

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

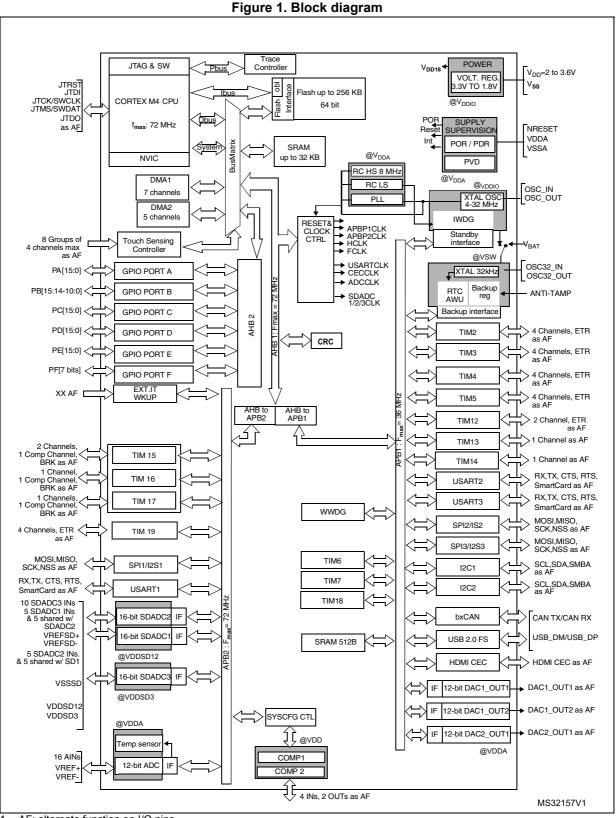
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	36
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 1x12b, 3x16b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f373cbt6

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Intro	duction										
2	Desc	scription										
3	Func	tional overview										
	3.1	ARM® Cortex®-M4 core with embedded Flash and SRAM 13										
	3.2	Memory protection unit										
	3.3	Embedded Flash memory 14										
	3.4	Cyclic redundancy check (CRC) calculation unit										
	3.5	Embedded SRAM										
	3.6	Boot modes										
	3.7	Power management										
		3.7.1 Power supply schemes										
		3.7.2 Power supply supervisor										
		3.7.3 Voltage regulator										
		3.7.4 Low-power modes										
	3.8	Clocks and startup										
	3.9	General-purpose input/outputs (GPIOs) 16										
	3.10	Direct memory access (DMA) 17										
	3.11	Interrupts and events 17										
		3.11.1 Nested vectored interrupt controller (NVIC)										
		3.11.2 Extended interrupt/event controller (EXTI)										
	3.12	12-bit analog-to-digital converter (ADC)										
		3.12.1 Temperature sensor										
		3.12.2 Internal voltage reference (V _{REFINT})										
		3.12.3 V _{BAT} battery voltage monitoring										
	3.13	16-bit sigma delta analog-to-digital converters (SDADC) 19										
	3.14	Digital-to-analog converter (DAC) 19										
	3.15	Fast comparators (COMP) 20										
	3.16	Touch sensing controller (TSC) 20										
	3.17	Timers and watchdogs 22										
		3.17.1 General-purpose timers (TIM2 to TIM5, TIM12 to TIM17, TIM19) 23										

DocID022691 Rev 7

1. AF: alternate function on I/O pins.

DocID022691 Rev 7

3.13 **16-bit sigma delta analog-to-digital converters (SDADC)**

Three 16-bit sigma-delta analog-to-digital converters are embedded in the STM32F373xx. They have up to two separate supply voltages allowing the analog function voltage range to be independent from the STM32F373xx power supply. They share up to 21 input pins which may be configured in any combination of single-ended (up to 21) or differential inputs (up to 11).

The conversion speed is up to 16.6 ksps for each SDADC when converting multiple channels and up to 50 ksps per SDADC if single channel conversion is used. There are two conversion modes: single conversion mode or continuous mode, capable of automatically scanning any number of channels. The data can be automatically stored in a system RAM buffer, reducing the software overhead.

A timer triggering system can be used in order to control the start of conversion of the three SDADCs and/or the 12-bit fast ADC. This timing control is very flexible, capable of triggering simultaneous conversions or inserting a programmable delay between the ADCs.

Up to two external reference pins (VREFSD+, VREFSD-) and an internal 1.2/1.8 V reference can be used in conjunction with a programmable gain (x0.5 to x32) in order to fine-tune the input voltage range of the SDADC. VREFSD - pin is used as negative signal reference in case of single-ended input mode.

3.14 Digital-to-analog converter (DAC)

The devices feature two 12-bit buffered DACs with three output channels that can be used to convert three digital signals into three analog voltage signal outputs. The internal structure is composed of integrated resistor strings and an amplifier in inverting configuration.

This digital Interface supports the following features:

- Two DAC converters with three output channels:
 - DAC1 with two output channels
 - DAC2 with one output channel.
- 8-bit or 10-bit monotonic output
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation (DAC1 only)
- Triangular wave generation (DAC1 only)
- Dual DAC channel independent or simultaneous conversions (DAC1 only)
- DMA capability for each channel
- External triggers for conversion

3.15 Fast comparators (COMP)

The STM32F373xx embeds 2 comparators with rail-to-rail inputs and high-speed output. The reference voltage can be internal or external (delivered by an I/O).

The threshold can be one of the following:

- DACs channel outputs
- External I/O
- Internal reference voltage (V_{REFINT}) or submultiple (1/4 V_{REFINT}, 1/2 V_{REFINT} and 3/4 V_{REFINT})

The comparators can be combined into a window comparator.

Both comparators can wake up the device from Stop mode and generate interrupts and breaks for the timers.

3.16 Touch sensing controller (TSC)

The devices provide a simple solution for adding capacitive sensing functionality to any application. Capacitive sensing technology is able to detect the presence of a finger near an electrode which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the electrode capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

Up to 24 touch sensing electrodes can be controlled by the TSC. The touch sensing I/Os are organized in 8 acquisition groups, with up to 4 I/Os in each group.

Group	Group Capacitive sensing signal name Pin name		Group	Capacitive sensing signal name	Pin name	
	TSC_G1_IO1	TSC_G1_IO1 PA0			TSC_G5_IO1	PB3
1	TSC_G1_IO2	PA1		5	TSC_G5_IO2	PB4
1	TSC_G1_IO3	PA2		5	TSC_G5_IO3	PB6
	TSC_G1_IO4	PA3			TSC_G5_IO4	PB7
	TSC_G2_IO1	PA4 ⁽¹⁾			TSC_G6_IO1	PB14
2	TSC_G2_IO2	PA5 ⁽¹⁾		6	TSC_G6_IO2	PB15
2	TSC_G2_IO3	PA6 ⁽¹⁾		0	TSC_G6_IO3	PD8
	TSC_G2_IO4	PA7			TSC_G6_IO4	PD9

Table 3. Capacitive sensing GPIOs available on STM32F373xx devices

3.17.3 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.17.4 System window watchdog (WWDG)

The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB1 clock (PCLK1) derived from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.17.5 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source

3.18 Real-time clock (RTC) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either from V_{DD} supply when present or through the V_{BAT} pin. The backup registers are thirty two 32-bit registers used to store 128 bytes of user application data.

They are not reset by a system or power reset, and they are not reset when the device wakes up from the Standby mode.

The RTC is an independent BCD timer/counter. Its main features are the following:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28th, 29th (leap year), 30th and 31st day of the month.
- 2 programmable alarms with wake up from Stop and Standby mode capability.
- Periodic wakeup unit with programmable resolution and period.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy.
- 3 anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection.
- Timestamp feature which can be used to save the calendar content. This function can triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.

I ² C features ⁽¹⁾	I2C1	I2C2
SMBus	Х	Х
Wakeup from STOP	Х	Х

Table 7. STM32F373xx I ² C im	plementation (continued)
--	--------------------------

1. X = supported.

3.20 Universal synchronous/asynchronous receiver transmitter (USART)

The STM32F373xx embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3).

All USARTs interfaces are able to communicate at speeds of up to 9 Mbit/s.

They provide hardware management of the CTS and RTS signals, they support IrDA SIR ENDEC, the multiprocessor communication mode, the single-wire half-duplex communication mode, Smartcard mode (ISO/IEC 7816 compliant), autobaudrate feature and have LIN Master/Slave capability. The USART interfaces can be served by the DMA controller.

Refer to *Table 8* for the features of USART1, USART2 and USART3.

USART modes/features ⁽¹⁾	USART1	USART2	USART3
Hardware flow control for modem	Х	Х	Х
Continuous communication using DMA	Х	Х	Х
Multiprocessor communication	Х	Х	Х
Synchronous mode	Х	Х	Х
Smartcard mode	Х	Х	Х
Single-wire half-duplex communication	Х	Х	Х
IrDA SIR ENDEC block	Х	Х	Х
LIN mode	Х	Х	Х
Dual clock domain and wakeup from Stop mode	Х	Х	Х
Receiver timeout interrupt	Х	Х	Х
Modbus communication	Х	Х	Х
Auto baud rate detection	Х	Х	Х
Driver Enable	Х	Х	Х

Table 8. STM32F373xx USART implementation

1. X = supported.

Na	me	Abbreviation	Definition					
Pin r	name		e specified in brackets below the pin name, the pin function reset is the same as the actual pin name					
		S	Supply pin					
Pin	type	I	Input only pin					
		I/O	Input / output pin					
		FT	5 V tolerant I/O					
		FTf 5 V tolerant I/O, FM+ capable						
I/O atr	ucture	TTa 3.3 V tolerant I/O directly connected to ADC						
i/O su	ucluie	TC Standard 3.3 V I/O						
		В	Dedicated BOOT0 pin					
		RST	Bidirectional reset pin with embedded weak pull-up resistor					
No	tes	Unless otherwis and after reset	e specified by a note, all I/Os are set as floating inputs during					
D.	Alternate functions	Functions select	ted through GPIOx_AFR registers					
Pin functions	Additional functions	Functions directly selected/enabled through peripheral registers						

Table 10. Legend/abbreviations used in the	pinout table

Table 11. STM32F373xx pin definitions

Pi	n nun	nber	s					Pin func	tions
LQFP100	UFBGA100	LQFP64	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate function	Additional functions
1	B2	-	-	PE2	I/O	FT	(2)	TSC_G7_IO1, TRACECLK	-
2	A1	-	-	PE3	I/O	FT	(2)	TSC_G7_IO2, TRACED0	-
3	B1	-	-	PE4	I/O	FT	(2)	TSC_G7_IO3, TRACED1	-
4	C2	-	-	PE5	I/O	FT	(2)	TSC_G7_IO4, TRACED2	-
5	D2	-	-	PE6	I/O	FT	(2)	TRACED3	WKUP3, RTC_TAMPER3
6	E2	1	1	VBAT	S	-	-	Backup pow	er supply
7	C1	2	2	PC13 ⁽¹⁾	I/O	тс	-	-	WKUP2, ALARM_OUT, CALIB_OUT, TIMESTAMP, RTC_TAMPER1

DocID022691 Rev 7

Table 11. STM32F373xx pin definitions (continued) Pin numbers Pin functions												
Pi	n nun	nber	S					Pin func	ctions			
LQFP100	UFBGA100	LQFP64	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate function	Additional functions			
38	M7	-	-	PE7	I/O	тс	(3) (2)	-	SDADC1_AIN3P, SDADC1_AIN4M, SDADC2_AIN5P, SDADC2_AIN6M			
39	L7	29	21	PE8	I/O	тс	(3)	-	SDADC1_AIN8P, SDADC2_AIN8P			
40	M8	30	22	PE9	I/O	тс	(3)	-	SDADC1_AIN7P, SDADC1_AIN8M, SDADC2_AIN7P, SDADC2_AIN8M			
41	L8	-	-	PE10	I/O	тс	(3) (2)	-	SDADC1_AIN2P			
42	M9	-	-	PE11	I/O	тс	(3) (2)	-	SDADC1_AIN1P, SDADC1_AIN2M, SDADC2_AIN4P			
43	L9	-	-	PE12	I/O	тс	(3) (2)	-	SDADC1_AIN0P, SDADC2_AIN3P, SDADC2_AIN4M			
44	M10	-	-	PE13	I/O	тс	(3) (2)	-	SDADC1_AIN0M , SDADC2_AIN2P			
45	M11	-	-	PE14	I/O	тс	(3) (2)	-	SDADC2_AIN1P, SDADC2_AIN2M			
46	M12	-	-	PE15	I/O	тс	(3) (2)	USART3_RX	SDADC2_AIN0P			
47	L10	-	-	PB10	I/O	тс	(3) (2)	SPI2_SCK/I2S2_CK, USART3_TX, CEC, TSC_SYNC, TIM2_CH3	SDADC2_AIN0M			
48	L11	-	-	VREFSD-	S	-	(2)	External reference voltage for SDADC1, SDADC2, SDADC (negative input), negative SDADC analog input in SDADC single ended mode				
49	F12	-	-	VSSSD	S	-	(2)	SDADC1, SDADC2, SDADC3 ground				
-	-	31	23	VSSSD/ VREFSD-	S	-	-	SDADC1, SDADC2, SDADC3 ground / External reference voltage for SDADC1, SDADC2, SDADC3 (negative input), negative SDADC analog input in SDADC single ended mode				
50	G12	-	-	VDDSD12	S	-	(2)	SDADC1 and SDAD	C2 power supply			
-	-	32	24	VDDSD	S	-	-	SDADC1, SDADC2, SE	DADC3 power supply			

Table 11. STM32F373xx pin definitions (continued)

6.1.6 Power supply scheme

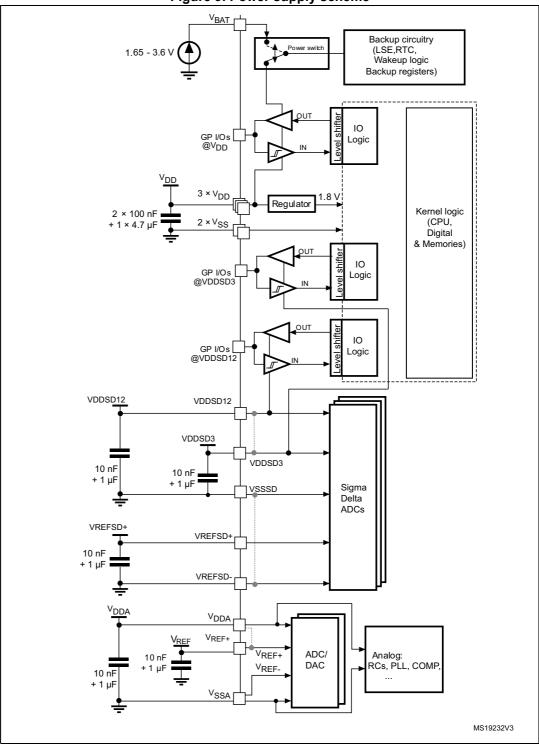


Figure 9. Power supply scheme

1. Dotted lines represent the internal connections on low pin count packages, joining the dedicated supply pins.

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 10: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz)
- Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled $f_{APB1} = f_{AHB}/2$, $f_{APB2} = f_{AHB}$
- When f_{HCLK} > 8 MHz PLL is ON and PLL inputs is equal to HSI/2 = 4 MHz (if internal clock is used) or HSE = 8 MHz (if HSE bypass mode is used)

The parameters given in *Table 28* to *Table 34* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 22*.

				AI	l periphe	erals ena	abled	All peripherals disabled				
Symbol	Parameter	Conditions	f _{HCLK}	Tun	м	ax @ T _A	(2)	Tun	Max @ T _A ⁽²⁾			Unit
				Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C	
			72 MHz	63.1	70.7	71.5	73.4	29.2	31.1	31.7	34.2	
		HSE	64 MHz	56.3	63.3	64.1	64.9	26.1	27.8	28.4	30.4	
		bypass,	48 MHz	42.5	48.5	48.0	50.1	19.9	22.6	21.9	23.1	
		PLL on	32 MHz	28.8	31.4	32.2	34.3	13.1	16.1	14.9	16.2	
	Supply		24 MHz	21.9	24.4	24.4	25.8	10.1	10.9	11.9	12.4	
	current in	HSE	8 MHz	7.3	8.0	9.3	9.3	3.7	4.1	4.4	5.0	
I _{DD}	Run mode, code	PLL off	1 MHz	1.1	1.5	1.8	2.3	0.8	1.1	1.4	1.9	mA
	executing from Flash		64 MHz	51.7	57.7	58.0	60.4	25.8	27.6	28.1	30.1	
			48 MHz	38.6	45.9	43.5	46.9	19.8	21.9	21.7	22.8	
		PLL on	32 MHz	26.4	31.1	29.7	31.9	13.1	15.7	14.8	16.2	
			24 MHz	20.3	22.6	22.6	23.7	6.9	7.5	8.1	8.8	
		HSI clock, PLL off	8 MHz	7.0	7.6	8.8	8.8	3.7	4.1	4.4	5.0	

Table 28. Typical and maximum current consumption from V_{DD} supply at V_{DD} = 3.6 V⁽¹⁾

Symbol					Тур(@V _{DD} (V _{DD} =V						
	Parameter		Conditions		2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	Т _А = 25 °С	Т _А = 85 °С	T _A = 105 °C	Unit
I _{DDA}	Supply		Regulator in run mode, all oscillators OFF	1.99	2.07	2.19	2.33	2.46	2.64	10.8	11.8	12.4	
	current in Stop mode	DDSD12	Regulator in low-power mode, all oscillators OFF	1.99	2.07	2.18	2.32	2.47	2.63	10.6	11.5	12.5	
	Supply purcent in but the second seco	>	LSI ON and IWDG ON	2.44	2.53	2.7	2.89	3.09	3.33	-	-	-	μA
			V _{DDA}	LSI OFF and IWDG OFF	1.87	1.94	2.06	2.19	2.35	2.51	4.1	4.5	4.8
IDDAmon	Supply current for V_{DDA} and V_{DDSD12} monitoring		-		1.02	1.12	1.2	1.27	1.4	-	-	-	

Table 31. Typical and maximum V _{DDA} consumption in Stop and Standby modes
--

1. Data based on characterization results and tested in production.

2. To obtain data with monitoring OFF is necessary to substract the IDDAmon current.

Table 32. Typical and maximum current consumption from V _{BAT} supply."												
Symbol F	Parameter	Conditions	Тур @ V _{ВАТ}						Max ⁽²⁾			
			= 1.65 V	= 1.8 V	= 2.0 V	= 2.4 V	= 2.7 V	= 3.3 V	= 3.6 V	T _A = 25 ℃	T _A = 85 °C	T _A = 105 °C
Backup I _{DD_} domain _{VBAT} supply current	LSE & RTC ON; "Xtal mode" lower driving capability; LSEDRV[1:0] = '00'	0.50	0.52	0.55	0.63	0.70	0.87	0.95	1.1	1.6	2.2	μA
	supply	LSE & RTC ON; "Xtal mode" higher driving capability; LSEDRV[1:0] = '11'	0.85	0.90	0.93	1.02	1.10	1.27	1.38	1.6	2.4	3.0

Table 32. Typical and maximum current consumption from V_{BAT} supply⁽¹⁾

1. Crystal used: Abracon ABS07-120-32.768kHz-T with 6 pF of CL for typical values.

2. Guaranteed by characterization results.

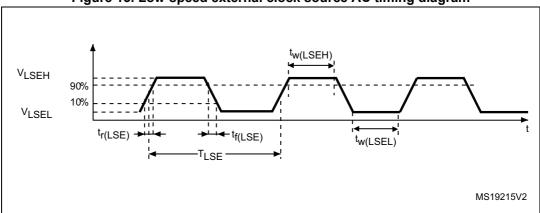


Figure 13. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 40*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	32	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	-	8.5	
I _{DD}		V _{DD} = 3.3 V, Rm= 30 Ω CL= 10 pF@8 MHz	-	0.4	-	
	HSE current consumption	V _{DD} = 3.3 V, Rm= 45 Ω CL= 10 pF@8 MHz	-	0.5	-	
		V _{DD} = 3.3 V, Rm= 30 Ω CL=5 pF@32 MHz	-	0.8	-	mA
		V _{DD} = 3.3 V, Rm= 30 Ω CL= 10 pF@32 MHz	-	1	-	
		V _{DD} = 3.3 V, Rm= 30 Ω CL= 20 pF@32 MHz	-	1.5	-	
9 _m	Oscillator transconductance	scillator transconductance Startup		-	-	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	ms

Table 40. HSE of	scillator cha	aracteristics
------------------	---------------	---------------

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by design.

3. This consumption level occurs during the first 2/3 of the $t_{SU(HSE)}$ startup time

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 41*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
I _{DD}		LSEDRV[1:0]=00 lower driving capability	-	0.5	0.9	
	LSE current consumption	LSEDRV[1:0]= 10 medium low driving capability	-	-	1	
		LSEDRV[1:0] = 01 medium high driving capability	-	-	1.3	μA
		LSEDRV[1:0]=11 higher driving capability	-	-	1.6	
9 _m		LSEDRV[1:0]=00 lower driving capability	5	-	-	
	Oscillator medium low driving c transconductance LSEDRV[1:0] =	LSEDRV[1:0]= 10 medium low driving capability	8	-	-	μA/V
		LSEDRV[1:0] = 01 medium high driving capability	15 -		-	μΑνν
		LSEDRV[1:0]=11 higher driving capability	25	-	-	
$t_{SU(LSE)}^{(3)}$	Startup time	V _{DD} is stabilized	-	2	-	s

Table 41. LSE oscillator characteristics (f_{LSE} = 32.768 kHz)

1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

2. Guaranteed by design.

3. t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

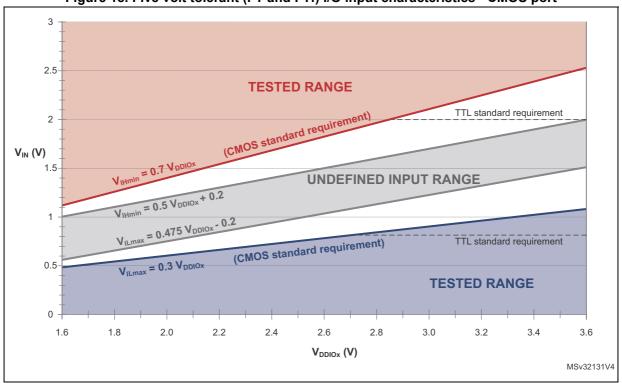


Figure 18. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with a relaxed $V_{OL}/V_{OH})$.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on all VDD_x and VDDSDx, plus the maximum Run consumption of the MCU sourced on V_{DD} cannot exceed the absolute maximum rating SI_{VDD} (see *Table 20*).
- The sum of the currents sunk by all the I/Os on all VSS_x and VSSSD, plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating SI_{VSS} (see *Table 20*).

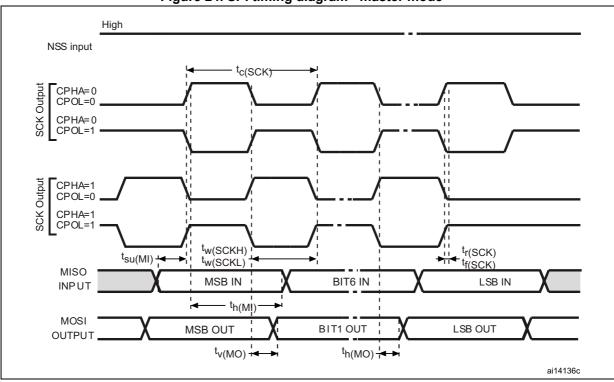


Figure 24. SPI timing diagram - master mode⁽¹⁾

1. Measurement points are done at $0.5V_{DD}$ level and with external C_L = 30 pF.

6.3.19 Comparator characteristics

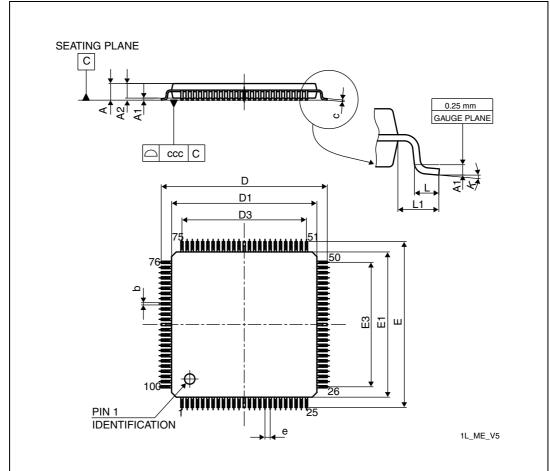
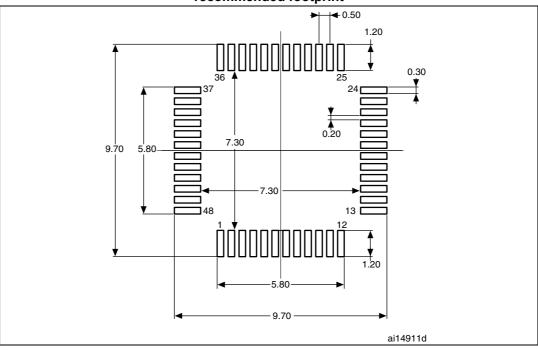

Symbol	Parameter	Conditio	ns	Min	Тур	Max ⁽¹⁾	Unit
V _{DDA}	Analog supply voltage	-			-	3.6	V
V _{IN}	Comparator input voltage range	-			-	V _{DDA}	V
V_{BG}	V _{REFINT} scaler input voltage	-			1.2	-	V
V_{SC}	V _{REFINT} scaler offset voltage	-		-	±5	±10	mV
t _{s_sc}	Scaler startup time from power down	First V _{REFINT} scaler activ power o		-	-	1000 ⁽²⁾	ms
-	nom power down	Next activa	tions			0.2	
t _{START}	Comparator startup time	Startup time to reach propagation delay specification		-	-	60	μs
		Ultra-low power mode			2	4.5	μs
	Propagation delay for 200 mV step with 100 mV overdrive	Low power mode			0.7	1.5	
		Medium power mode			0.3	0.6	
		High speed mode	$V_{DDA} \ge 2.7 V$	-	50	100 n	20
4		riigh speed mode	V _{DDA} < 2.7 V	-	100	240	ns
t _D		Ultra-low power mode			2	7	
	Propagation delay for full range step with 100 mV overdrive	Low power mode			0.7	2.1	μs
		Medium power mode			0.3	1.2	
		High speed mode	$V_{DDA} \ge 2.7 V$	-	90	180	ns
		nigh speed mode	V _{DDA} < 2.7 V	-	110	300	110
V _{offset}	Comparator offset error				±4	±10	mV
dV _{offset} /dT	Offset error temperature coefficient	-			18	-	μV/°C
		Ultra-low power mode			1.2	1.5	-μA
	COMP current	Low power mode			3	5	
I _{DD(COMP)}	consumption	Medium power mode			10	15	
		High speed mode			75	100	

Table 64. Comparator characteristics

7.2 LQFP100 package information

Figure 35. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.



Cumhal		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3	-	12.000	-	-	0.4724	-	
Е	15.800	16.000	16.200	0.6220	0.6299	0.6378	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3	-	12.000	-	-	0.4724	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°	
CCC	-	-	0.080	-	-	0.0031	

Table 78. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat packagemechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 42. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Device marking for LQFP48

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

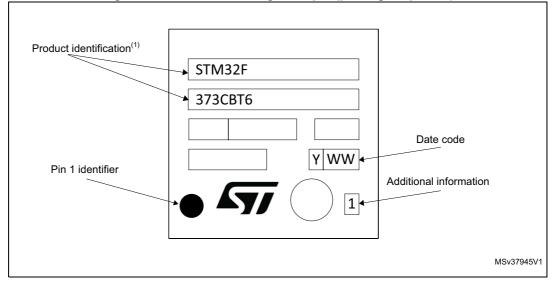


Figure 43. LQFP48 marking example (package top view)

 Samples marked "ES" are to be considered as "Engineering Samples": i.e. they are intended to be sent to customer for electrical compatibility evaluation and may be used to start customer qualification where specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production. Only if ST has authorized in writing the customer qualification Engineering Samples can be used for reliability qualification trials.

Date	Revision	Changes
18-Mar-2014	5	Renamed part number STM32F37x to STM32F373xx Added note1 in <i>Table 28: Typical and maximum current</i> <i>consumption from VDD supply at VDD</i> = $3.6 V$ Updated <i>Chapter 3.14: Digital-to-analog converter (DAC)</i> Updated, added note 2 and 3 in <i>Table 57: I2C analog filter</i> <i>characteristics</i> Renamed t _{SP} symbol with t _{AF.} Added note for EG Symbol in <i>Table 74: SDADC</i> <i>characteristics</i> Added all packages top view
21-Jul-2015	6	Updated Section 7 Updated Section 3.13 Updated Section 3.7.1, Section 3.7.4 Updated Table 11: STM32F373xx pin definitions, Table 19: Voltage characteristics, Table 49: ESD absolute maximum ratings, Table 74: SDADC characteristics, Table 76: UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data, and Table 78: LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data Updated Figure 2: STM32F373xx LQFP48 pinout, Figure 9: Power supply scheme, Figure 32: UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline, Figure 34: UFBGA100 marking example (package top view), Figure 36: LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint, Figure 37: LQFP100 marking example (package top view), Figure 38: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline, Figure 39: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package recommended footprint, Figure 40: LQFP64 marking example (package top view), Figure 42: LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint, Figure 33: LQFP48 marking example (package top view). Added Table 32: Typical and maximum current consumption from VBAT supply, Table 49: ESD absolute maximum ratings, Table 64: Comparator characteristics, Table 77: UFBGA100 recommended PCB design rules (0.5 mm pitch BGA). Added Figure 11: Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0]='00'), Figure 30: Maximum VREFINT scaler startup time from power down, Figure 33: UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint.

Table 83. Document revision history (continued)

