
Zilog - Z8F0822SJ020SC00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor eZ8

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, IrDA, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 19

Program Memory Size 8KB (8K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 3.6V

Data Converters A/D 5x10b

Oscillator Type Internal

Operating Temperature 0°C ~ 70°C (TA)

Mounting Type Surface Mount

Package / Case 28-SOIC (0.295", 7.50mm Width)

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/zilog/z8f0822sj020sc00tr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/z8f0822sj020sc00tr-4426951
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Z8 Encore! XP® F0822 Series
Product Specification

xi
Braces
The curly braces { }, indicate a single register or bus created by concatenating some com-
bination of smaller registers, buses, or individual bits.

• Example: The 12-bit register address {0H, RP[7:4], R1[3:0]} is composed of a 4-bit
hexadecimal value (0H) and two 4-bit register values taken from the Register Pointer
(RP) and Working Register R1. 0H is the most significant nibble (4-bit value) of the
12-bit register, and R1[3:0] is the least significant nibble of the 12-bit register.

Parentheses
The parentheses (), indicate an indirect register address lookup.

• Example: (R1) is the memory location referenced by the address contained in the
Working Register R1.

Parentheses/Bracket Combinations
The parentheses (), indicate an indirect register address lookup and the square brackets,
[], indicate a register or bus.

• Example: Assume PC[15:0] contains the value 1234h. (PC [15:0]) then refers to the
contents of the memory location at address 1234h.

Use of the Words Set, Reset and Clear
The word set implies that a register bit or a condition contains a logical 1. The words reset
or clear imply that a register bit or a condition contains a logical 0. When either of these
terms is followed by a number, the word logical cannot be included; however, it is
implied.

Notation for Bits and Similar Registers
A field of bits within a register is designated as: Register[n:n].

• Example: ADDR[15:0] refers to bits 15 through bit 0 of the Address.

Use of the Terms LSB, MSB, lsb, and msb
In this document, the terms LSB and MSB, when appearing in upper case, mean least
significant byte and most significant byte, respectively. The lowercase forms, lsb and msb,
mean least significant bit and most significant bit, respectively.

Use of Initial Uppercase Letters
Initial uppercase letters designate settings and conditions in general text.

• Example 1: The receiver forces the SCL line to Low.

• Example 2: The Master generates a STOP condition to abort the transfer.
PS022517-0508 Introduction

Z8 Encore! XP® F0822 Series
Product Specification

32
Port A Address
PAADDR (FD0H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port A Address[7:0]
 Selects Port Sub-Registers:
 00H = No function
 01H = Data direction
 02H = Alternate function
 03H = Output control (open-
drain)
 04H = High drive enable
 05H = STOP mode recovery
enable
 06H = Pull-up enable
 07H-FFH = No function

Port A Control
PACTL (FD1H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port A Control[7:0]
 Provides Access to Port
Sub-Registers

Port A Input Data
PAIN (FD2H - Read Only)
D7 D6 D5 D4 D3 D2 D1 D0

Port A Input Data [7:0]

Port A Output Data
PAOUT (FD3H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port A Output Data [7:0]
PS022517-0508 Control Register Summary

Z8 Encore! XP® F0822 Series
Product Specification

46
• WDT’s internal RC oscillator continues to operate.

• If enabled, the WDT continues to operate.

• All other on-chip peripherals continue to operate.

The eZ8 CPU can be brought out of HALT mode by any of the following operations:

• Interrupt

• WDT time-out (interrupt or reset)

• Power-On Reset

• Voltage Brownout reset

• External RESET pin assertion

To minimize current in HALT mode, all GPIO pins which are configured as inputs must be
driven to one of the supply rails (VCC or GND).
PS022517-0508 Low-Power Modes

Z8 Encore! XP® F0822 Series
Product Specification

63
Interrupt Request 2 Register
The Interrupt Request 2 (IRQ2) Register (Table 27) stores interrupt requests for both
vectored and polled interrupts. When a request is presented to the interrupt controller, the
corresponding bit in the IRQ2 register becomes 1. If interrupts are globally enabled
(vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU.
If interrupts are globally disabled (polled interrupts), the eZ8 CPU reads the IRQ2
Register to determine if any interrupt requests are pending.

Reserved—Must be 0

PCxI—Port C Pin x Interrupt Request
0 = No interrupt request is pending for GPIO Port C pin x.
1 = An interrupt request from GPIO Port C pin x is awaiting service.
Where x indicates the specific GPIO Port C pin number (0 through 3).

IRQ0 Enable High and Low Bit Registers
The IRQ0 Enable High and Low Bit Registers (Table 29 and Table 30) form a priority
encoded enabling for interrupts in the Interrupt Request 0 Register. Priority is generated
by setting bits in each register. Table 28 describes the priority control for IRQ0.

Table 27. Interrupt Request 2 Register (IRQ2)

BITS 7 6 5 4 3 2 1 0

FIELD Reserved PC3I PC2I PC1I PC0I

RESET 0

R/W R/W

ADDR FC6H

Table 28. IRQ0 Enable and Priority Encoding

IRQ0ENH[x] IRQ0ENL[x] Priority Description

0 0 Disabled Disabled

0 1 Level 1 Low

1 0 Level 2 Nominal

1 1 Level 3 High

where x indicates the register bits from 0 through 7.
PS022517-0508 Interrupt Controller

Z8 Encore! XP® F0822 Series
Product Specification

84
Watchdog Timer Refresh
When first enabled, the WDT is loaded with the value in the WDT Reload registers. The
WDT then counts down to 000000H unless a WDT instruction is executed by the eZ8
CPU. Execution of the WDT instruction causes the downcounter to be reloaded with the
WDT Reload value stored in the WDT Reload registers. Counting resumes following the
reload operation.

When Z8 Encore! XP® F0822 Series device is operating in DEBUG Mode (using the
OCD), the WDT is continuously refreshed to prevent spurious WDT time-outs.

Watchdog Timer Time-Out Response
The WDT times out when the counter reaches 000000H. A WDT time-out generates
either an Interrupt or a Reset. The WDT_RES Option Bit determines the time-out response
of the WDT. For information regarding programming of the WDT_RES Option Bit, see
Option Bits on page 163.

WDT Interrupt in Normal Operation
If configured to generate an interrupt when a time-out occurs, the WDT issues an interrupt
request to the interrupt controller and sets the WDT Status Bit in the WDT Control Register.
If interrupts are enabled, the eZ8 CPU responds to the interrupt request by fetching the
WDT interrupt vector and executing the code from the vector address. After time-out and
interrupt generation, the WDT counter rolls over to its maximum value of FFFFFH and
continues counting. The WDT counter is not automatically returned to its Reload Value.

WDT Reset in STOP Mode
If enabled in STOP mode and configured to generate a Reset when a time-out occurs and
the device is in STOP mode, the WDT initiates a Stop Mode Recovery. Both the WDT
status bit and the STOP bit in the WDT Control Register is set to 1 following the
WDT time-out in STOP mode. For more information, see Reset and Stop Mode Recovery
on page 39. Default operation is for the WDT and its RC oscillator to be enabled during
STOP mode.

To minimize power consumption in STOP mode, the WDT and its RC oscillator is
disabled in STOP mode. The following sequence configures the WDT to be disabled when
the Z8F082x family device enters STOP mode following execution of a STOP instruction:
1. Write 55H to the Watchdog Timer Control Register (WDTCTL).
2. Write AAH to the Watchdog Timer Control Register (WDTCTL).
3. Write 81H to the Watchdog Timer Control Register (WDTCTL) to configure the WDT

and its oscillator to be disabled during STOP mode. Alternatively, write 00H to the
WDTCTL as the third step in this sequence to reconfigure the WDT and its oscillator
to be enabled during STOP mode. This sequence only affects WDT operation in STOP
mode.
PS022517-0508 Watchdog Timer

Z8 Encore! XP® F0822 Series
Product Specification

87
STOP—Stop Mode Recovery Indicator
If this bit is set to 1, a Stop Mode Recovery occurred. If the STOP and WDT bits are both
set to 1, the Stop Mode Recovery occurred due to a WDT time-out. If the STOP bit is 1
and the WDT bit is 0, the Stop Mode Recovery was not caused by a WDT time-out. This bit
is reset by a POR or a WDT time-out that occurred while not in STOP mode. Reading this
register also resets this bit.

WDT—Watchdog Timer Time-Out Indicator
If this bit is set to 1, a WDT time-out occurred. A POR resets this pin. A Stop Mode
Recovery due a change in an input pin also resets this bit. Reading this register resets
this bit.

EXT—External Reset Indicator
If this bit is set to 1, a Reset initiated by the external RESET pin occurred. A POR or a
Stop Mode Recovery from a change in an input pin resets this bit. Reading this register
resets this bit.

Reserved
These bits are reserved and must be 0.

Watchdog Timer Reload Upper, High and Low Byte Registers
The Watchdog Timer Reload Upper, High and Low Byte (WDTU, WDTH, WDTL)
Registers (Table 49 through Table 51) form the 24-bit reload value that is loaded into the
WDT, when a WDT instruction executes. The 24-bit reload value is {WDTU[7:0],
WDTH[7:0], WDTL[7:0]}. Writing to these registers sets the required Reload Value.
Reading from these registers returns the current WDT count value.

The 24-bit WDT Reload Value must not be set to a value less than
000004H.

WDTU—WDT Reload Upper Byte
Most significant byte (MSB), Bits[23:16], of the 24-bit WDT reload value.

Table 49. Watchdog Timer Reload Upper Byte Register (WDTU)

BITS 7 6 5 4 3 2 1 0
FIELD WDTU

RESET 1

R/W R/W*

ADDR FF1H

R/W*—Read returns the current WDT count value. Write sets the desired Reload Value.

Caution:
PS022517-0508 Watchdog Timer

Z8 Encore! XP® F0822 Series
Product Specification

92
5. Check the TDRE bit in the UART Status 0 Register to determine if the Transmit Data
Register is empty (indicated by a 1). If empty, continue to step 6. If the Transmit Data
Register is full (indicated by a 0), continue to monitor the TDRE bit until the Transmit
Data Register becomes available to receive new data.

6. Write the UART Control 1 Register to select the outgoing address bit:
– Set the Multiprocessor Bit Transmitter (MPBT) if sending an address byte,

clear it if sending a data byte.

7. Write data byte to the UART Transmit Data Register. The transmitter automatically
transfers data to the Transmit Shift Register and then transmits the data.

8. If required, and multiprocessor mode is enabled, make any changes to the
Multiprocessor Bit Transmitter (MPBT) value.

9. To transmit additional bytes, return to step 5.

Transmitting Data Using Interrupt-Driven Method
The UART Transmitter interrupt indicates the availability of the Transmit Data Register to
accept new data for transmission. Follow the below steps to configure the UART for
interrupt-driven data transmission:

1. Write to the UART Baud Rate High and Low Byte Registers to set the required
baud rate.

2. Enable the UART pin functions by configuring the associated GPIO Port pins for
alternate function operation.

3. Execute a DI instruction to disable interrupts.

4. Write to the Interrupt Control Registers to enable the UART Transmitter interrupt and
set the required priority.

5. If MULTIPROCESSOR mode is required, write to the UART Control 1 Register to
enable Multiprocessor (9-bit) mode functions:
– Set the Multiprocessor Mode Select (MPEN) to enable MULTIPROCESSOR

mode.

6. Write to the UART Control 0 Register to:
– Set the transmit enable (TEN) bit to enable the UART for data transmission
– Enable parity, if required, and if MULTIPROCESSOR mode is not enabled, and

select either even or odd parity.
– Set or clear the CTSE bit to enable or disable control from the remote receiver

through the CTS pin.

7. Execute an EI instruction to enable interrupts.
PS022517-0508 Universal Asynchronous Receiver/Transmitter

Z8 Encore! XP® F0822 Series
Product Specification

94
Receiving Data Using Interrupt-Driven Method
 The UART Receiver interrupt indicates the availability of new data (as well as error con-
ditions). Follow the steps below to configure the UART receiver for interrupt-driven oper-
ation:
1. Write to the UART Baud Rate High and Low Byte Registers to set the required

baud rate.
2. Enable the UART pin functions by configuring the associated GPIO Port pins for

alternate function operation.
3. Execute a DI instruction to disable interrupts.
4. Write to the Interrupt Control Registers to enable the UART Receiver interrupt and set

the required priority.
5. Clear the UART Receiver interrupt in the applicable Interrupt Request Register.
6. Write to the UART Control 1 Register to enable MULTIPROCESSOR (9-bit) mode

functions, if desired.
– Set the Multiprocessor Mode Select (MPEN) to enable MULTIPROCESSOR

mode.
– Set the Multiprocessor Mode Bits, MPMD[1:0], to select the required address

matching scheme.
– Configure the UART to interrupt on received data and errors or errors only

(interrupt on errors only is unlikely to be useful for Z8 Encore! XP devices
without a DMA block)

7. Write the device address to the Address Compare Register (automatic multiprocessor
modes only).

8. Write to the UART Control 0 Register to:
– Set the receive enable bit (REN) to enable the UART for data reception
– Enable parity, if required, and if MULTIPROCESSOR mode is not enabled, and

select either even or odd parity.

9. Execute an EI instruction to enable interrupts.

The UART is now configured for interrupt-driven data reception. When the UART
Receiver Interrupt is detected, the associated ISR performs the following:
1. Check the UART Status 0 Register to determine the source of the interrupt-error,

break, or received data.
2. If the interrupt was due to data available, read the data from the UART Receive Data

Register. If operating in MULTIPROCESSOR (9-bit) mode, further actions may be
required depending on the Multiprocessor Mode bits MPMD[1:0].

3. Clear the UART Receiver Interrupt in the applicable Interrupt Request Register.

4. Execute the IRET instruction to return from the ISR and await more data.
PS022517-0508 Universal Asynchronous Receiver/Transmitter

Z8 Encore! XP® F0822 Series
Product Specification

98
Receiver Interrupts
The receiver generates an interrupt when any of the following occurs:

• A data byte is received and is available in the UART Receive Data Register. This
interrupt can be disabled independent of the other receiver interrupt sources. The
received data interrupt occurs once the receive character is received and placed in the
Receive Data Register. Software must respond to this received data available
condition before the next character is completely received to avoid an overrun error. In
MULTIPROCESSOR mode (MPEN = 1), the receive data interrupts are dependent on
the multiprocessor configuration and the most recent address byte

• A break is received

• An overrun is detected

• A data framing error is detected

UART Overrun Errors
When an overrun error condition occurs the UART prevents overwriting of the valid data
currently in the Receive Data Register. The break detect and overrun status bits are not
displayed until the valid data is read.

After the valid data has been read, the UART Status 0 Register is updated to indicate the
overrun condition (and Break Detect, if applicable). The RDA bit is set to 1 to indicate that
the Receive Data Register contains a data byte. However, because the overrun error
occurred, this byte cannot contain valid data and should be ignored. The BRKD bit indi-
cates if the overrun was caused by a break condition on the line. After reading the status
byte indicating an overrun error, the Receive Data Register must be read again to clear the
error bits is the UART Status 0 Register. Updates to the Receive Data Register occur only
when the next data word is received.

UART Data and Error Handling Procedure
Figure16 on page 99 displays the recommended procedure for UART receiver ISRs.

Baud Rate Generator Interrupts
If the BRG interrupt enable is set, the UART Receiver interrupt asserts when the UART
Baud Rate Generator reloads. This action allows the BRG to function as an additional
counter if the UART functionality is not employed.
PS022517-0508 Universal Asynchronous Receiver/Transmitter

Z8 Encore! XP® F0822 Series
Product Specification

104
PSEL—Parity Select
0 = Even parity is transmitted and expected on all received data.
1 = Odd parity is transmitted and expected on all received data.

SBRK—Send Break
This bit pauses or breaks data transmission by forcing the Transmit data output to 0.
Sending a break interrupts any transmission in progress, so ensure that the transmitter has
finished sending data before setting this bit. The UART does not automatically generate a
STOP Bit when SBRK is deasserted. Software must time the duration of the Break and the
duration of any STOP Bit time desired following the Break.
0 = No break is sent.
1 = The output of the transmitter is zero.

STOP—STOP Bit Select
0 = The transmitter sends one stop bit.
1 = The transmitter sends two stop bits.

LBEN—Loop Back Enable
0 = Normal operation.
1 = All transmitted data is looped back to the receiver.

MPMD[1:0]—Multiprocessor Mode
If Multiprocessor (9-bit) mode is enabled,
00 = The UART generates an interrupt request on all received bytes (data and address).
01 = The UART generates an interrupt request only on received address bytes.
10 = The UART generates an interrupt request when a received address byte matches
 the value stored in the Address Compare Register and on all successive data
 bytes until an address mismatch occurs.
11 = The UART generates an interrupt request on all received data bytes for which
 the most recent address byte matched the value in the Address Compare Register.

MPEN—Multiprocessor (9-bit) Enable
This bit is used to enable Multiprocessor (9-bit) mode.
0 = Disable Multiprocessor (9-bit) mode.
1 = Enable Multiprocessor (9-bit) mode.

Table 57. UART Control 1 Register (U0CTL1)

BITS 7 6 5 4 3 2 1 0

FIELD MPMD[1] MPEN MPMD[0] MPBT DEPOL BRGCTL RDAIRQ IREN

RESET 0

R/W R/W

ADDR F43H
PS022517-0508 Universal Asynchronous Receiver/Transmitter

Z8 Encore! XP® F0822 Series
Product Specification

113
Serial Peripheral Interface
The Serial Peripheral Interface (SPI) is a synchronous interface allowing several SPI-type
devices to be interconnected. SPI-compatible devices include EEPROMs, Analog-to-
Digital Converters, and ISDN devices. Features of the SPI include:

• Full-duplex, synchronous, and character-oriented communication

• Four-wire interface

• Data transfers rates up to a maximum of one-half the system clock frequency

• Error detection

• Dedicated Baud Rate Generator

The SPI is not available in 20-pin package devices.

Architecture

The SPI is be configured as either a Master (in single or multi-master systems) or a Slave
as displayed in Figure 20 through Figure 22.

Figure 20. SPI Configured as a Master in a Single Master, Single Slave System

SPI Master

8-bit Shift Register
Bit 0 Bit 7

MISO

MOSI

SCK

SSTo Slave’s SS Pin

From Slave

To Slave

To Slave
Baud Rate
Generator
PS022517-0508 Serial Peripheral Interface

Z8 Encore! XP® F0822 Series
Product Specification

118
Figure 24. SPI Timing When PHASE is 1

Multi-Master Operation
In a multi-master SPI system, all SCK pins are tied together, all MOSI pins are tied
together and all MISO pins are tied together. All SPI pins must then be configured in
OPEN-DRAIN mode to prevent bus contention. At any one time, only one SPI device is
configured as the Master and all other SPI devices on the bus are configured as Slaves.
The Master enables a single Slave by asserting the SS pin on that Slave only. Then, the
single Master drives data out its SCK and MOSI pins to the SCK and MOSI pins on the
Slaves (including those which are not enabled). The enabled Slave drives data out its
MISO pin to the MISO Master pin.

For a Master device operating in a multi-master system, if the SS pin is configured as
an input and is driven Low by another Master, the COL bit is set to 1 in the SPI Status
Register. The COL bit indicates the occurrence of a multi-master collision (mode fault
error condition).

Slave Operation
The SPI block is configured for SLAVE mode operation by setting the SPIEN bit to 1 and
the MMEN bit to 0 in the SPICTL Register and setting the SSIO bit to 0 in the SPIMODE
Register. The IRQE, PHASE, CLKPOL, and WOR bits in the SPICTL Register and the

SCK
(CLKPOL = 0)

SCK
(CLKPOL = 1)

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0MOSI

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0MISO

Input Sample Time

SS
PS022517-0508 Serial Peripheral Interface

Z8 Encore! XP® F0822 Series
Product Specification

135
Follow the steps below for a transmit operation on a 10-bit addressed slave:

1. Software asserts the IEN bit in the I2C Control Register.

2. Software asserts the TXI bit of the I2C Control Register to enable Transmit interrupts.

3. The I2C interrupt asserts because the I2C Data Register is empty.

4. Software responds to the TDRE interrupt by writing the first slave address byte to the
I2C Data Register. The least-significant bit must be 0 for the write operation.

5. Software asserts the START bit of the I2C Control Register.

6. The I2C Controller sends the START condition to the I2C Slave.

7. The I2C Controller loads the I2C Shift register with the contents of the I2C Data
Register.

8. After one bit of address is shifted out by the SDA signal, the Transmit Interrupt is
asserted.

9. Software responds by writing the second byte of address into the contents of the I2C
Data Register.

10. The I2C Controller shifts the rest of the first byte of address and write bit out the SDA
signal.

11. If the I2C Slave acknowledges the first address byte by pulling the SDA signal low
during the next high period of SCL, the I2C Controller sets the ACK bit in the I2C
Status register. Continue with step 12.

If the slave does not acknowledge the first address byte, the I2C Controller sets the
NCKI bit and clears the ACK bit in the I2C Status register. Software responds to the
Not Acknowledge interrupt by setting the STOP and FLUSH bits and clearing the TXI
bit. The I2C Controller sends the STOP condition on the bus and clears the STOP and
NCKI bits. The transaction is complete (ignore the following steps).

12. The I2C Controller loads the I2C Shift register with the contents of the I2C Data
Register.

13. The I2C Controller shifts the second address byte out the SDA signal. After the first
bit has been sent, the Transmit Interrupt is asserted.

14. Software responds by writing a data byte to the I2C Data Register.

15. The I2C Controller completes shifting the contents of the shift register on the SDA
signal.

16. If the I2C Slave sends an acknowledge by pulling the SDA signal low during the next
high period of SCL, the I2C Controller sets the ACK bit in the I2C Status register.
Continue with step 17.

If the slave does not acknowledge the second address byte or one of the data bytes, the
PS022517-0508 I2C Controller

Z8 Encore! XP® F0822 Series
Product Specification

150
ADC Control Register Definitions

ADC Control Register
The ADC Control Register selects the analog input channel and initiates the
analog-to-digital conversion.

CEN—Conversion Enable
0 = Conversion is complete. Writing a 0 produces no effect. The ADC automatically
 clears this bit to 0 when a conversion has been completed.
1 = Begin conversion. Writing a 1 to this bit starts a conversion. If a conversion is
 already in progress, the conversion restarts. This bit remains 1 until the conversion
 is complete.

Reserved—Must be 0

VREF
0 = Internal reference generator enabled. The VREF pin must be left unconnected or
 capacitively coupled to analog ground (AVSS).
1 = Internal voltage reference generator disabled. An external voltage reference must
 be provided through the VREF pin.

CONT
0 = SINGLE-SHOT conversion. ADC data is output once at completion of the
 5129 system clock cycles.
1 = Continuous conversion. ADC data updated every 256 system clock cycles.

ANAIN—Analog Input Select
These bits select the analog input for conversion. Not all Port pins in this list are available
in all packages for Z8 Encore! XP® F0822 Series. See Signal and Pin Descriptions for
information regarding the Port pins available with each package style.
Do not enable unavailable analog inputs.
0000 = ANA0
0001 = ANA1
0010 = ANA2
0011 = ANA3
0100 = ANA4

Table 77. ADC Control Register (ADCCTL)

BITS 7 6 5 4 3 2 1 0

FIELD CEN Reserved VREF CONT ANAIN[3:0]

RESET 0 1 0

R/W R/W

ADDR F70H
PS022517-0508 Analog-to-Digital Converter

Z8 Encore! XP® F0822 Series
Product Specification

167
On-Chip Oscillator
Z8 Encore! XP® F0822 Series products feature an on-chip oscillator for use with external
crystals with frequencies from 32 kHz to 20 MHz. In addition, the oscillator can support
external RC networks with oscillation frequencies up to 4 MHz or ceramic resonators with
oscillation frequencies up to 20 MHz. This oscillator generates the primary system clock
for the internal eZ8 CPU and the majority of the on-chip peripherals. Alternatively, the
XIN input pin can also accept a CMOS-level clock input signal (32 kHz–20 MHz). If an
external clock generator is used, the XOUT pin must be left unconnected.

When configured for use with crystal oscillators or external clock drivers, the frequency of
the signal on the XIN input pin determines the frequency of the system clock (that is, no
internal clock divider). In RC operation, the system clock is driven by a clock divider
(divide by 2) to ensure 50% duty cycle.

Operating Modes

Z8 Encore! XP F0822 Series products support 4 different oscillator modes:

• On-chip oscillator configured for use with external RC networks (<4 MHz).

• Minimum power for use with very low frequency crystals (32 kHz to 1.0 MHz).

• Medium power for use with medium frequency crystals or ceramic resonators
(0.5 MHz to 10.0 MHz).

• Maximum power for use with high frequency crystals or ceramic resonators (8.0 MHz
to 20.0 MHz).

The oscillator mode is selected through user-programmable Option Bits. For more infor-
mation, see Option Bits on page 163.

Crystal Oscillator Operation

Figure 34 on page 168 displays a recommended configuration for connection with an
external fundamental-mode, parallel-resonant crystal operating at 20 MHz. Recommended
20 MHz crystal specifications are provided in Table 91 on page 168. Resistor R1 is
optional and limits total power dissipation by the crystal. The printed circuit board layout
must add no more than 4 pF of stray capacitance to either the XIN or XOUT pins. If oscilla-
tion does not occur, reduce the values of capacitors C1 and C2 to decrease loading.
PS022517-0508 On-Chip Oscillator

Z8 Encore! XP® F0822 Series
Product Specification

182
A “reset and stop” function can be achieved by writing 81H to this register. A “reset and
go” function can be achieved by writing 41H to this register. If the device is in DEBUG
mode, a “run” function can be implemented by writing 40H to this register.

DBGMODE—Debug Mode
Setting this bit to 1 causes the device to enter DEBUG mode. When in DEBUG mode, the
eZ8 CPU stops fetching new instructions. Clearing this bit causes the eZ8 CPU to start
running again. This bit is automatically set when a BRK instruction is decoded and Break-
points are enabled. If the Read Protect Option Bit is enabled, this bit can only be cleared
by resetting the device, it cannot be written to 0.
0 = The Z8 Encore! XP F0822 Series device is operating in NORMAL mode.
1 = The Z8 Encore! XP F0822 Series device is in DEBUG mode.

BRKEN—Breakpoint Enable
This bit controls the behavior of the BRK instruction (opcode 00H). By default, Break-
points are disabled and the BRK instruction behaves like an NOP instruction. If this bit is
set to 1 and a BRK instruction is decoded, the OCD takes action dependent upon the BRK-
LOOP bit.
0 = BRK instruction is disabled.
1 = BRK instruction is enabled.

DBGACK—Debug Acknowledge
This bit enables the debug acknowledge feature. If this bit is set to 1, then the OCD sends
an Debug Acknowledge character (FFH) to the host when a Breakpoint occurs.
0 = Debug Acknowledge is disabled.
1 = Debug Acknowledge is enabled.

BRKLOOP—Breakpoint Loop
This bit determines what action the OCD takes when a BRK instruction is decoded if
breakpoints are enabled (BRKEN is 1). If this bit is 0, then the DBGMODE bit is automat-
ically set to 1 and the OCD enter DEBUG mode. If BRKLOOP is set to 1, then the eZ8
CPU loops on the BRK instruction.
0 = BRK instruction sets DBGMODE to 1.
1 = eZ8 CPU loops on BRK instruction.

BRKPC—Break when PC == OCDCNTR
If this bit is set to 1, then the OCDCNTR register is used as a hardware breakpoint. When
the program counter matches the value in the OCDCNTR register, DBGMODE is

Table 94. OCD Control Register (OCDCTL)

BITS 7 6 5 4 3 2 1 0

FIELD DBGMODE BRKEN DBGACK BRKLOOP BRKPC BRKZRO Reserved RST

RESET 0

R/W R/W R R/W
PS022517-0508 On-Chip Debugger

Z8 Encore! XP® F0822 Series
Product Specification

202
On-Chip Debugger Timing
Figure 50 and Table 107 provide timing information for the DBG pin. The DBG pin
timing specifications assume a 4 μs maximum rise and fall time.

Figure 50. On-Chip Debugger Timing

Table 107. On-Chip Debugger Timing

Parameter Abbreviation

Delay (ns)

Minimum Maximum

DBG
T1 XIN Rise to DBG Valid Delay – 15

T2 XIN Rise to DBG Output Hold Time 2 –

T3 DBG to XIN Rise Input Setup Time 10 –

T4 DBG to XIN Rise Input Hold Time 5 –

DBG frequency System
Clock/4

XIN

DBG

TCLK

T1 T2

(Output)

DBG

T3 T4

(Input)

Output Data

Input Data
PS022517-0508 Electrical Characteristics

Z8 Encore! XP® F0822 Series
Product Specification

214
eZ8 CPU Instruction Classes

eZ8 CPU instructions are divided functionally into the following groups:

• Arithmetic

• Bit Manipulation

• Block Transfer

• CPU Control

• Load

• Logical

• Program Control

• Rotate and Shift

Tables 118 through Table 125 on page 218 contain the instructions belonging to each
group and the number of operands required for each instruction. Some instructions appear
in more than one table as these instruction can be considered as a subset of more than one
category. Within these tables, the source operand is identified as ’src’, the destination
operand is ’dst’ and a condition code is ’cc’.

Table 118. Arithmetic Instructions

Mnemonic Operands Instruction
ADC dst, src Add with Carry

ADCX dst, src Add with Carry using Extended Addressing

ADD dst, src Add

ADDX dst, src Add using Extended Addressing

CP dst, src Compare

CPC dst, src Compare with Carry

CPCX dst, src Compare with Carry using Extended Addressing

CPX dst, src Compare using Extended Addressing

DA dst Decimal Adjust

DEC dst Decrement

DECW dst Decrement Word

INC dst Increment

INCW dst Increment Word

MULT dst Multiply
PS022517-0508 eZ8 CPU Instruction Set

Z8 Encore! XP® F0822 Series
Product Specification

218
eZ8 CPU Instruction Summary

Table 126 summarizes the eZ8 CPU instructions. The table identifies the addressing
modes employed by the instruction, the effect upon the Flags register, the number of CPU
clock cycles required for the instruction fetch, and the number of CPU clock cycles
required for the instruction execution.

.

Table 125. Rotate and Shift Instructions

Mnemonic Operands Instruction
BSWAP dst Bit Swap

RL dst Rotate Left

RLC dst Rotate Left through Carry

RR dst Rotate Right

RRC dst Rotate Right through Carry

SRA dst Shift Right Arithmetic

SRL dst Shift Right Logical

SWAP dst Swap Nibbles

Table 126. eZ8 CPU Instruction Summary

Assembly
Mnemonic

Symbolic
Operation

Address
Mode

Opcode(s)
(Hex)

Flags
Fetch

Cycles
Instr.

Cyclesdst src C Z S V D H
ADC dst, src dst ← dst + src + C r r 12 * * * * 0 * 2 3

r Ir 13 2 4

R R 14 3 3

R IR 15 3 4

R IM 16 3 3

IR IM 17 3 4

ADCX dst, src dst ← dst + src + C ER ER 18 * * * * 0 * 4 3

ER IM 19 4 3
PS022517-0508 eZ8 CPU Instruction Set

Z8 Encore! XP® F0822 Series
Product Specification

250
working register pair 211
WTDU register 87

X
X 211
XOR 217
XORX 217

Z
Z8 Encore!

block diagram 3
features 1
introduction 1
part selection guide 2
PS022517-0508 Index

