
Zilog - Z8F0821HH020SC Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor eZ8

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, IrDA, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 11

Program Memory Size 8KB (8K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 3.6V

Data Converters A/D 2x10b

Oscillator Type Internal

Operating Temperature 0°C ~ 70°C (TA)

Mounting Type Surface Mount

Package / Case 20-SSOP (0.209", 5.30mm Width)

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/zilog/z8f0821hh020sc

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/z8f0821hh020sc-4426676
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Z8 Encore! XP® F0822 Series
Product Specification

xiii
PDIP Plastic Dual Inline Package

SOIC Small Outline Integrated Circuit

SSOP Small Shrink Outline Package

PC Program Counter

IRQ Interrupt Request

Abbreviations/
Acronyms Expansion
PS022517-0508 Introduction

Z8 Encore! XP® F0822 Series
Product Specification

13
Address Space
The eZ8 CPU accesses three distinct address spaces:
• The Register File contains addresses for the general-purpose registers and

the eZ8 CPU, Peripheral, and GPIO Port Control Registers.
• The Program Memory contains addresses for all memory locations having executable

code and/or data.
• The Data Memory contains addresses for all memory locations that hold data only.

These three address spaces are covered briefly in the following sections. For more infor-
mation on the eZ8 CPU and its address space, refer to eZ8 CPU Core User Manual
(UM0128) available for download at www.zilog.com.

Register File

The Register File address space in the Z8 Encore! XP® is 4 KB (4096 bytes). It is com-
posed of two sections—Control Registers and General-Purpose Registers. When instruc-
tions are executed, registers are read from when defined as sources and written to when
defined as destinations. The architecture of the eZ8 CPU allows all general-purpose regis-
ters to function as accumulators, address pointers, index registers, stack areas, or scratch
pad memory.

The upper 256 bytes of the 1 KB Register File address space is reserved for control
of the eZ8 CPU, the on-chip peripherals, and the I/O ports. These registers are located at
addresses from F00H to FFFH. Some of the addresses within the 256-byte Control Register
section is reserved (unavailable). Reading from the reserved Register File addresses
returns an undefined value. Writing to reserved Register File addresses is not recom-
mended and can produce unpredictable results.

The on-chip RAM always begins at address 000H in the Register File address space.
Z8 Encore! XP F0822 Series contains 1 KB of on-chip RAM. Reading from Register File
addresses outside the available RAM addresses (and not within the control register address
space) returns an undefined value. Writing to these Register File addresses produces no
effect.

Program Memory

The eZ8 CPU supports 64 KB of Program Memory address space. Z8 Encore! XP® F0822
Series contain 4 KB to 8 KB on-chip Flash in the Program Memory address space,
depending on the device. Reading from Program Memory addresses outside the available
Flash addresses returns FFH. Writing to unimplemented Program Memory addresses pro-
duces no effect. Table 5 describes the Program Memory Maps for Z8 Encore! XP F0822
Series devices.
PS022517-0508 Address Space

Z8 Encore! XP® F0822 Series
Product Specification

30
IRQ0 Enable Low Bit
IRQ0ENL (FC2H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

ADC IRQ Enable Hit Bit

SPI IRQ Enable Low Bit

I2C IRQ Enable Low Bit

UART 0 Transmitter IRQ

UART 0 Receiver IRQ Enable

Timer 0 IRQ Enable Low Bit

Timer 1 IRQ Enable Low Bit

Reserved

Interrupt Request 1
IRQ1 (FC3H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port A Pin Interrupt Request
 0 = IRQ from corresponding
pin [7:0]
 is not pending
 1 = IRQ from corresponding
pin [7:0]
 is awaiting service

IRQ1 Enable High Bit
IRQ1ENH (FC4H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port A Pin IRQ Enable High

IRQ1 Enable Low Bit
IRQ1ENL (FC5H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port A Pin IRQ Enable Low
PS022517-0508 Control Register Summary

Z8 Encore! XP® F0822 Series
Product Specification

37
Flash Sector Protect
FPROT (FF9H - Read/Write to 1’s)
D7 D6 D5 D4 D3 D2 D1 D0

Flash Sector Protect [7:0]
 0 = Sector can be
programmed or
 erased from user code
 1 = Sector is protected and
cannot be
 programmed or erased
from user
 code

Flash Frequency High Byte
FFREQH (FFAH - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Flash Frequency value [15:8]

Flash Frequency Low Byte
FFREQL (FFBH - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Flash Frequency value [7:0]

Flags
FLAGS (FFCH - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

F1 - User Flag 1

F2 - User Flag 2

H - Half Carry

D - Decimal Adjust

V - Overflow Flag

S - Sign Flag

Z - Zero Flag

C - Carry Flag

Register Pointer
RP (FFDH- Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Working Register Page
PS022517-0508 Control Register Summary

Z8 Encore! XP® F0822 Series
Product Specification

52
pins.To determine the alternate function associated with each port pin, see GPIO Port Pin
Block Diagram on page 48.

Do not enable alternate function for GPIO port pins which do not have an associated
alternate function. Failure to follow this guideline can result in unpredictable operation.

AF[7:0]—Port Alternate Function enabled
0 = The port pin is in NORMAL mode and the DDx bit in the Port A–C Data
 Direction sub-register determines the direction of the pin.
1 = The alternate function is selected. Port pin operation is controlled by the
 alternate function.

Port A–C Output Control Sub-Registers
The Port A–C Output Control sub-register (Table 18) is accessed through the Port A–C
Control Register by writing 03H to the Port A–C Address Register. Setting the bits in the
Port A–C Output Control sub-registers to 1 configures the specified port pins for
open-drain operation. These sub-registers affect the pins directly and, as a result,
alternate functions are also affected.

POC[7:0]—Port Output Control
These bits function independently of the alternate function bit and always disable the
drains if set to 1.
0 = The drains are enabled for any output mode (unless overridden by the

Table 17. Port A–CA–C Alternate Function Sub-Registers

BITS 7 6 5 4 3 2 1 0
FIELD AF7 AF6 AF5 AF4 AF3 AF2 AF1 AF0

RESET 0

R/W R/W

ADDR If 02H in Port A–C Address Register, accessible through the Port A–C Control Register

Table 18. Port A–C Output Control Sub-Registers

BITS 7 6 5 4 3 2 1 0
FIELD POC7 POC6 POC5 POC4 POC3 POC2 POC1 POC0

RESET 0

R/W R/W

ADDR If 03H in Port A–C Address Register, accessible through the Port A–C Control Register

Caution:
PS022517-0508 General-Purpose Input/Output

Z8 Encore! XP® F0822 Series
Product Specification

66

Reserved—Must be 0.
C3ENH—Port C3 Interrupt Request Enable High Bit
C2ENH—Port C2 Interrupt Request Enable High Bit
C1ENH—Port C1 Interrupt Request Enable High Bit
C0ENH—Port C0 Interrupt Request Enable High Bit

Reserved—Must be 0.
C3ENL—Port C3 Interrupt Request Enable Low Bit
C2ENL—Port C2 Interrupt Request Enable Low Bit
C1ENL—Port C1 Interrupt Request Enable Low Bit
C0ENL—Port C0 Interrupt Request Enable Low Bit

Table 34. IRQ2 Enable and Priority Encoding

IRQ2ENH[x] IRQ2ENL[x] Priority Description

0 0 Disabled Disabled

0 1 Level 1 Low

1 0 Level 2 Nominal

1 1 Level 3 High

where x indicates the register bits from 0 through 7.

Table 35. IRQ2 Enable High Bit Register (IRQ2ENH)

BITS 7 6 5 4 3 2 1 0

FIELD Reserved C3ENH C2ENH C1ENH C0ENH

RESET 0

R/W R/W

ADDR FC7H

Table 36. IRQ2 Enable Low Bit Register (IRQ2ENL)

BITS 7 6 5 4 3 2 1 0

FIELD Reserved C3ENL C2ENL C1ENL C0ENL

RESET 0

R/W R/W

ADDR FC8H
PS022517-0508 Interrupt Controller

Z8 Encore! XP® F0822 Series
Product Specification

81
Timer 0–1 Control 1 Registers
The Timer 0–1 Control (TxCTL) registers enable/disable the timers, set the prescaler
value, and determine the timer operating mode.

TEN—Timer Enable
0 = Timer is disabled.
1 = Timer enabled to count.

TPOL—Timer Input/Output Polarity
Operation of this bit is a function of the current operating mode of the timer.

ONE-SHOT Mode
When the timer is disabled, the Timer Output signal is set to the value of this bit.
When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

CONTINUOUS Mode
When the timer is disabled, the Timer Output signal is set to the value of this bit. When the
timer is enabled, the Timer Output signal is complemented upon timer Reload.

COUNTER Mode
If the timer is enabled the Timer Output signal is complemented after timer reload.
0 = Count occurs on the rising edge of the Timer Input signal.
1 = Count occurs on the falling edge of the Timer Input signal.

PWM Mode
0 = Timer Output is forced Low (0) when the timer is disabled. When enabled,
 the Timer Output is forced High (1) upon PWM count match and forced
 Low (0) upon Reload.
1 = Timer Output is forced High (1) when the timer is disabled. When enabled,
 the Timer Output is forced Low (0) upon PWM count match and forced
 High (1) upon Reload.

CAPTURE Mode
0 = Count is captured on the rising edge of the Timer Input signal.
1 = Count is captured on the falling edge of the Timer Input signal.

Table 46. Timer 0–1 Control Register (TxCTL)

BITS 7 6 5 4 3 2 1 0
FIELD TEN TPOL PRES TMODE

RESET 0

R/W R/W

ADDR F07H, F0FH
PS022517-0508 Timers

Z8 Encore! XP® F0822 Series
Product Specification

94
Receiving Data Using Interrupt-Driven Method
 The UART Receiver interrupt indicates the availability of new data (as well as error con-
ditions). Follow the steps below to configure the UART receiver for interrupt-driven oper-
ation:
1. Write to the UART Baud Rate High and Low Byte Registers to set the required

baud rate.
2. Enable the UART pin functions by configuring the associated GPIO Port pins for

alternate function operation.
3. Execute a DI instruction to disable interrupts.
4. Write to the Interrupt Control Registers to enable the UART Receiver interrupt and set

the required priority.
5. Clear the UART Receiver interrupt in the applicable Interrupt Request Register.
6. Write to the UART Control 1 Register to enable MULTIPROCESSOR (9-bit) mode

functions, if desired.
– Set the Multiprocessor Mode Select (MPEN) to enable MULTIPROCESSOR

mode.
– Set the Multiprocessor Mode Bits, MPMD[1:0], to select the required address

matching scheme.
– Configure the UART to interrupt on received data and errors or errors only

(interrupt on errors only is unlikely to be useful for Z8 Encore! XP devices
without a DMA block)

7. Write the device address to the Address Compare Register (automatic multiprocessor
modes only).

8. Write to the UART Control 0 Register to:
– Set the receive enable bit (REN) to enable the UART for data reception
– Enable parity, if required, and if MULTIPROCESSOR mode is not enabled, and

select either even or odd parity.

9. Execute an EI instruction to enable interrupts.

The UART is now configured for interrupt-driven data reception. When the UART
Receiver Interrupt is detected, the associated ISR performs the following:
1. Check the UART Status 0 Register to determine the source of the interrupt-error,

break, or received data.
2. If the interrupt was due to data available, read the data from the UART Receive Data

Register. If operating in MULTIPROCESSOR (9-bit) mode, further actions may be
required depending on the Multiprocessor Mode bits MPMD[1:0].

3. Clear the UART Receiver Interrupt in the applicable Interrupt Request Register.

4. Execute the IRET instruction to return from the ISR and await more data.
PS022517-0508 Universal Asynchronous Receiver/Transmitter

Z8 Encore! XP® F0822 Series
Product Specification

97
Enable signal asserts at least one UART bit period and no greater than two UART bit peri-
ods before the Start bit is transmitted. This format allows a setup time to enable the trans-
ceiver. The Driver Enable signal deasserts one system clock period after the last STOP bit
is transmitted. This one system clock delay allows both time for data to clear the trans-
ceiver before disabling it, as well as the ability to determine if another character follows
the current character. In the event of back to back characters (new data must be written to
the Transmit Data Register before the previous character is completely transmitted) the
DE signal is not deasserted between characters. The DEPOL bit in the UART Control
Register 1 sets the polarity of the Driver Enable signal.

Figure 15. UART Driver Enable Signal Timing (with 1 STOP Bit and Parity)

The Driver Enable to Start bit setup time is calculated as follows:

UART Interrupts
The UART features separate interrupts for the transmitter and the receiver. In addition,
when the UART primary functionality is disabled, the BRG also functions as a basic timer
with interrupt capability.

Transmitter Interrupts
The transmitter generates a single interrupt when the Transmit Data Register Empty bit
(TDRE) is set to 1. This indicates that the transmitter is ready to accept new data for
transmission. The TDRE interrupt occurs after the Transmit shift register has shifted the
first bit of data out. At this point, the Transmit Data Register can be written with the next
character to send. This provides 7 bit periods of latency to load the Transmit Data Register
before the Transmit shift register completes shifting the current character. Writing to the
UART Transmit Data Register clears the TDRE bit to 0.

Start Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Parity

Data Field

lsb msb
Idle State

of Line

STOP Bit

1

1

0

0

1

DE

1
Baud Rate (Hz)
---⎠

⎞
⎝
⎛ DE to Start Bit Setup Time (s) 2

Baud Rate (Hz)
---⎝ ⎠

⎛ ⎞≤ ≤
PS022517-0508 Universal Asynchronous Receiver/Transmitter

Z8 Encore! XP® F0822 Series
Product Specification

99
Figure 16. UART Receiver Interrupt Service Routine Flow

 UART Baud Rate Generator
The UART Baud Rate Generator creates a lower frequency baud rate clock for data
transmission. The input to the BRG is the system clock. The UART Baud Rate High and
Low Byte Registers combine to create a 16-bit baud rate divisor value (BRG[15:0]) that
sets the data transmission rate (baud rate) of the UART. The UART data rate is calculated
using the following equation:

Receiver

Errors?

No

Yes

Read Status

Discard Data

Read Data which

Interrupt

Receiver
Ready

clears RDA bit and
resets error bits

Read Data

UART Data Rate (bits/s) System Clock Frequency (Hz)
16xUART Baud Rate Divisor Value
---=
PS022517-0508 Universal Asynchronous Receiver/Transmitter

Z8 Encore! XP® F0822 Series
Product Specification

129
Receive interrupts occur when a byte of data has been received by the I2C Controller
(Master reading data from Slave). This procedure sets the RDRF bit of the I2C Status
Register. The RDRF bit is cleared by reading the I2C Data Register. The RDRF bit is set
during the acknowledge phase. The I2C Controller pauses after the acknowledge phase
until the receive interrupt is cleared before performing any other action.

Transmit interrupts occur when the TDRE bit of the I2C Status register sets and the TXI
bit in the I2C Control Register is set. Transmit interrupts occur under the following
conditions when the Transmit Data Register is empty:
• The I2C Controller is enabled
• The first bit of the byte of an address is shifting out and the RD bit of the I2C Status

register is deasserted.
• The first bit of a 10-bit address shifts out.
• The first bit of write data shifts out.

Writing to the I2C Data Register always clears the TRDE bit to 0. When TDRE is asserted,
the I2C Controller pauses at the beginning of the Acknowledge cycle of the byte currently
shifting out until the data register is written with the next value to send or the STOP or
START bits are set indicating the current byte is the last one to send.

The fourth interrupt source is the BRG. If the I2C Controller is disabled (IEN bit in the
I2CCTL Register = 0) and the BIRQ bit in the I2CCTL Register = 1,
an interrupt is generated when the BRG counts down to 1. This allows the I2C Baud Rate
Generator to be used by software as a general purpose timer when IEN = 0.

Software Control of I2C Transactions
Software controls I2C transactions by using the I2C Controller interrupt, by polling the I2C
Status register or by DMA. Note that not all products include a DMA Controller.

To use interrupts, the I2C interrupt must be enabled in the Interrupt Controller. The TXI bit
in the I2C Control Register must be set to enable transmit interrupts.

To control transactions by polling, the interrupt bits (TDRE, RDRF and NCKI) in the
I2C Status Register should be polled. The TDRE bit asserts regardless of the state of the
TXI bit.

Either or both transmit and receive data movement can be controlled by the DMA
Controller. The DMA Controller channel(s) must be initialized to select the I2C transmit
and receive requests. Transmit DMA requests require that the TXI bit in the I2C Control
Register be set.

A transmit (write) DMA operation hangs if the slave responds with a Not Acknowledge
before the last byte has been sent. After receiving the Not Acknowledge, the I2C Con-
troller sets the NCKI bit in the Status Register and pauses until either the STOP or

Note:

Caution:
PS022517-0508 I2C Controller

Z8 Encore! XP® F0822 Series
Product Specification

130
START bits in the Control Register are set.

In order for a receive (read) DMA transaction to send a Not Acknowledge on the last
byte, the receive DMA must be set up to receive n-1 bytes, then software must set the
NAK bit and receive the last (nth) byte directly.

Start and Stop Conditions
The Master (I2C) drives all Start and Stop signals and initiates all transactions. To start a
transaction, the I2C Controller generates a START condition by pulling the SDA signal
Low while SCL is High. To complete a transaction, the I2C Controller generates a Stop
condition by creating a low-to-high transition of the SDA signal while the SCL signal is
high. The START and STOP bits in the I2C Control Register control the sending of the
Start and Stop conditions. A Master is also allowed to end one transaction and begin a new
one by issuing a Restart. This is accomplished by setting the START bit at the end of a
transaction, rather than the STOP bit.

The Start condition not sent until the START bit is set and data has been written to the I2C
Data Register.

Master Write and Read Transactions
The following sections provide a recommended procedure for performing I2C write and
read transactions from the I2C Controller (Master) to slave I2C devices. In general soft-
ware should rely on the TDRE, RDRF and NCKI bits of the status register (these bits
generate interrupts) to initiate software actions. When using interrupts or DMA, the TXI
bit is set to start each transaction and cleared at the end of each transaction to eliminate a
‘trailing’ Transmit Interrupt.

Caution should be used in using the ACK status bit within a transaction because it is diffi-
cult for software to tell when it is updated by hardware.

When writing data to a slave, the I2C pauses at the beginning of the Acknowledge cycle if
the data register has not been written with the next value to be sent (TDRE bit in the I2C
Status register equal to 1). In this scenario where software is not keeping up with the I2C
bus (TDRE asserted longer than one byte time), the Acknowledge clock cycle for byte n is
delayed until the data register is written with byte n + 1, and appears to be grouped with
the data clock cycles for byte n + 1. If either the START or STOP bit is set, the I2C does
not pause prior to the Acknowledge cycle because no additional data is sent.

When a Not Acknowledge condition is received during a write (either during the address
or data phases), the I2C Controller generates the Not Acknowledge interrupt (NCKI = 1)
and pause until either the STOP or START bit is set. Unless the Not Acknowledge was
received on the last byte, the data register will already have been written with the next
address or data byte to send. In this case the FLUSH bit of the control register should be
set at the same time the STOP or START bit is set to remove the stale transmit data and
enable subsequent Transmit Interrupts.

Note:
PS022517-0508 I2C Controller

Z8 Encore! XP® F0822 Series
Product Specification

177
Table 93. On-Chip Debugger Commands

Debug Command
Command
Byte

Enabled when
NOT in DEBUG
mode?

Disabled by
Read Protect Option Bit

Read OCD Revision 00H Yes -

Write OCD Counter
Register

01H - -

Read OCD Status
Register

02H Yes -

Read OCD Counter
Register

03H - -

Write OCD Control
Register

04H Yes Cannot clear DBGMODE bit

Read OCD Control
Register

05H Yes -

Write Program Counter 06H - Disabled

Read Program Counter 07H - Disabled

Write Register 08H - Only writes of the peripheral control
registers at address F00H-FFH are

allowed.
 Additionally, only the Mass Erase

command is allowed to be written to the
Flash Control Register.

Read Register 09H - Only reads of the peripheral control
registers at address F00H-FFH are

allowed.

Write Program Memory 0AH - Disabled

Read Program Memory 0BH - Disabled

Write Data Memory 0CH - Disabled

Read Data Memory 0DH - Disabled

Read Program Memory
CRC

0EH - -

Reserved 0FH - -

Step Instruction 10H - Disabled

Stuff Instruction 11H - Disabled
PS022517-0508 On-Chip Debugger

Z8 Encore! XP® F0822 Series
Product Specification

179
DBG ← 04H
DBG ← OCDCTL[7:0]

• Read OCD Control Register (05H)—The Read OCD Control Register command
reads the value of the OCDCTL register.

DBG ← 05H
DBG → OCDCTL[7:0]

• Write Program Counter (06H)—The Write Program Counter command writes the
data that follows to the eZ8 CPU’s Program Counter. If the device is not in DEBUG
mode or if the Read Protect Option Bit is enabled, the Program Counter values are
discarded.

DBG ← 06H
DBG ← ProgramCounter[15:8]
DBG ← ProgramCounter[7:0]

• Read Program Counter (07H)—The Read Program Counter command reads the
value in the eZ8 CPU’s Program Counter. If the device is not in DEBUG mode or if
the Read Protect Option Bit is enabled, this command returns FFFFH.

DBG ← 07H
DBG → ProgramCounter[15:8]
DBG → ProgramCounter[7:0]

• Write Register (08H)—The Write Register command writes data to the Register File.
Data can be written 1-256 bytes at a time (256 bytes can be written by setting size to
zero). If the device is not in DEBUG mode, the address and data values are discarded.
If the Read Protect Option Bit is enabled, then only writes to the Flash Control
Registers are allowed and all other register write data values are discarded.

DBG ← 08H
DBG ← {4’h0,Register Address[11:8]}
DBG ← Register Address[7:0]
DBG ← Size[7:0]
DBG ← 1-256 data bytes

• Read Register (09H)—The Read Register command reads data from the Register
File. Data can be read 1-256 bytes at a time (256 bytes can be read by setting size to
zero). Reading peripheral control registers through the OCD does not effect peripheral
operation. For example, register bits that are normally cleared upon a read operation
will not be effected (WDTSTAT register is affected by OCD read register operation).
If the device is not in DEBUG mode or if the Read Protect Option Bit is enabled, this
command returns FFH for all the data values.

DBG ← 09H
DBG ← {4’h0,Register Address[11:8]
DBG ← Register Address[7:0]
DBG ← Size[7:0]
DBG → 1-256 data bytes
PS022517-0508 On-Chip Debugger

Z8 Encore! XP® F0822 Series
Product Specification

182
A “reset and stop” function can be achieved by writing 81H to this register. A “reset and
go” function can be achieved by writing 41H to this register. If the device is in DEBUG
mode, a “run” function can be implemented by writing 40H to this register.

DBGMODE—Debug Mode
Setting this bit to 1 causes the device to enter DEBUG mode. When in DEBUG mode, the
eZ8 CPU stops fetching new instructions. Clearing this bit causes the eZ8 CPU to start
running again. This bit is automatically set when a BRK instruction is decoded and Break-
points are enabled. If the Read Protect Option Bit is enabled, this bit can only be cleared
by resetting the device, it cannot be written to 0.
0 = The Z8 Encore! XP F0822 Series device is operating in NORMAL mode.
1 = The Z8 Encore! XP F0822 Series device is in DEBUG mode.

BRKEN—Breakpoint Enable
This bit controls the behavior of the BRK instruction (opcode 00H). By default, Break-
points are disabled and the BRK instruction behaves like an NOP instruction. If this bit is
set to 1 and a BRK instruction is decoded, the OCD takes action dependent upon the BRK-
LOOP bit.
0 = BRK instruction is disabled.
1 = BRK instruction is enabled.

DBGACK—Debug Acknowledge
This bit enables the debug acknowledge feature. If this bit is set to 1, then the OCD sends
an Debug Acknowledge character (FFH) to the host when a Breakpoint occurs.
0 = Debug Acknowledge is disabled.
1 = Debug Acknowledge is enabled.

BRKLOOP—Breakpoint Loop
This bit determines what action the OCD takes when a BRK instruction is decoded if
breakpoints are enabled (BRKEN is 1). If this bit is 0, then the DBGMODE bit is automat-
ically set to 1 and the OCD enter DEBUG mode. If BRKLOOP is set to 1, then the eZ8
CPU loops on the BRK instruction.
0 = BRK instruction sets DBGMODE to 1.
1 = eZ8 CPU loops on BRK instruction.

BRKPC—Break when PC == OCDCNTR
If this bit is set to 1, then the OCDCNTR register is used as a hardware breakpoint. When
the program counter matches the value in the OCDCNTR register, DBGMODE is

Table 94. OCD Control Register (OCDCTL)

BITS 7 6 5 4 3 2 1 0

FIELD DBGMODE BRKEN DBGACK BRKLOOP BRKPC BRKZRO Reserved RST

RESET 0

R/W R/W R R/W
PS022517-0508 On-Chip Debugger

Z8 Encore! XP® F0822 Series
Product Specification

188
Figure 41 on page 189 displays the typical active mode current consumption while operat-
ing at 25 ºC, 3.3 V, versus the system clock frequency. All GPIO pins are configured as
outputs and driven High.

VRAM RAM Data
Retention

0.7 – – V

IIL Input Leakage
Current

-5 – +5 μA VDD = 3.6 V;
VIN = VDD or VSS1

ITL Tri-State
Leakage Current

-5 – +5 μA VDD = 3.6 V

CPAD GPIO Port Pad
Capacitance

– 8.02 – pF

CXIN XIN Pad
Capacitance

– 8.02 – pF

CXOUT XOUT Pad
Capacitance

– 9.52 – pF

IPU1 Weak Pull-up
Current

9 20 50 μA VDD = 2.7–3.6 V.
TA = 0 °C to +70 °C

IPU2 Weak Pull-up
Current

7 20 75 μA VDD = 2.7–3.6 V.
TA = -40 °C to +105 °C

1 This condition excludes all pins that have on-chip pull-ups, when driven Low.
2 These values are provided for design guidance only and are not tested in production.

Table 97. DC Characteristics (Continued)

Symbol Parameter

TA = -40 °C to 105 °C

Units ConditionsMinimum Typical Maximum
PS022517-0508 Electrical Characteristics

Z8 Encore! XP® F0822 Series
Product Specification

210
Assembly Language Syntax

For proper instruction execution, eZ8 CPU assembly language syntax requires that the
operands be written as ‘destination, source’. After assembly, the object code usually has
the operands in the order ’source, destination’, but ordering is opcode-dependent. The fol-
lowing instruction examples illustrate the format of some basic assembly instructions and
the resulting object code produced by the assembler. This binary format must be followed
by users that prefer manual program coding or intend to implement their own assembler.

Example 1: If the contents of Registers 43H and 08H are added and the result is stored in
43H, the assembly syntax and resulting object code is:

Example 2: In general, when an instruction format requires an 8-bit register address, that
address can specify any register location in the range 0–255 or, using Escaped Mode
Addressing, a Working Register R0–R15. If the contents of Register 43H and Working
Register R8 are added and the result is stored in 43H, the assembly syntax and resulting
object code is:

See the device-specific Product Specification to determine the exact register file range
available. The register file size varies, depending on the device type.

eZ8 CPU Instruction Notation

In the eZ8 CPU Instruction Summary and Description sections, the operands, condition
codes, status flags, and address modes are represented by a notational shorthand that is
described in Table 115 on page 211.

Table 113. Assembly Language Syntax Example 1

Assembly Language
Code

 ADD 43H 08H (ADD dst, src)

Object Code 04 08 43 (OPC src, dst)

Table 114. Assembly Language Syntax Example 2

Assembly Language
Code

 ADD 43H, R8 (ADD dst, src)

Object Code 04 E8 43 (OPC src, dst)
PS022517-0508 eZ8 CPU Instruction Set

Z8 Encore! XP® F0822 Series
Product Specification

212
Table 116 contains additional symbols that are used throughout the Instruction Summary
and Instruction Set Description sections.

Assignment of a value is indicated by an arrow. For example,
dst ← dst + src

indicates the source data is added to the destination data and the result is stored in the des-
tination location.

Table 116. Additional Symbols

Symbol Definition
dst Destination Operand

src Source Operand

@ Indirect Address Prefix

SP Stack Pointer

PC Program Counter

FLAGS Flags Register

RP Register Pointer

Immediate Operand Prefix

B Binary Number Suffix

% Hexadecimal Number
Prefix

H Hexadecimal Number
Suffix
PS022517-0508 eZ8 CPU Instruction Set

Z8 Encore! XP® F0822 Series
Product Specification

242
compare 82
compare - extended addressing 214
compare mode 82
compare with carry 214
compare with carry - extended addressing 214
complement 217
complement carry flag 215, 216
condition code 211
continuous conversion (ADC) 148
continuous mode 81
control register definition, UART 100
control register, I2C 141
counter modes 81
CP 214
CPC 214
CPCX 214
CPU and peripheral overview 3
CPU control instructions 216
CPX 214
Customer Feedback Form 251
customer feedback form 240
Customer Information 251

D
DA 211, 214
data register, I2C 139
DC characteristics 187
debugger, on-chip 171
DEC 214
decimal adjust 214
decrement 214

and jump non-zero 217
word 214

DECW 214
destination operand 212
device, port availability 47
DI 216
direct address 211
disable interrupts 216
DJNZ 217
DMA controller 5
dst 212

E
EI 216
electrical characteristics 185

ADC 199
flash memory and timing 196
GPIO input data sample timing 200
watch-dog timer 197

enable interrupt 216
ER 211
extended addressing register 211
external pin reset 43
external RC oscillator 196
eZ8

features 3
eZ8 CPU features 3
eZ8 CPU instruction classes 214
eZ8 CPU instruction notation 210
eZ8 CPU instruction set 209
eZ8 CPU instruction summary 218

F
FCTL register 159
features, Z8 Encore! 1
first opcode map 231
FLAGS 212
flags register 212
flash

controller 4
option bit address space 163
option bit configuration - reset 163
program memory address 0001H 165

flash memory
arrangement 154
byte programming 157
code protection 156
control register definitions 159
controller bypass 158
electrical characteristics and timing 196
flash control register 159
flash status register 160
frequency high and low byte registers 161
mass erase 158
operation 155
PS022517-0508 Index

Z8 Encore! XP® F0822 Series
Product Specification

249
test complement under mask - extended addressing
215
test under mask 215
test under mask - extended addressing 215
timer signals 10
timers 5, 69

architecture 69
block diagram 70
capture mode 74, 81
capture/compare mode 77, 82
compare mode 75, 82
continuous mode 71, 81
counter mode 72
counter modes 81
gated mode 76, 82
one-shot mode 70, 81
operating mode 70
PWM mode 73, 81
reading the timer count values 77
reload high and low byte registers 79
timer control register definitions 78
timer output signal operation 78

timers 0-3
control 0 registers 80
control registers 81
high and low byte registers 78, 79

TM 215
TMX 215
transmit

IrDA data 110
transmit interrupt 128
transmitting UART data-interrupt-driven method
92
transmitting UART data-polled method 91
TRAP 217

U
UART 4

architecture 89
baud rate generator 99
baud rates table 107
control register definitions 100
controller signals 10

data format 90
interrupts 97
multiprocessor mode 95
receiving data using interrupt-driven method 94
receiving data using the polled method 93
transmitting data using the interrupt-driven
method 92
transmitting data using the polled method 91
x baud rate high and low registers 106
x control 0 and control 1 registers 103
x status 0 and status 1 registers 101, 102

UxBRH register 106
UxBRL register 106
UxCTL0 register 103, 106
UxCTL1 register 104
UxRXD register 101
UxSTAT0 register 101
UxSTAT1 register 102
UxTXD register 100

V
vector 211
voltage brown-out reset (VBR) 41

W
watch-dog timer

approximate time-out delay 83
CNTL 42
control register 86
electrical characteristics and timing 197
interrupt in normal operation 84
refresh 84, 216
reload unlock sequence 85
reload upper, high and low registers 87
reset 42
reset in normal operation 85
reset in STOP mode 84, 85
time-out response 84

WDTCTL register 86
WDTH register 88
WDTL register 88
working register 211
PS022517-0508 Index

