
Zilog - Z8F0421HH020SC00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor eZ8

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, IrDA, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 11

Program Memory Size 4KB (4K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 3.6V

Data Converters A/D 2x10b

Oscillator Type Internal

Operating Temperature 0°C ~ 70°C (TA)

Mounting Type Surface Mount

Package / Case 20-SSOP (0.209", 5.30mm Width)

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/zilog/z8f0421hh020sc00tr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/z8f0421hh020sc00tr-4426941
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Z8 Encore! XP® F0822 Series
Product Specification

iii

Revision History
Each instance in Revision History reflects a change to this document from its previous
revision. For more details, refer to the corresponding pages and appropriate links in the
table below.

Date
Revision
Level Description

Page
Number

May 2008 17 Removed Flash Microcontrollers from the title
throughout the document.

All

February
2008

16 Updated the flag status for BCLR, BIT, and BSET in
Table 126.

219

December
2007

15 Updated Zilog logo, Zilog text, Disclaimer section,
and implemented style guide. Updated Z8 Encore!
8K Series to Z8 Encore! XP F0822 Series Flash
Microcontrollers throughout the document.

All

June 2007
and
August 2007

13
and
14

No Changes. All

December
2006

12 Updated Ordering Information and minor edits done. All
PS022517-0508 Revision History

Z8 Encore! XP® F0822 Series
Product Specification

20
Timer 1 Reload Low Byte
T1RL (F0BH - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Timer 1 reload value [7:0]

Timer 1 PWM High Byte
T1PWMH (F0CH - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Timer 1 PWM value [15:8]

Timer 1 PWM Low Byte
T1PWML (F0DH - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Timer 1 PWM value [7:0]

Timer 1 Control 0
T1CTL0 (F0EH - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Reserved
Cascade Timer
0 = Timer 1 Input signal is
GPIO pin
1 = Timer 1 Input signal is
Timer 0 out
Reserved

Timer 1 Control 1
T1CTL1 (F0FH - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Timer Mode
 000 = One-Shot mode
 001 = Continuous mode
 010 = Counter mode
 011 = PWM mode
 100 = Capture mode
 101 = Compare mode
 110 = Gated mode
 111 = Capture/Compare
mode

Prescale Value
 000 = Divide by 1
 001 = Divide by 2
 010 = Divide by 4
 011 = Divide by 8
 100 = Divide by 16
 101 = Divide by 32
 110 = Divide by 64
 111 = Divide by 128

Timer Input/Output Polarity
 Operation of this bit is a
function of
 the current operating mode
of the timer

Timer Enable
 0 = Timer is disabled
 1 = Timer is enabled

UART0 Transmit Data
U0TXD (F40H - Write Only)
D7 D6 D5 D4 D3 D2 D1 D0

UART0 transmitter data byte

UART0 Receive Data
U0RXD (F40H - Read Only)
D7 D6 D5 D4 D3 D2 D1 D0

UART0 receiver data byte
PS022517-0508 Control Register Summary

Z8 Encore! XP® F0822 Series
Product Specification

24
I2C Control
I2CCTL (F52H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

I2C Signal Filter Enable
 0 = Digital filtering disabled
 1 = Low-pass digital filters
enabled
 on SDA and SCL input
signals

Flush Data
 0 = No effect
 1 = Clears I2C Data register

Send NAK
 0 = Do not send NAK
 1 = Send NAK after next byte
received
 from slave

Enable TDRE Interrupts
 0 = Do not generate an
interrupt when
 the I2C Data register is
empty
 1 = Generate an interrupt
when the I2C
 Transmit Data register is
empty

Baud Rate Generator
 0 = Interrupts behave as set
by I2C
 control
 1 = BRG generates an
interrupt when
 it counts down to zero

Send STOP Condition
 0 = Do not issue STOP
condition after
 data transmission is
complete
 1 = Issue STOP condition
after data
 transmission is complete

Send Start Condition
 0 = Do not send Start
Condition
 1 = Send Start Condition

I2C Enable
 0 = I2C is disabled
 1 = I2C is enabled
PS022517-0508 Control Register Summary

Z8 Encore! XP® F0822 Series
Product Specification

29
Interrupt Request 0
IRQ0 (FC0H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

ADC Interrupt Request

SPI Interrupt Request

I2C Interrupt Request

UART 0 Transmitter Interrupt

UART 0 Receiver Interrupt

Timer 0 Interrupt Request

Timer 1 Interrupt Request

Reserved

For all of the above
peripherals:
 0 = Peripheral IRQ is not
pending
 1 = Peripheral IRQ is
awaiting service

IRQ0 Enable High Bit
IRQ0ENH (FC1H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

ADC IRQ Enable Hit Bit

SPI IRQ Enable High Bit

I2C IRQ Enable High Bit

UART 0 Transmitter IRQ

UART 0 Receiver IRQ Enable

Timer 0 IRQ Enable High Bit

Timer 1 IRQ Enable High Bit

Reserved
PS022517-0508 Control Register Summary

Z8 Encore! XP® F0822 Series
Product Specification

48
Figure 8. GPIO Port Pin Block Diagram

Table 12. Port Alternate Function Mapping

Port Pin Mnemonic Alternate Function Description

Port A PA0 T0IN Timer 0 Input

PA1 T0OUT Timer 0 Output

PA2 DE UART 0 Driver Enable

PA3 CTS0 UART 0 Clear to Send

PA4 RXD0 / IRRX0 UART 0 / IrDA 0 Receive Data

PA5 TXD0 / IRTX0 UART 0 / IrDA 0 Transmit Data

PA6 SCL I2C Clock (automatically open-drain)

PA7 SDA I2C Data (automatically open-drain)

Port B PB0 ANA0 ADC Analog Input 0

PB1 ANA1 ADC Analog Input 1

PB2 ANA2 ADC Analog Input 2

PB3 ANA3 ADC Analog Input 3

PB4 ANA4 ADC Analog Input 4

DQ

D Q

DQ

GND

VDD

Port Output Control

Port Data Direction

Port Output
Data Register

Port Input
Data Register

Port
Pin

DATA
Bus

System
Clock

System
Clock

Schmitt-Trigger
PS022517-0508 General-Purpose Input/Output

Z8 Encore! XP® F0822 Series
Product Specification

93

it

a.

y
The UART is now configured for interrupt-driven data transmission. Because the UART
Transmit Data Register is empty, an interrupt is generated immediately. When the UART
Transmit Interrupt is detected, the associated ISR performs the following:

1. Write the UART Control 1 Register to select the outgoing address bit:

– Set the Multiprocessor Bit Transmitter (MPBT) if sending an address byte, clear
if sending a data byte.

2. Write the data byte to the UART Transmit Data Register. The transmitter
automatically transfers data to the Transmit Shift Register and then transmits the dat

3. Clear the UART Transmit Interrupt bit in the applicable Interrupt Request Register.

4. Execute the IRET instruction to return from the ISR and waits for the Transmit Data
Register to again become empty.

Receiving Data using the Polled Method
Follow the steps below to configure the UART for polled data reception:

1. Write to the UART Baud Rate High and Low Byte Registers to set the required
baud rate.

2. Enable the UART pin functions by configuring the associated GPIO Port pins for
alternate function operation.

3. Write to the UART Control 1 Register to enable Multiprocessor mode functions, if
desired.

4. Write to the UART Control 0 Register to:

– Set the receive enable bit (REN) to enable the UART for data reception

– Enable parity, if required, and if MULTIPROCESSOR mode is not enabled, and
select either even or odd parity.

5. Check the RDA bit in the UART Status 0 Register to determine if the Receive Data
Register contains a valid data byte (indicated by 1). If RDA is set to 1 to indicate
available data, continue to step 6. If the Receive Data Register is empty (indicated b
a 0), continue to monitor the RDA bit awaiting reception of the valid data.

6. Read data from the UART Receive Data Register. If operating in Multiprocessor
(9-bit) mode, further actions may be required depending on the Multiprocessor Mode
bits MPMD[1:0].

7. Return to step 5 to receive additional data.
PS022517-0508 Universal Asynchronous Receiver/Transmitter

Z8 Encore! XP® F0822 Series
Product Specification

136

H
us

o

r

e.

1).
I2C Controller sets the NCKI bit and clears the ACK bit in the I2C Status register.
Software responds to the Not Acknowledge interrupt by setting the STOP and FLUS
bits and clearing the TXI bit. The I2C Controller sends the STOP condition on the b
and clears the STOP and NCKI bits. The transaction is complete (ignore the following
steps).

17. The I2C Controller shifts the data out by the SDA signal. After the first bit is sent, the
Transmit Interrupt is asserted.

18. If more bytes remain to be sent, return to step 14.

19. If the last byte is currently being sent, software sets the STOP bit of the I2C Control
Register (or START bit to initiate a new transaction). In the STOP case, software als
clears the TXI bit of the I2C Control Register at the same time.

20. The I2C Controller completes transmission of the last data byte on the SDA signal.

21. The slave can either Acknowledge or Not Acknowledge the last byte. Because eithe
the STOP or START bit is already set, the NCKI interrupt does not occur.

22. The I2C Controller sends the STOP (or RESTART) condition to the I2C bus and clears
the STOP (or START) bit.

Read Transaction with a 7-Bit Address
Figure 30 displays the data transfer format for a read operation to a 7-bit addressed slav
The shaded regions indicate data transferred from the I2C Controller to slaves and
unshaded regions indicate data transferred from the slaves to the I2C Controller.

Figure 30. Receive Data Transfer Format for a 7-Bit Addressed Slave

Follow the steps below for a read operation to a 7-bit addressed slave:

1. Software writes the I2C Data Register with a 7-bit Slave address plus the read bit (=

2. Software asserts the START bit of the I2C Control Register.

3. If this is a single byte transfer, Software asserts the NAK bit of the I2C Control Register
so that after the first byte of data has been read by the I2C Controller, a Not
Acknowledge is sent to the I2C Slave.

4. The I2C Controller sends the START condition.

5. The I2C Controller shifts the address and read bit out the SDA signal.

6. If the I2C Slave acknowledges the address by pulling the SDA signal Low during the
next high period of SCL, the I2C Controller sets the ACK bit in the I2C Status register.
Continue with step 7.

S Slave Address R = 1 A Data A Data A P/S
PS022517-0508 I2C Controller

Z8 Encore! XP® F0822 Series
Product Specification

141

e

-

fts

e
RD—Read
This bit indicates the direction of transfer of the data. It is active High during a read. The
status of this bit is determined by the least-significant bit of the I2C Shift register after the
START bit is set.

TAS—Transmit Address State
This bit is active High while the address is being shifted out of the I2C Shift Register.

DSS—Data Shift State
This bit is active High while data is being shifted to or from the I2C Shift Register.

NCKI—NACK Interrupt
This bit is set high when a Not Acknowledge condition is received or sent and neither the
START nor the STOP bit is active. When set, this bit generates an interrupt that can only b
cleared by setting the START or STOP bit, allowing you to specify whether you want to
perform a STOP or a repeated START.

I2C Control Register
The I2C Control Register (Table 72) enables the I2C operation.

IEN—I 2C Enable
1 = The I2C transmitter and receiver are enabled.
0 = The I2C transmitter and receiver are disabled.

START—Send Start Condition
This bit sends the Start condition. Once asserted, it is cleared by the I2C Controller after it
sends the START condition or if the IEN bit is deasserted. If this bit is 1, it cannot be
cleared to 0 by writing to the register. After this bit is set, the Start condition is sent if
there is data in the I2C Data or I2C Shift register. If there is no data in one of these regis
ters, the I2C Controller waits until the data register is written. If this bit is set while
the I2C Controller is shifting out data, it generates a START condition after the byte shi
and the acknowledge phase completes. If the STOP bit is also set, it also waits until the
STOP condition is sent before sending the START condition.

STOP—Send Stop Condition
This bit causes the I2C Controller to issue a STOP condition after the byte in the I2C Shift
register has completed transmission or after a byte is received in a receive operation. Onc

Table 72. I2C Control Register (I2CCTL)

BITS 7 6 5 4 3 2 1 0

FIELD IEN START STOP BIRQ TXI NAK FLUSH FILTEN

RESET 0

R/W R/W R/W1 R/W1 R/W R/W R/W1 W1 R/W

ADDR F52H
PS022517-0508 I2C Controller

Z8 Encore! XP® F0822 Series
Product Specification

144
SCLIN—Value of Serial Clock input signal
SDAIN—Value of the Serial Data input signal
STPCNT—Value of the internal Stop Count control signal
TXRXSTATE —Value of the internal I2C state machine

Table 75. I2C Diagnostic State Register (I2CDST)

BITS 7 6 5 4 3 2 1 0

FIELD SCLIN SDAIN STPCNT TXRXSTATE

RESET X 0

R/W R

ADDR F55H

TXRXSTATE State Description
0_0000 Idle State
0_0001 START State
0_0010 Send/Receive data bit 7
0_0011 Send/Receive data bit 6
0_0100 Send/Receive data bit 5
0_0101 Send/Receive data bit 4
0_0110 Send/Receive data bit 3
0_0111 Send/Receive data bit 2
0_1000 Send/Receive data bit 1
0_1001 Send/Receive data bit 0
0_1010 Data Acknowledge State
0_1011 Second half of data Acknowledge State used only for not acknowledge
0_1100 First part of STOP state
0_1101 Second part of STOP state
0_1110 10-bit addressing: Acknowledge State for 2nd address byte

7-bit addressing: Address Acknowledge State
0_1111 10-bit address: Bit 0 (Least significant bit) of 2nd address byte

7-bit address: Bit 0 (Least significant bit) (R/W) of address byte
1_0000 10-bit addressing: Bit 7 (Most significant bit) of 1st address byte
1_0001 10-bit addressing: Bit 6 of 1st address byte
1_0010 10-bit addressing: Bit 5 of 1st address byte
1_0011 10-bit addressing: Bit 4 of 1st address byte
1_0100 10-bit addressing: Bit 3 of 1st address byte
1_0101 10-bit addressing: Bit 2 of 1st address byte
1_0110 10-bit addressing: Bit 1 of 1st address byte
PS022517-0508 I2C Controller

Z8 Encore! XP® F0822 Series
Product Specification

158

e
Z8

 is

rge
5. Re-write the page written in step 2 to the Page Select Register.

6. Write Flash Memory using LDC or LDCI instructions to program the Flash.

7. Repeat step 6 to program additional memory locations on the same page.

8. Write 00H to the Flash Control Register to lock the Flash Controller.

Page Erase
Flash memory can be erased one page (512 bytes) at a time. Page Erasing the Flash
memory sets all bytes in that page to the value FFH. The Page Select Register identifies
the page to be erased. While the Flash Controller executes the Page Erase operation, th
eZ8 CPU idles but the system clock and on-chip peripherals continue to operate. The e
CPU resumes operation after the Page Erase operation completes. Interrupts that occur
when the Page Erase operation is in progress are serviced once the Page Erase operation
complete. When the Page Erase operation is complete, the Flash Controller returns to its
locked state. Only pages located in unprotected sectors can be erased.

Follow the steps below to perform a Page Erase operation:

1. Write 00H to the Flash Control Register to reset the Flash Controller.

2. Write the page to be erased to the Page Select Register.

3. Write the first unlock command 73H to the Flash Control Register.

4. Write the second unlock command 8CH to the Flash Control Register.

5. Re-write the page written in step 2 to the Page Select Register.

6. Write the Page Erase command 95H to the Flash Control Register.

Mass Erase
The Flash memory cannot be Mass Erased by user code.

Flash Controller Bypass
The Flash Controller can be bypassed and the control signals for the Flash memory
brought out to the GPIO pins. Bypassing the Flash Controller allows faster Programming
algorithms by controlling the Flash programming signals directly.

Flash Controller Bypass is recommended for gang programming applications and la
volume customers who do not require in-circuit programming of the Flash memory.

For more information on bypassing the Flash Controller, refer to Third-Party Flash Pro-
gramming Support for Z8 Encore! XP, available for download at www.zilog.com.
PS022517-0508 Flash Memory

Z8 Encore! XP® F0822 Series
Product Specification

161

n

e
INFO_EN—Information Area Enable
0 = Information Area is not selected.
1 = Information Area is selected. The Information area is mapped into the
 Flash Memory address space at addresses FE00H through FFFFH.

PAGE—Page Select
This 7-bit field selects the Flash memory page for Programming and Page Erase
operations. Flash Memory Address[15:9] = PAGE[6:0].

Flash Sector Protect Register
The Flash Sector Protect Register (Table 86) protects Flash memory sectors from being
programmed or erased from user code. The Flash Sector Protect Register shares its
Register File address with the Page Select Register. The Flash Sector Protect Register ca
be accessed only after writing the Flash Control Register with 5EH. User code can only
write bits in this register to 1 (bits cannot be cleared to 0 by user code).

SECTn—Sector Protect
0 = Sector n can be programmed or erased from user code.
1 = Sector n is protected and cannot be programmed or erased from user code.
 User code can only write bits from 0 to 1.

Flash Frequency High and Low Byte Registers
The Flash Frequency High and Low Byte Registers (Table 87 and Table 88) combine to
form a 16-bit value, FFREQ, to control timing for Flash program and erase operations.
The 16-bit Flash Frequency registers must be written with the system clock frequency in
kHz for Program and Erase operations. The Flash Frequency value is calculated using th
following equation:

Flash programming and erasure is not supported for system clock frequen-
cies below 20 kHz, above 20 MHz, or outside of the valid operating

Table 86. Flash Sector Protect Register (FPROT)

BITS 7 6 5 4 3 2 1 0

FIELD SECT7 SECT6 SECT5 SECT4 SECT3 SECT2 SECT1 SECT0

RESET 0

R/W R/W1

ADDR FF9H

R/W1 = Register is accessible for Read operations. Register can be written to 1 only (using user code).

FFREQ[15:0] FFREQH[7:0],FFREQL[7:0]{ } System Clock Frequency
1000

--= =

Caution:
PS022517-0508 Flash Memory

Z8 Encore! XP® F0822 Series
Product Specification

181

e
l
y.

t

de. If

DBG ← Size[7:0]
DBG → 1-65536 data bytes

• Read Program Memory CRC (0EH)—The Read Program Memory CRC command
computes and returns the CRC (cyclic redundancy check) of Program Memory using
the 16-bit CRC-CCITT polynomial. If the device is not in DEBUG mode, this
command returns FFFFH for the CRC value. Unlike most other OCD Read
commands, there is a delay from issuing of the command until the OCD returns the
data. The OCD reads the Program Memory, calculates the CRC value, and returns th
result. The delay is a function of the Program Memory size and is approximately equa
to the system clock period multiplied by the number of bytes in the Program Memor

DBG ← 0EH
DBG → CRC[15:8]
DBG → CRC[7:0]

• Step Instruction (10H)—The Step Instruction command steps one assembly
instruction at the current Program Counter location. If the device is not in DEBUG
mode or the Read Protect Option Bit is enabled, the OCD ignores this command.

DBG ← 10H

• Stuff Instruction (11H)—The Stuff Instruction command steps one assembly
instruction and allows specification of the first byte of the instruction. The remaining
0-4 bytes of the instruction are read from Program Memory. This command is useful
for stepping over instructions where the first byte of the instruction has been
overwritten by a Breakpoint. If the device is not in DEBUG mode or the Read Protec
Option Bit is enabled, the OCD ignores this command.

DBG ← 11H
DBG ← opcode[7:0]

• Execute Instruction (12H)—The Execute Instruction command allows sending an
entire instruction to be executed to the eZ8 CPU. This command can also step over
Breakpoints. The number of bytes to send for the instruction depends on the opco
the device is not in DEBUG mode or the Read Protect Option Bit is enabled, the OCD
ignores this command

DBG ← 12H
DBG ← 1-5 byte opcode

On-Chip Debugger Control Register Definitions

OCD Control Register
The OCD Control Register controls the state of the OCD. This register enters or exits
DEBUG mode and enables the BRK instruction. It can also reset the Z8 Encore! XP®
F0822 Series device.
PS022517-0508 On-Chip Debugger

Z8 Encore! XP® F0822 Series
Product Specification

201
General Purpose I/O Port Output Timing
Figure 49 and Table 106 provide timing information for GPIO Port pins.

Figure 49. GPIO Port Output Timing

Table 106. GPIO Port Output Timing

Parameter Abbreviation

Delay (ns)

Minimum Maximum

GPIO Port pins
T1 XIN Rise to Port Output Valid Delay – 15

T2 XIN Rise to Port Output Hold Time 2 –

XIN

Port Output

TCLK

T1 T2
PS022517-0508 Electrical Characteristics

Z8 Encore! XP® F0822 Series
Product Specification

208
PS022517-0508 Electrical Characteristics

Z8 Encore! XP® F0822 Series
Product Specification

209

n-

eZ8 CPU Instruction Set
Assembly Language Programming Introduction

The eZ8 CPU assembly language provides a means for writing an application program
without having to be concerned with actual memory addresses or machine instruction
formats. A program written in assembly language is called a source program. Assembly
language allows the use of symbolic addresses to identify memory locations. It also allows
mnemonic codes (opcodes and operands) to represent the instructions themselves. The
opcodes identify the instruction while the operands represent memory locations, registers,
or immediate data values.

Each assembly language program consists of a series of symbolic commands called
statements. Each statement can contain labels, operations, operands and comments.

Labels can be assigned to a particular instruction step in a source program. The label ide
tifies that step in the program as an entry point for use by other instructions.

The assembly language also includes assembler directives that supplement the machine
instruction. The assembler directives, or pseudo-ops, are not translated into a machine
instruction. Rather, the pseudo-ops are interpreted as directives that control or assist the
assembly process.

The source program is processed (assembled) by the assembler to obtain a machine
language program called the object code. The object code is executed by the eZ8 CPU. An
example segment of an assembly language program is detailed in the following example.

Assembly Language Source Program Example
JP START ; Everything after the semicolon is a comment.

START: ; A label called “START”. The first instruction (JP START) in this
; example causes program execution to jump to the point within the
; program where the START label occurs.

LD R4, R7 ; A Load (LD) instruction with two operands. The first operand,
; Working Register R4, is the destination. The second operand,
; Working Register R7, is the source. The contents of R7 is
; written into R4.

LD 234H, 01H ; Another Load (LD) instruction with two operands.
; The first operand, Extended Mode Register Address 234H,
; is the destination. The second operand, Immediate Data

; value 01H, is the source. The value 01H is written into the
; Register at address 234H.
PS022517-0508 eZ8 CPU Instruction Set

Z8 Encore! XP® F0822 Series
Product Specification

214

ne
eZ8 CPU Instruction Classes

eZ8 CPU instructions are divided functionally into the following groups:

• Arithmetic

• Bit Manipulation

• Block Transfer

• CPU Control

• Load

• Logical

• Program Control

• Rotate and Shift

Tables 118 through Table 125 on page 218 contain the instructions belonging to each
group and the number of operands required for each instruction. Some instructions appear
in more than one table as these instruction can be considered as a subset of more than o
category. Within these tables, the source operand is identified as ’src’, the destination
operand is ’dst’ and a condition code is ’cc’.

Table 118. Arithmetic Instructions

Mnemonic Operands Instruction
ADC dst, src Add with Carry

ADCX dst, src Add with Carry using Extended Addressing

ADD dst, src Add

ADDX dst, src Add using Extended Addressing

CP dst, src Compare

CPC dst, src Compare with Carry

CPCX dst, src Compare with Carry using Extended Addressing

CPX dst, src Compare using Extended Addressing

DA dst Decimal Adjust

DEC dst Decrement

DECW dst Decrement Word

INC dst Increment

INCW dst Increment Word

MULT dst Multiply
PS022517-0508 eZ8 CPU Instruction Set

Z8 Encore! XP® F0822 Series
Product Specification

229
Opcode Maps
A description of the opcode map data and the abbreviations are provided in Figure 57 and
Table 127 on page 230. Figure 58 on page 231 and Figure 59 on page 232 provide infor-
mation on each of the eZ8 CPU instructions.

Figure 57. Opcode Map Cell Description

CP

3.3

R2,R1

A

4

Opcode
Lower Nibble

Second Operand
After Assembly

First Operand
After Assembly

Opcode
Upper Nibble

Instruction CyclesFetch Cycles
PS022517-0508 Opcode Maps

Z8 Encore! XP® F0822 Series
Product Specification

231
Figure 58. First Opcode Map

CP
3.3

R2,R1

CP
3.4

IR2,R1

CP
2.3

r1,r2

CP
2.4

r1,Ir2

CPX
4.3

ER2,ER1

CPX
4.3

IM,ER1

CP
3.3

R1,IM

CP
3.4

IR1,IM

RRC
2.2

R1

RRC
2.3

IR1

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Lower Nibble (Hex)

U
pp

er
 N

ib
bl

e
(H

ex
)

BRK
1.2

SRP
2.2

IM

ADD
2.3

r1,r2

ADD
2.4

r1,Ir2

ADD
3.3

R2,R1

ADD
3.4

IR2,R1

ADD
3.3

R1,IM

ADD
3.4

IR1,IM

ADDX
4.3

ER2,ER1

ADDX
4.3

IM,ER1

DJNZ
2.3

r1,X

JR
2.2

cc,X

LD
2.2

r1,IM

JP
3.2

cc,DA

INC
1.2

r1

NOP
1.2

RLC
2.2

R1

RLC
2.3

IR1

ADC
2.3

r1,r2

ADC
2.4

r1,Ir2

ADC
3.3

R2,R1

ADC
3.4

IR2,R1

ADC
3.3

R1,IM

ADC
3.4

IR1,IM

ADCX
4.3

ER2,ER1

ADCX
4.3

IM,ER1

INC
2.2

R1

INC
2.3

IR1

SUB
2.3

r1,r2

SUB
2.4

r1,Ir2

SUB
3.3

R2,R1

SUB
3.4

IR2,R1

SUB
3.3

R1,IM

SUB
3.4

IR1,IM

SUBX
4.3

ER2,ER1

SUBX
4.3

IM,ER1

DEC
2.2

R1

DEC
2.3

IR1

SBC
2.3

r1,r2

SBC
2.4

r1,Ir2

SBC
3.3

R2,R1

SBC
3.4

IR2,R1

SBC
3.3

R1,IM

SBC
3.4

IR1,IM

SBCX
4.3

ER2,ER1

SBCX
4.3

IM,ER1

DA
2.2

R1

DA
2.3

IR1

OR
2.3

r1,r2

OR
2.4

r1,Ir2

OR
3.3

R2,R1

OR
3.4

IR2,R1

OR
3.3

R1,IM

OR
3.4

IR1,IM

ORX
4.3

ER2,ER1

ORX
4.3

IM,ER1

POP
2.2

R1

POP
2.3

IR1

AND
2.3

r1,r2

AND
2.4

r1,Ir2

AND
3.3

R2,R1

AND
3.4

IR2,R1

AND
3.3

R1,IM

AND
3.4

IR1,IM

ANDX
4.3

ER2,ER1

ANDX
4.3

IM,ER1

COM
2.2

R1

COM
2.3

IR1

TCM
2.3

r1,r2

TCM
2.4

r1,Ir2

TCM
3.3

R2,R1

TCM
3.4

IR2,R1

TCM
3.3

R1,IM

TCM
3.4

IR1,IM

TCMX
4.3

ER2,ER1

TCMX
4.3

IM,ER1

PUSH
2.2

R2

PUSH
2.3

IR2

TM
2.3

r1,r2

TM
2.4

r1,Ir2

TM
3.3

R2,R1

TM
3.4

IR2,R1

TM
3.3

R1,IM

TM
3.4

IR1,IM

TMX
4.3

ER2,ER1

TMX
4.3

IM,ER1

DECW
2.5

RR1

DECW
2.6

IRR1

LDE
2.5

r1,Irr2

LDEI
2.9

Ir1,Irr2

LDX
3.2

r1,ER2

LDX
3.3

Ir1,ER2

LDX
3.4

IRR2,R1

LDX
3.5

IRR2,IR1

LDX
3.4

r1,rr2,X

LDX
3.4

rr1,r2,X

RL
2.2

R1

RL
2.3

IR1

LDE
2.5

r2,Irr1

LDEI
2.9

Ir2,Irr1

LDX
3.2

r2,ER1

LDX
3.3

Ir2,ER1

LDX
3.4

R2,IRR1

LDX
3.5

IR2,IRR1

LEA
3.3

r1,r2,X

LEA
3.5

rr1,rr2,X

INCW
2.5

RR1

INCW
2.6

IRR1

CLR
2.2

R1

CLR
2.3

IR1

XOR
2.3

r1,r2

XOR
2.4

r1,Ir2

XOR
3.3

R2,R1

XOR
3.4

IR2,R1

XOR
3.3

R1,IM

XOR
3.4

IR1,IM

XORX
4.3

ER2,ER1

XORX
4.3

IM,ER1

LDC
2.5

r1,Irr2

LDCI
2.9

Ir1,Irr2

LDC
2.5

r2,Irr1

LDCI
2.9

Ir2,Irr1

JP
2.3

IRR1

LDC
2.9

Ir1,Irr2

LD
3.4

r1,r2,X

PUSHX
3.2

ER2

SRA
2.2

R1

SRA
2.3

IR1

POPX
3.2

ER1

LD
3.4

r2,r1,X

CALL
2.6

IRR1

BSWAP
2.2

R1

CALL
3.3

DA

LD
3.2

R2,R1

LD
3.3

IR2,R1

BIT
2.2

p,b,r1

LD
2.3

r1,Ir2

LDX
4.2

ER2,ER1

LDX
4.2

IM,ER1

LD
3.2

R1,IM

LD
3.3

IR1,IM

RR
2.2

R1

RR
2.3

IR1

MULT
2.8

RR1

LD
3.3

R2,IR1

TRAP
2.6

Vector

LD
2.3

Ir1,r2

BTJ
3.3

p,b,r1,X

BTJ
3.4

p,b,Ir1,X

SWAP
2.2

R1

SWAP
2.3

IR1

RCF
1.2

WDT
1.2

STOP
1.2

HALT
1.2

DI
1.2

EI
1.2

RET
1.4

IRET
1.5

SCF
1.2

CCF
1.2

Opcode
See 2nd

Map
PS022517-0508 Opcode Maps

Z8 Encore! XP® F0822 Series
Product Specification

242
compare 82
compare - extended addressing 214
compare mode 82
compare with carry 214
compare with carry - extended addressing 214
complement 217
complement carry flag 215, 216
condition code 211
continuous conversion (ADC) 148
continuous mode 81
control register definition, UART 100
control register, I2C 141
counter modes 81
CP 214
CPC 214
CPCX 214
CPU and peripheral overview 3
CPU control instructions 216
CPX 214
Customer Feedback Form 251
customer feedback form 240
Customer Information 251

D
DA 211, 214
data register, I2C 139
DC characteristics 187
debugger, on-chip 171
DEC 214
decimal adjust 214
decrement 214

and jump non-zero 217
word 214

DECW 214
destination operand 212
device, port availability 47
DI 216
direct address 211
disable interrupts 216
DJNZ 217
DMA controller 5
dst 212

E
EI 216
electrical characteristics 185

ADC 199
flash memory and timing 196
GPIO input data sample timing 200
watch-dog timer 197

enable interrupt 216
ER 211
extended addressing register 211
external pin reset 43
external RC oscillator 196
eZ8

features 3
eZ8 CPU features 3
eZ8 CPU instruction classes 214
eZ8 CPU instruction notation 210
eZ8 CPU instruction set 209
eZ8 CPU instruction summary 218

F
FCTL register 159
features, Z8 Encore! 1
first opcode map 231
FLAGS 212
flags register 212
flash

controller 4
option bit address space 163
option bit configuration - reset 163
program memory address 0001H 165

flash memory
arrangement 154
byte programming 157
code protection 156
control register definitions 159
controller bypass 158
electrical characteristics and timing 196
flash control register 159
flash status register 160
frequency high and low byte registers 161
mass erase 158
operation 155
PS022517-0508 Index

