

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	19
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.600", 15.24mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0812pj020ec

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Introductionx
About This Manual
Intended Audience
Manual Conventionsx
Safeguardsxii
Abbreviations/Acronymsxii
Introduction
Features
Part Selection Guide
Block Diagram
CPU and Peripheral Overview
eZ8 CPU Features
General Purpose Input/Output 4
Flash Controller
10-Bit Analog-to-Digital Converter 4
UART
I ² C
Serial Peripheral Interface
Timers
Interrupt Controller
Reset Controller
On-Chip Debugger
Signal and Pin Descriptions
Available Packages
Pin Configurations
Signal Descriptions
Pin Characteristics
Address Space
Register File
Program Memory
Data Memory
Information Area
Register File Address Map 15
Control Register Summary
Reset and Stop Mode Recovery
Reset Types
System Reset

Timer 0–1 Control 1 Registers	81
Watchdog Timer	83
Operation	83
Watchdog Timer Refresh	84
Watchdog Timer Time-Out Response	84
Watchdog Timer Reload Unlock Sequence	85
Watchdog Timer Control Register Definitions	86
Watchdog Timer Control Register	86
Watchdog Timer Reload Upper, High and Low Byte Registers	87
Universal Asynchronous Receiver/Transmitter	89
Architecture	89
Operation	90
Data Format	90
Transmitting Data using Polled Method	91
Transmitting Data Using Interrupt-Driven Method	92
Receiving Data using the Polled Method	93
Receiving Data Using Interrupt-Driven Method	
Clear To Send Operation	95
Multiprocessor (9-bit) Mode	95
External Driver Enable	96
UART Baud Rate Generator	
UART Control 0 and Control 1 Registers	
UART Address Compare Register	
0508	Table of Contents

Timer 0–3 Control 0 Registers 80

vi

Figure 4. Z8F0811 and Z8F0411 in 20-Pin SSOP and PDIP Packages

Program Memory Address (Hex)	Function
Z8F082x and Z8F081x Products	
0000-0001	Option Bits
0002-0003	Reset Vector
0004-0005	WDT Interrupt Vector
0006-0007	Illegal Instruction Trap
0008-0037	Interrupt Vectors*
0038-1FFF	Program Memory
Z8F042x and Z8F041x Products	
0000-0001	Option Bits
0002-0003	Reset Vector
0004-0005	WDT Interrupt Vector
0006-0007	Illegal Instruction Trap
0008-0037	Interrupt Vectors*
0038-0FFF	Program Memory
Note: *See Table 24 on page 57 for a list of the	interrupt vectors.

Table 5. Z8 Encore! XP[®] F0822 Series Program Memory Maps

Data Memory

Z8 Encore! XP[®] F0822 Series does not use the eZ8 CPU's 64 KB Data Memory address space.

Information Area

Table 6 describes the Z8 Encore! XP F0822 Series Information Area. This 512 byte Information Area is accessed by setting bit 7 of the Page Select Register to 1. When access is enabled, the Information Area is mapped into the Program Memory and overlays the 512 bytes at addresses FE00H to FFFFH. When the Information Area access is enabled, all reads from these Program Memory addresses return the Information Area data rather than the Program Memory data. Access to the Information Area is read-only.

Program Memory Address (Hex) Function					
FE00H-FE3FH	Reserved				
FE40H-FE53H	Part Number 20-character ASCII alphanumeric code Left justified and filled with zeros				
FE54H-FFFFH	Reserved				

Table 6. Information Area Map

- WDT's internal RC oscillator continues to operate.
- If enabled, the WDT continues to operate.
- All other on-chip peripherals continue to operate.

The eZ8 CPU can be brought out of HALT mode by any of the following operations:

- Interrupt
- WDT time-out (interrupt or reset)
- Power-On Reset
- Voltage Brownout reset
- External **RESET** pin assertion

To minimize current in HALT mode, all GPIO pins which are configured as inputs must be driven to one of the supply rails (V_{CC} or GND).

Interrupt Controller

The interrupt controller on Z8 Encore! XP[®] F0822 Series products prioritizes the interrupt requests from the on-chip peripherals and the GPIO port pins. The features of the interrupt controller include the following:

- 19 unique interrupt vectors:
 - 12 GPIO port pin interrupt sources.
 - 7 On-chip peripheral interrupt sources.
- Flexible GPIO interrupts:
 - 8 selectable rising and falling edge GPIO interrupts.
 - 4 dual-edge interrupts.
- Three levels of individually programmable interrupt priority.
- WDT is configured to generate an interrupt.

Interrupt Requests (IRQs) allow peripheral devices to suspend CPU operation in an orderly manner and force the CPU to start an Interrupt Service Routine (ISR). Usually this ISR is involved with the exchange of data, status information, or control information between the CPU and the interrupting peripheral. When the service routine is completed, the CPU returns to the operation from which it was interrupted.

The eZ8 CPU supports both vectored and polled interrupt handling. For polled interrupts, the interrupt control has no effect on operation. For more information on interrupt servicing, refer to *eZ8 CPU Core User Manual (UM0128)* available for download at www.zilog.com.

Interrupt Vector Listing

Table 24 lists all the interrupts available in order of priority. The interrupt vector is stored with the most significant byte (MSB) at the even Program Memory address and the least significant byte (LSB) at the following odd Program Memory address.

Priority	Program Memory Vector Address	Interrupt Source
Highest	0002H	Reset (not an interrupt)
	0004H	WDT (see Watchdog Timer on page 83)
	0006H	Illegal Instruction Trap (not an interrupt)

Table 24. Interrupt Vectors in Order of Priority

U0RXI—UART 0 Receiver Interrupt Request

0 = No interrupt request is pending for the UART 0 receiver.

1 = An interrupt request from the UART 0 receiver is awaiting service.

U0TXI—UART 0 Transmitter Interrupt Request

0 = No interrupt request is pending for the UART 0 transmitter.

1 = An interrupt request from the UART 0 transmitter is awaiting service.

I2CI—I²C Interrupt Request

0 = No interrupt request is pending for the I²C.

1 = An interrupt request from the I²C is awaiting service.

SPII—SPI Interrupt Request

0 = No interrupt request is pending for the SPI.

1 = An interrupt request from the SPI is awaiting service.

ADCI—ADC Interrupt Request

0 = No interrupt request is pending for the ADC.

1 = An interrupt request from the ADC is awaiting service.

Interrupt Request 1 Register

The Interrupt Request 1 (IRQ1) Register (Table 26) stores interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ1 register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU reads the IRQ1 Register to determine if any interrupt requests are pending.

BITS	7	6	5	4	3	2	1	0	
FIELD	PA7I	PA6I	PA5I	PA4I	PA3I	PA2I	PA1I	PA0I	
RESET		0							
R/W		R/W							
ADDR	FC3H								

Table 26. Interrupt Request 1 Register (IRQ1)

PAxI—Port A Pin x Interrupt Request

0 = No interrupt request is pending for GPIO Port A pin *x*.

1 = An interrupt request from GPIO Port A pin x is awaiting service.

Where *x* indicates the specific GPIO Port pin number (0 through 7).

IRQ2ENH[<i>x</i>]	IRQ2ENL[<i>x</i>]	Priority	Description
0	0	Disabled	Disabled
0	1	Level 1	Low
1	0	Level 2	Nominal
1	1	Level 3	High

Table 34. IRQ2 Enable and Priority Encoding

where *x* indicates the register bits from 0 through 7.

Table 35. IRQ2 Enable High Bit Register (IRQ2ENH)

BITS	7	6	5	4	3	2	1	0
FIELD		Rese	erved		C3ENH	C2ENH	C1ENH	C0ENH
RESET	0							
R/W	R/W							
ADDR	FC7H							

Reserved—Must be 0.

C3ENH—Port C3 Interrupt Request Enable High Bit C2ENH—Port C2 Interrupt Request Enable High Bit C1ENH—Port C1 Interrupt Request Enable High Bit C0ENH—Port C0 Interrupt Request Enable High Bit

Table 36. IRQ2 Enable Low Bit Register (IRQ2ENL)

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved				C3ENL	C2ENL	C1ENL	C0ENL
RESET	0							
R/W	R/W							
ADDR				FC	:8H			

Reserved—Must be 0.

C3ENL—Port C3 Interrupt Request Enable Low Bit C2ENL—Port C2 Interrupt Request Enable Low Bit C1ENL—Port C1 Interrupt Request Enable Low Bit C0ENL—Port C0 Interrupt Request Enable Low Bit 6. Write to the Timer Control Register to enable the timer and initiate counting.

In CONTINUOUS mode, the system clock always provides the timer input. The timer period is given by the following equation:

CONTINUOUS Mode Time-Out Period (s) = <u>Reload ValuexPrescale</u> System Clock Frequency (Hz)

If an initial starting value other than 0001H is loaded into the Timer High and Low Byte Registers, the ONE-SHOT mode equation must be used to determine the first time-out period.

COUNTER Mode

In COUNTER mode, the timer counts input transitions from a GPIO port pin. The timer input is taken from the GPIO Port pin Timer Input alternate function. The TPOL bit in the Timer Control Register selects whether the count occurs on the rising edge or the falling edge of the Timer Input signal. In COUNTER mode, the prescaler is disabled.

Caution: The input frequency of the Timer Input signal must not exceed one-fourth system clock frequency.

Upon reaching the Reload value stored in the Timer Reload High and Low Byte Registers, the timer generates an interrupt, the count value in the Timer High and Low Byte Registers is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer Reload.

Follow the steps below for configuring a timer for COUNTER mode and initiating the count:

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for COUNTER mode.
 - Select either the rising edge or falling edge of the Timer Input signal for the count. This also sets the initial logic level (High or Low) for the Timer Output alternate function. However, the Timer Output function does not have to be enabled.
- 2. Write to the Timer High and Low Byte Registers to set the starting count value. This only affects the first pass in COUNTER mode. After the first timer Reload in COUNTER mode, counting always begins at the reset value of 0001H. Generally, in COUNTER mode the Timer High and Low Byte Registers must be written with the value 0001H.
- 3. Write to the Timer Reload High and Low Byte Registers to set the Reload value.

Table 43. Timer 0–1 PWM High Byte Register (TxPWMH)

BITS	7	6	5	4	3	2	1	0
FIELD	PWMH							
RESET	0							
R/W	R/W							
ADDR	F04H, F0CH							

Table 44. Timer 0–1 PWM Low Byte Register (TxPWML)

BITS	7	6	5	4	3	2	1	0
FIELD	PWML							
RESET	0							
R/W	R/W							
ADDR				F05H,	F0DH			

PWMH and PWML—Pulse-Width Modulator High and Low Bytes

These two bytes, {PWMH[7:0], PWML[7:0]}, form a 16-bit value that is compared to the current 16-bit timer count. When a match occurs, the PWM output changes state. The PWM output value is set by the TPOL bit in the Timer Control Register (TxCTL) register.

The TxPWMH and TxPWML registers also store the 16-bit captured timer value when operating in CAPTURE or CAPTURE/COMPARE modes.

Timer 0–3 Control 0 Registers

The Timer 0–3 Control 0 (TxCTL0) registers (Table 45) allow cascading of the Timers.

Table 45	. Timer 0–3	Control 0	Register	(TxCTL0)
----------	-------------	------------------	----------	----------

BITS	7	6	5	4	3	2	1	0
FIELD		Reserved		CSC		Rese	erved	
RESET	0							
R/W		R/W						
ADDR			F	⁷ 06H, F0EH,	F16H, F1EI	Н		

CSC—Cascade Timers

- 0 = Timer Input signal comes from the pin.
- 1 = For Timer 0, input signal is connected to Timer 1 output.
 - For Timer 1, input signal is connected to Timer 0 output.

All three Watchdog Timer Reload Registers must be written in this order. There must be no other register writes between each of these operations. If a register write occurs, the lock state machine resets and no further writes occur unless the sequence is restarted. The value in the Watchdog Timer Reload Registers is loaded into the counter when the WDT is first enabled and every time a WDT instruction is executed.

Watchdog Timer Control Register Definitions

Watchdog Timer Control Register

The Watchdog Timer Control Register (WDTCTL), detailed in Table 48, is a Read-Only Register that indicates the source of the most recent Reset event, a Stop Mode Recovery event, and a WDT time-out. Reading this register resets the upper four bits to 0.

Writing the 55H, AAH unlock sequence to the Watchdog Timer Control Register (WDTCTL) address unlocks the three Watchdog Timer Reload Byte registers (WDTU, WDTH, and WDTL) to allow changes to the time-out period. These write operations to the WDTCTL address produce no effect on the bits in the WDTCTL. The locking mechanism prevents spurious writes to the Reload registers.

BITS	7	6	5	4	3	2	1	0
FIELD	POR	STOP	WDT	EXT	Reserved			
RESET	See d	lescriptions l	pelow 0					
R/W				F	R			
ADDR				FF	0H			

Table 48. Watchdog Timer Control Register (WDTCTL)

Reset or Stop Mode Recovery Event	POR	STOP	WDT	EXT
Power-On Reset	1	0	0	0
Reset through RESET pin assertion	0	0	0	1
Reset through WDT time-out	0	0	1	0
Reset through the OCD (OCTCTL[1] set to 1)	1	0	0	0
Reset from STOP Mode through the DBG Pin driven Low	1	0	0	0
Stop Mode Recovery through GPIO pin transition	0	1	0	0
Stop Mode Recovery through WDT time-out	0	1	1	0

POR—Power-On Reset Indicator

If this bit is set to 1, a POR event occurred. This bit is reset to 0, if a WDT time-out or Stop Mode Recovery occurs. This bit is also reset to 0, when the register is read.

0, then reading the UART Receive Data Register clears this bit.

0 = No overrun error occurred.

1 = An overrun error occurred.

FE—Framing Error

This bit indicates that a framing error (no STOP bit following data reception) was detected. Reading the UART Receive Data Register clears this bit.

0 = No framing error occurred.

1 = A framing error occurred.

BRKD—Break Detect

This bit indicates that a break occurred. If the data bits, parity/multiprocessor bit, and STOP bit(s) are all zeros then this bit is set to 1. Reading the UART Receive Data Register clears this bit.

0 = No break occurred.

1 = A break occurred.

TDRE—Transmitter Data Register Empty

This bit indicates that the UART Transmit Data Register is empty and ready for additional data. Writing to the UART Transmit Data Register resets this bit.

0 = Do not write to the UART Transmit Data Register.

1 = The UART Transmit Data Register is ready to receive an additional byte to be transmitted.

TXE—Transmitter Empty

This bit indicates that the transmit shift register is empty and character transmission is finished.

0 = Data is currently transmitting.

1 = Transmission is complete.

CTS—CTS Signal

When this bit is read it returns the level of the $\overline{\text{CTS}}$ signal.

UART Status 1 Register

This register contains multiprocessor control and status bits.

Table 55. UART Status 1 Register (U0STAT1)

BITS	7	6	5	4	3	2	1	0
FIELD			Rese	erved			NEWFRM	MPRX
RESET	0							
R/W	R R/W R							2
ADDR				F4	4H			

 $1 = \overline{SS}$ pin driven High (1). This bit has no effect if SSIO = 0 or SPI configured as a Slave

SPI Diagnostic State Register

The SPI Diagnostic State Register provides observability of internal state. This is a read only register used for SPI diagnostics.

Table 67. SPI Diagnostic State Register (SPIDST)

BITS	7	6	5	4	3	2	1	0
FIELD	SCKEN	TCKEN	SPISTATE					
RESET		0						
R/W		R						
ADDR				F6	4H			

SCKEN–Shift Clock Enable

0 = The internal Shift Clock Enable signal is deasserted

1 = The internal Shift Clock Enable signal is asserted (shift register is updates on next system clock)

TCKEN–Transmit Clock Enable

0 = The internal Transmit Clock Enable signal is deasserted.

1 = The internal Transmit Clock Enable signal is asserted. When this is asserted the serial data out is updated on the next system clock (MOSI or MISO).

SPISTATE–SPI State Machine

Defines the current state of the internal SPI State Machine.

SPI Baud Rate High and Low Byte Registers

The SPI Baud Rate High and Low Byte Registers combine to form a 16-bit reload value, BRG[15:0], for the SPI Baud Rate Generator. When configured as a general purpose timer, the interrupt interval is calculated using the following equation:

Interrupt Interval (s) = System Clock Period (s) × BRG[15:0]

Table 68. SPI Baue	I Rate High Byte	Register (SPIBRH)
--------------------	------------------	-------------------

BITS	7	6	5	4	3	2	1	0
FIELD				BF	RH			
RESET	1							
R/W				R/	W			
ADDR				F6	6H			

- 14. If more bytes remain to be sent, return to step 9.
- 15. Software responds by setting the STOP bit of the I²C Control Register (or START bit to initiate a new transaction). In the STOP case, software clears the TXI bit of the I²C Control Register at the same time.
- 16. The I^2C Controller completes transmission of the data on the SDA signal.
- 17. The slave can either Acknowledge or Not Acknowledge the last byte. Because either the STOP or START bit is already set, the NCKI interrupt does not occur.
- 18. The I²C Controller sends the STOP (or RESTART) condition to the I²C bus. The STOP or START bit is cleared.

Address Only Transaction with a 10-bit Address

In the situation where software wants to determine if a slave with a 10-bit address is responding without sending or receiving data, a transaction is done which only consists of an address phase. Figure 28 displays this "address only" transaction to determine if a slave with 10-bit address will acknowledge. As an example, this transaction is used after a "write" has been done to a EEPROM to determine when the EEPROM completes its internal write operation and is once again responding to I2C transactions. If the slave does not Acknowledge the transaction is repeated until the slave is able to Acknowledge.

Figure 28. 10-Bit Address Only Transaction Format

Follow the steps below for an address only transaction to a 10-bit addressed slave:

- 1. Software asserts the IEN bit in the I^2C Control Register.
- 2. Software asserts the TXI bit of the I^2C Control Register to enable Transmit interrupts.
- 3. The I²C interrupt asserts, because the I²C Data Register is empty (TDRE = 1)
- 4. Software responds to the TDRE interrupt by writing the first slave address byte. The least-significant bit must be 0 for the write operation.
- 5. Software asserts the START bit of the I^2C Control Register.
- 6. The I^2C Controller sends the START condition to the I^2C Slave.
- 7. The I²C Controller loads the I²C Shift register with the contents of the I²C Data Register.
- 8. After one bit of address is shifted out by the SDA signal, the Transmit Interrupt is asserted.

RD—Read

This bit indicates the direction of transfer of the data. It is active High during a read. The status of this bit is determined by the least-significant bit of the I^2C Shift register after the START bit is set.

TAS—Transmit Address State

This bit is active High while the address is being shifted out of the I²C Shift Register.

DSS—Data Shift State

This bit is active High while data is being shifted to or from the I²C Shift Register.

NCKI—NACK Interrupt

This bit is set high when a Not Acknowledge condition is received or sent and neither the START nor the STOP bit is active. When set, this bit generates an interrupt that can only be cleared by setting the START or STOP bit, allowing you to specify whether you want to perform a STOP or a repeated START.

I²C Control Register

The I^2C Control Register (Table 72) enables the I^2C operation.

BITS	7	6	5	4	3	2	1	0
FIELD	IEN	START	STOP	BIRQ	TXI	NAK	FLUSH	FILTEN
RESET		0						
R/W	R/W	R/W1	R/W1	R/W	R/W	R/W1	W1	R/W
ADDR				F5	2H			

Table 72. I²C Control Register (I2CCTL)

IEN—I²C Enable

1 = The I²C transmitter and receiver are enabled.

0 = The I²C transmitter and receiver are disabled.

START—Send Start Condition

This bit sends the Start condition. Once asserted, it is cleared by the I^2C Controller after it sends the START condition or if the IEN bit is deasserted. If this bit is 1, it cannot be cleared to 0 by writing to the register. After this bit is set, the Start condition is sent if there is data in the I^2C Data or I^2C Shift register. If there is no data in one of these registers, the I^2C Controller waits until the data register is written. If this bit is set while the I^2C Controller is shifting out data, it generates a START condition after the byte shifts and the acknowledge phase completes. If the STOP bit is also set, it also waits until the STOP condition is sent before sending the START condition.

STOP—Send Stop Condition

This bit causes the I^2C Controller to issue a STOP condition after the byte in the I^2C Shift register has completed transmission or after a byte is received in a receive operation. Once

ADC Control Register Definitions

ADC Control Register

The ADC Control Register selects the analog input channel and initiates the analog-to-digital conversion.

Table 77. ADC Control Register (ADCCTL)

BITS	7	6	5	4	3	2	1	0	
FIELD	CEN	Reserved	VREF	CONT		ANAI	N[3:0]		
RESET	(0			0				
R/W				R/	W				
ADDR				F7	0H				

CEN—Conversion Enable

- 0 = Conversion is complete. Writing a 0 produces no effect. The ADC automatically clears this bit to 0 when a conversion has been completed.
- 1 = Begin conversion. Writing a 1 to this bit starts a conversion. If a conversion is already in progress, the conversion restarts. This bit remains 1 until the conversion is complete.

Reserved—Must be 0

VREF

- 0 = Internal reference generator enabled. The VREF pin must be left unconnected or capacitively coupled to analog ground (AVSS).
- 1 = Internal voltage reference generator disabled. An external voltage reference must be provided through the VREF pin.

CONT

- 0 = SINGLE-SHOT conversion. ADC data is output once at completion of the 5129 system clock cycles.
- 1 = Continuous conversion. ADC data updated every 256 system clock cycles.

ANAIN—Analog Input Select

These bits select the analog input for conversion. Not all Port pins in this list are available in all packages for Z8 Encore! XP[®] F0822 Series. See Signal and Pin Descriptions for information regarding the Port pins available with each package style.

Do not enable unavailable analog inputs.

- $\begin{array}{l} 0000 = ANA0\\ 0001 = ANA1 \end{array}$
- $\begin{array}{l} 0010 = ANA2\\ 0011 = ANA3\\ 0100 = ANA4 \end{array}$

- 5. Re-write the page written in step 2 to the Page Select Register.
- 6. Write Flash Memory using LDC or LDCI instructions to program the Flash.
- 7. Repeat step 6 to program additional memory locations on the same page.
- 8. Write 00H to the Flash Control Register to lock the Flash Controller.

Page Erase

Flash memory can be erased one page (512 bytes) at a time. Page Erasing the Flash memory sets all bytes in that page to the value FFH. The Page Select Register identifies the page to be erased. While the Flash Controller executes the Page Erase operation, the eZ8 CPU idles but the system clock and on-chip peripherals continue to operate. The eZ8 CPU resumes operation after the Page Erase operation completes. Interrupts that occur when the Page Erase operation is in progress are serviced once the Page Erase operation is complete. When the Page Erase operation is complete, the Flash Controller returns to its locked state. Only pages located in unprotected sectors can be erased.

Follow the steps below to perform a Page Erase operation:

- 1. Write 00H to the Flash Control Register to reset the Flash Controller.
- 2. Write the page to be erased to the Page Select Register.
- 3. Write the first unlock command 73H to the Flash Control Register.
- 4. Write the second unlock command 8CH to the Flash Control Register.
- 5. Re-write the page written in step 2 to the Page Select Register.
- 6. Write the Page Erase command 95H to the Flash Control Register.

Mass Erase

The Flash memory cannot be Mass Erased by user code.

Flash Controller Bypass

The Flash Controller can be bypassed and the control signals for the Flash memory brought out to the GPIO pins. Bypassing the Flash Controller allows faster Programming algorithms by controlling the Flash programming signals directly.

Flash Controller Bypass is recommended for gang programming applications and large volume customers who do not require in-circuit programming of the Flash memory.

For more information on bypassing the Flash Controller, refer to *Third-Party Flash Pro*gramming Support for Z8 Encore! XP, available for download at <u>www.zilog.com</u>.

Electrical Characteristics

Absolute Maximum Ratings

These ratings are stress ratings only. Operation of the device at any condition outside those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect device reliability. For improved reliability, unused inputs must be tied to one of the supply voltages $(V_{DD} \text{ or } V_{SS})$.

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	-40	+105	°C	1
Storage temperature	-65	+150	°C	
Voltage on any pin with respect to V_{SS}	-0.3	+5.5	V	2
Voltage on AV _{SS} pin with respect to V_{SS}	-0.3	+0.3	V	2
Voltage on V_{DD} pin with respect to V_{SS}	-0.3	+3.6	V	
Voltage on AV_{DD} pin with respect to V_{DD}	-0.3	+0.3	V	
Maximum current on input and/or inactive output pin	-5	+5	μA	
Maximum output current from active output pin	-25	+25	mA	
20-pin SSOP Package Maximum Ratings at -40 °C	to 70 °C			
Total power dissipation		430	mW	
Maximum current into V_{DD} or out of V_{SS}		120	mA	
20-pin SSOP Package Maximum Ratings at 70 °C t	o 105 °C			
Total power dissipation		250	mW	
Maximum current into V_{DD} or out of V_{SS}		69	mA	
20-pin PDIP Package Maximum Ratings at -40 °C t	o 70 °C			
Total power dissipation		775	mW	
Maximum current into V _{DD} or out of V _{SS}		215	mA	

Table 96. Absolute Maximum Ratings

^{! (}

Caution: *Stresses greater than those listed in* Table 96 *can cause permanent damage to the device.*

Z8 Encore! XP[®] F0822 Series Product Specification

Figure 46. Maximum STOP Mode I_{DD} with VBO Disabled versus Power Supply Voltage

	Operand	Range
	b	b represents a value from 0 to 7 (000B to 111B).
	—	See Condition Codes overview in the eZ8 CPU User Manual.
	Addrs	Addrs. represents a number in the range of 0000H to FFFFH
ster	Reg	Reg. represents a number in the range of 000H to FFFH

Table 115. Notational Shorthand

Notation Description

b	Bit	b	b represents a value from 0 to 7 (000B to 111B).
сс	Condition Code	_	See Condition Codes overview in the eZ8 CPU User Manual.
DA	Direct Address	Addrs	Addrs. represents a number in the range of 0000H to FFFFH
ER	Extended Addressing Register	Reg	Reg. represents a number in the range of 000H to FFFH
IM	Immediate Data	#Data	Data is a number between 00H to FFH
lr	Indirect Working Register	@Rn	n = 0 –15
IR	Indirect Register	@Reg	Reg. represents a number in the range of 00H to FFH
Irr	Indirect Working Register Pair	@RRp	p = 0, 2, 4, 6, 8, 10, 12, or 14
IRR	Indirect Register Pair	@Reg	Reg. represents an even number in the range 00H to FEH
р	Polarity	р	Polarity is a single bit binary value of either 0B or 1B.
r	Working Register	Rn	n = 0 - 15
R	Register	Reg	Reg. represents a number in the range of 00H to FFH
RA	Relative Address	Х	X represents an index in the range of +127 to – 128 which is an offset relative to the address of the next instruction
rr	Working Register Pair	RRp	p = 0, 2, 4, 6, 8, 10, 12, or 14
RR	Register Pair	Reg	Reg. represents an even number in the range of 00H to FEH
Vector	Vector Address	Vector	Vector represents a number in the range of 00H to FFH
X	Indexed	#Index	The register or register pair to be indexed is offset by the signed Index value (#Index) in a +127 to -128 range.