ER 68 - * * 0 - - 4 3

ER IM 69 4 3

Table 126. eZ8 CPU Instruction Summary (Continued)

Assembly
Mnemonic

Symbolic
Operation

Address
Mode

Opcode(s)
(Hex)

Flags
Fetch

Cycles
Instr.

Cyclesdst src C Z S V D H

D7 D6 D5 D4 D3 D2 D1 D0
dst

D7 D6 D5 D4 D3 D2 D1 D0
dst
PS022517-0508 eZ8 CPU Instruction Set

Z8 Encore! XP® F0822 Series
Product Specification

228
PS022517-0508 eZ8 CPU Instruction Set

Z8 Encore! XP® F0822 Series
Product Specification

231
Figure 58. First Opcode Map

CP
3.3

R2,R1
CP
3.4

IR2,R1
CP
2.3

r1,r2
CP
2.4

r1,Ir2
CPX

4.3

ER2,ER1
CPX

4.3

IM,ER1
CP
3.3

R1,IM
CP
3.4

IR1,IM

RRC
2.2

R1
RRC

2.3

IR1

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Lower Nibble (Hex)

U
pp

er
 N

ib
bl

e
(H

ex
)

BRK
1.2

SRP
2.2

IM
ADD

2.3

r1,r2
ADD

2.4

r1,Ir2
ADD

3.3

R2,R1
ADD

3.4

IR2,R1
ADD

3.3

R1,IM
ADD

3.4

IR1,IM
ADDX

4.3

ER2,ER1
ADDX

4.3

IM,ER1
DJNZ

2.3

r1,X
JR
2.2

cc,X
LD
2.2

r1,IM
JP
3.2

cc,DA
INC
1.2

r1
NOP

1.2

RLC
2.2

R1
RLC

2.3

IR1
ADC

2.3

r1,r2
ADC

2.4

r1,Ir2
ADC

3.3

R2,R1
ADC

3.4

IR2,R1
ADC

3.3

R1,IM
ADC

3.4

IR1,IM
ADCX

4.3

ER2,ER1
ADCX

4.3

IM,ER1

INC
2.2

R1
INC
2.3

IR1
SUB

2.3

r1,r2
SUB

2.4

r1,Ir2
SUB

3.3

R2,R1
SUB

3.4

IR2,R1
SUB

3.3

R1,IM
SUB

3.4

IR1,IM
SUBX

4.3

ER2,ER1
SUBX

4.3

IM,ER1

DEC
2.2

R1
DEC

2.3

IR1
SBC

2.3

r1,r2
SBC

2.4

r1,Ir2
SBC

3.3

R2,R1
SBC

3.4

IR2,R1
SBC

3.3

R1,IM
SBC

3.4

IR1,IM
SBCX

4.3

ER2,ER1
SBCX

4.3

IM,ER1

DA
2.2

R1
DA
2.3

IR1
OR
2.3

r1,r2
OR
2.4

r1,Ir2
OR
3.3

R2,R1
OR
3.4

IR2,R1
OR
3.3

R1,IM
OR
3.4

IR1,IM
ORX

4.3

ER2,ER1
ORX

4.3

IM,ER1

POP
2.2

R1
POP

2.3

IR1
AND

2.3

r1,r2
AND

2.4

r1,Ir2
AND

3.3

R2,R1
AND

3.4

IR2,R1
AND

3.3

R1,IM
AND

3.4

IR1,IM
ANDX

4.3

ER2,ER1
ANDX

4.3

IM,ER1

COM
2.2

R1
COM

2.3

IR1
TCM

2.3

r1,r2
TCM

2.4

r1,Ir2
TCM

3.3

R2,R1
TCM

3.4

IR2,R1
TCM

3.3

R1,IM
TCM

3.4

IR1,IM
TCMX

4.3

ER2,ER1
TCMX

4.3

IM,ER1

PUSH
2.2

R2
PUSH

2.3

IR2
TM
2.3

r1,r2
TM
2.4

r1,Ir2
TM
3.3

R2,R1
TM
3.4

IR2,R1
TM
3.3

R1,IM
TM
3.4

IR1,IM
TMX

4.3

ER2,ER1
TMX

4.3

IM,ER1

DECW
2.5

RR1
DECW

2.6

IRR1
LDE
2.5

r1,Irr2
LDEI

2.9

Ir1,Irr2
LDX
3.2

r1,ER2
LDX
3.3

Ir1,ER2
LDX

3.4

IRR2,R1
LDX

3.5

IRR2,IR1
LDX

3.4

r1,rr2,X
LDX

3.4

rr1,r2,X

RL
2.2

R1
RL
2.3

IR1
LDE
2.5

r2,Irr1
LDEI

2.9

Ir2,Irr1
LDX
3.2

r2,ER1
LDX
3.3

Ir2,ER1
LDX

3.4

R2,IRR1
LDX

3.5

IR2,IRR1
LEA

3.3

r1,r2,X
LEA

3.5

rr1,rr2,X

INCW
2.5

RR1
INCW

2.6

IRR1

CLR
2.2

R1
CLR

2.3

IR1
XOR

2.3

r1,r2
XOR

2.4

r1,Ir2
XOR

3.3

R2,R1
XOR

3.4

IR2,R1
XOR

3.3

R1,IM
XOR

3.4

IR1,IM
XORX

4.3

ER2,ER1
XORX

4.3

IM,ER1

LDC
2.5

r1,Irr2
LDCI

2.9

Ir1,Irr2

LDC
2.5

r2,Irr1
LDCI

2.9

Ir2,Irr1

JP
2.3

IRR1
LDC

2.9

Ir1,Irr2
LD
3.4

r1,r2,X
PUSHX

3.2

ER2

SRA
2.2

R1
SRA

2.3

IR1
POPX

3.2

ER1
LD
3.4

r2,r1,X
CALL

2.6

IRR1
BSWAP

2.2

R1
CALL

3.3

DA

LD
3.2

R2,R1
LD
3.3

IR2,R1
BIT
2.2

p,b,r1
LD
2.3

r1,Ir2
LDX

4.2

ER2,ER1
LDX

4.2

IM,ER1
LD
3.2

R1,IM
LD
3.3

IR1,IM
RR
2.2

R1
RR
2.3

IR1

MULT
2.8

RR1
LD
3.3

R2,IR1
TRAP

2.6

Vector
LD
2.3

Ir1,r2
BTJ
3.3

p,b,r1,X
BTJ
3.4

p,b,Ir1,X
SWAP

2.2

R1
SWAP

2.3

IR1

RCF
1.2

WDT
1.2

STOP
1.2

HALT
1.2

DI
1.2

EI
1.2

RET
1.4

IRET
1.5

SCF
1.2

CCF
1.2

Opcode
See 2nd

Map
PS022517-0508 Opcode Maps

Z8 Encore! XP® F0822 Series
Product Specification

242
compare 82
compare - extended addressing 214
compare mode 82
compare with carry 214
compare with carry - extended addressing 214
complement 217
complement carry flag 215, 216
condition code 211
continuous conversion (ADC) 148
continuous mode 81
control register definition, UART 100
control register, I2C 141
counter modes 81
CP 214
CPC 214
CPCX 214
CPU and peripheral overview 3
CPU control instructions 216
CPX 214
Customer Feedback Form 251
customer feedback form 240
Customer Information 251

D
DA 211, 214
data register, I2C 139
DC characteristics 187
debugger, on-chip 171
DEC 214
decimal adjust 214
decrement 214

and jump non-zero 217
word 214

DECW 214
destination operand 212
device, port availability 47
DI 216
direct address 211
disable interrupts 216
DJNZ 217
DMA controller 5
dst 212

E
EI 216
electrical characteristics 185

ADC 199
flash memory and timing 196
GPIO input data sample timing 200
watch-dog timer 197

enable interrupt 216
ER 211
extended addressing register 211
external pin reset 43
external RC oscillator 196
eZ8

features 3
eZ8 CPU features 3
eZ8 CPU instruction classes 214
eZ8 CPU instruction notation 210
eZ8 CPU instruction set 209
eZ8 CPU instruction summary 218

F
FCTL register 159
features, Z8 Encore! 1
first opcode map 231
FLAGS 212
flags register 212
flash

controller 4
option bit address space 163
option bit configuration - reset 163
program memory address 0001H 165

flash memory
arrangement 154
byte programming 157
code protection 156
control register definitions 159
controller bypass 158
electrical characteristics and timing 196
flash control register 159
flash status register 160
frequency high and low byte registers 161
mass erase 158
operation 155
PS022517-0508 Index

